
Indicates accompanying files are available
online at http://www.oracleprofessionalnewsletter.com.

Oracle
ProfessionalSolutions for High-End

Oracle® DBAs and Developers

1 Avoid Costly Joins with FBIs
Pedro Bizarro

8 A Basic Implementation
of Roles
Sumathy Thankam Panicker

10 DBMS_OUTPUT.PUT_LINE
Replacement, Caching USER,
and Displaying the Call Stack
Steven Feuerstein

14 Log Switch Monitoring

Dan Hotka

17 Tip: Consider Building
Oracle Forms Based on
Database Views

Roy F. Gomes

18 Tip: Views with Sorts
in Oracle8i

Jay Wortman

20 September 2000 Source Code

September 2000
Volume 7, Number 9

Avoid Costly Joins
with FBIs
Pedro Bizarro

In this article, Pedro Bizarro describes how to use Function-Based Indexes to avoid
costly joins. Data warehouses are particularly suited to the usage of this technique,
since joins tend to be heavy operations and dimensions are scarcely updated. This
technique is only applicable in Oracle8i.

WITH Function-Based Indexes (FBIs), I was able to alter an execution
plan from a nested loop that spread over five tables, down to
bitmap index scans and ROWID accesses in one (!) table. The original

query was reduced from 809 seconds to 123 seconds.
You’ve probably read that FBIs allow you to use indexes even in WHERE

clauses like this:

SELECT …
 FROM …
 WHERE upper(name) = …;

or
 …
 WHERE extract_year(date) = …;

In a sense, an FBI is a bit like a materialized view. Some of the work is
already done and stored before running the query. FBIs are especially useful
when you use a function as a search condition. Without FBIs, the function is

2 http://www.oracleprofessionalnewsletter.comOracle Professional September 2000

executed at runtime, and for every run of the query and
every record, the function is executed once (or maybe
more, depending on the search). If you use FBIs, the
function’s results are stored in an index before running
the queries. All that’s left to do at runtime is to search for
the value in the B-tree or in the bitmap. The function
wouldn’t be executed any more.

Deterministic function
The function used in an FBI may be user-defined but must
be deterministic—that is, two executions must return the
same value. To ensure that different executions will
always return the same value, a deterministic function
must not reference package variables or the database.
You can declare such a function using the
DETERMINISTIC keyword:

CREATE OR REPLACE FUNCTION my_function (…)
 RETURN …
 DETERMINISTIC
 IS
BEGIN
 [function code]

 RETURN …;
END my_function;

Oracle8i SQL Reference (page 7-270) states,
“DETERMINISTIC is an optimization hint that allows the
system to use a saved copy of the function’s return result
(if such a copy is available). The saved copy could come
from a materialized view, a function-based index, or a
redundant call to the same function in the same SQL
statement. The query optimizer can choose whether to use
the saved copy or re-call the function. The function should
reliably return the same result value whenever it is called
with the same values for its arguments. Therefore, do not
define the function to use package variables or to access
the database in any way that might affect the function’s
return result, because the results of doing so will not be
captured if the system chooses not to call the function.”

Can you imagine the power you could harness from
FBIs if they could read from the database? Imagine that
the base function returns data from other tables and stores
it as index data. Remember the scott/tiger schema from
Oracle. The first query that follows is a normal join

Figure 1. The TPC-H schema with load data required for a scale factor 1 database.

http://www.oracleprofessionalnewsletter.com 3Oracle Professional September 2000

between the EMP and DEPT tables. But the second query
reads only from a table and an index. Yet, it produces the
same result:

/* Retrieves all employees whose department name */
/* is same value. */
SELECT e.name
 FROM emp e, /* Retrieves data */
 dept d /* from 2 tables. */
 WHERE e.deptno = d.deptno /* Join condition. */
 AND d.name = …; /* Some condition. */

SELECT e.name /* One table, */
 FROM emp e /* no joins. */
 WHERE get_dept_name(deptno) = …; /* Function */
 /* used in */
 /* the FBI */
 /* and stored */
 /* in an index */

You’re probably uncomfortable with the suggestion of
having a deterministic function reading the database—I’ll
address that later in the article.

Setting the scene
My motivation to use FBIs appeared to me when I was
benchmarking with TPC-H. As you probably know, TPC-
H is a set of tables, data, and queries to benchmark
software and hardware that implements a data
warehouse. Although the TPC-H schema isn’t a perfect
example (with dimensions and facts neatly arranged),
it’s widely accepted that it mimics both the fundamental
DW properties as well as the real world idiosyncrasies
(see Figure 1 on page 2).

In Figure 1, the solid arrows represent the foreign key

Figure 2. The TPC-H query number 7 visual representation.

4 http://www.oracleprofessionalnewsletter.comOracle Professional September 2000

(FK) relations. The dotted-line-arrows aren’t real FKs in
the sense that they don’t exist in the schema data
dictionary of constraints. But I can assume that they’re
normal FKs due to the relations of LINEITEM to
PARTSUPP, and PARTSUPP to both PART and SUPPLIER.

TPC-H query number 7 is called Volume Shipping. It
finds, for two given Nations, the gross discount revenues
derived from Lineitems in which Parts where shipped
from a Supplier in either Nation to a Customer in the
other Nation during 1995 and 1996. Two nations are
given as input parameters. The full query 7 text is
shown in Listing 1.

Listing 1. TPC-H query number 7—Volume Shipping.

SELECT
 supp_nation,
 cust_nation,
 l_year,
 sum(volume) revenue
FROM
 (
 SELECT
 n1.n_name supp_nation,
 n2.n_name cust_nation,
 to_char(l_shipdate, 'YYYY') l_year,
 l_extendedprice * (1 - l_discount) volume
 FROM
 supplier,
 lineitem,
 orders,
 customer,
 nation n1,
 nation n2
 WHERE
 s_suppkey = l_suppkey
 AND o_orderkey = l_orderkey
 AND c_custkey = o_custkey
 AND s_nationkey = n1.n_nationkey
 AND c_nationkey = n2.n_nationkey
 AND (
 (n1.n_name = 'FRANCE'
 AND n2.n_name = 'GERMANY')
 OR (n1.n_name = 'GERMANY'
 AND n2.n_name = 'FRANCE'))
 AND l_shipdate
 BETWEEN to_date('1995-01-01', 'yyyy-mm-dd')
 AND to_date('1996-12-31', 'yyyy-mm-dd')
) shipping
GROUP BY
 supp_nation,
 cust_nation,
 l_year
ORDER BY
 supp_nation,
 cust_nation,

 l_year;

Since this might be a bit of a dense query to grasp,
I’ll provide a visual representation for it (see Figure 2
on page 3).

In Figure 2, the dark gray columns represent values
read just to do the joins between tables. Light gray
columns represent the columns I really have to read,
either as input or output values. Note that I have to join
LINEITEM to ORDER, and then to CUSTOMER, and then
to NATION in order to find the Customer’s Nation.
Likewise, I have to join LINEITEM to SUPPLIER and

NATION to find the Supplier’s nation.
The problem with query 7 is that to get from

LINEITEM to NATION, I have to go through ORDERS
(1,500,000 records) and CUSTOMER (150,000 records).
That will be a pretty heavy nested loop.

Wouldn’t it be nice to skip ORDERS, CUSTOMER,
and SUPPLIER? I could, if I changed the schema and just
added two extra dimensions: CUSTOMER_NATION and
SUPPLIER_NATION. Another option would be to add the
two columns—Customer’s Nation and Supplier’s
Nation—in the fact table LINEITEM. But I won’t or can’t
change the schema. However, in an ideal database world,
my query would only have to read the light gray values.

Fooling Oracle
What would be really interesting would be to have two
bitmap indexes in LINEITEM over fictitious columns,
Customer’s Nation and Supplier’s Nation. That’s when
FBIs come into play. In Listing 2, I show how to
implement the GET_CUST_NATION and
GET_SUPP_NATION functions.

Listing 2. The DBMS_FBI package and functions
GET_CUST_NATION and GET_SUPP_NATION.

CREATE OR REPLACE PACKAGE dbms_fbi IS
 cnt_cust NUMBER := 0;
 cnt_supp NUMBER := 0;
END dbms_fbi;
/

CREATE FUNCTION get_cust_nation (v_orderkey IN NUMBER)
 RETURN VARCHAR2
 DETERMINISTIC
 IS
 v_nation CHAR(25);
BEGIN
 dbms_fbi.cnt_cust := dbms_fbi.cnt_cust + 1;

 SELECT n.n_name INTO v_nation
 FROM orders o, customer c, nation n
 WHERE v_orderkey = o.o_orderkey
 AND o.o_custkey = c.c_custkey
 AND c.c_nationkey = n.n_nationkey;

 RETURN TRIM(v_nation); /* Because of white space */
END get_cust_nation; /* in TPC-H data. */
/

CREATE FUNCTION get_supp_nation (v_suppkey IN NUMBER)
 RETURN VARCHAR2
 DETERMINISTIC
 IS
 v_nation CHAR(25);
BEGIN
 dbms_fbi.cnt_supp := dbms_fbi.cnt_supp + 1;

 SELECT n.n_name INTO v_nation
 FROM supplier s, nation n
 WHERE v_suppkey = s.s_suppkey
 AND s.s_nationkey = n.n_nationkey;

 RETURN TRIM(v_nation); /* Because of white space */
END get_supp_nation; /* in TPC-H data. */
/

Listing 2 shows that although I’ve declared both

http://www.oracleprofessionalnewsletter.com 5Oracle Professional September 2000

functions as deterministic, in fact they can’t be considered
as such—they read and write package variables (not
necessary, but used to count the number of executions)
and they read from the database. Oracle8i is less strict
than previous versions regarding purity levels—it trusts
the programmer more. In fact, there’s even a new purity
level called TRUST.

After creating the functions, the next step is to
create the FBIs. Just before creating them, I initialize
the counters:

BEGIN
 dbms_fbi.cnt_cust := 0;
 dbms_fbi.cnt_supp := 0;
END;

And now, I create the FBIs:

CREATE BITMAP INDEX idx_cust ON
 lineitem(SUBSTR(get_cust_nation(l_orderkey), 1, 25));

CREATE BITMAP INDEX idx_supp ON
 lineitem(SUBSTR(get_supp_nation(l_suppkey), 1, 25));

When using FBIs with functions returning strings,
you have to SUBSTR the result. This happens because
user-defined functions that return a string use
VARCHAR2(4000) types. This is too big to be indexed,
and Oracle will return “ORA-01450: maximum key length
(758) exceeded.” Functions returning numbers or dates
don’t need this.

The idea is to make the optimizer go and look for the
result of GET_CUST_NATION and GET_SUPP_NATION
in the FBIs, instead of executing the function. Let’s see
how many calls were made to each function during the
indexes creation:

SET SERVEROUTPUT ON;

BEGIN
 dbms_output.put_line('CUST counter = ' ||
 TO_CHAR(dbms_fbi.cnt_cust));
 dbms_output.put_line('SUPP counter = ' ||
 TO_CHAR(dbms_fbi.cnt_supp));
END;

CUST counter = 6001215
SUPP counter = 6001215

Each function was executed once for every record in
LINEITEM. Remember that there are 6,001,215 records in
that table.

Now I’ll make Oracle use the values from the FBIs in
the original query. First, I must analyze both indexes:

ANALYZE INDEX idx_cust
 COMPUTE STATISTICS;

ANALYZE INDEX idx_supp
 COMPUTE STATISTICS;

Then I have to alter some session parameters in order
for the FBIs to be used:

ALTER SESSION SET query_rewrite_enabled = true;
ALTER SESSION SET query_rewrite_integrity = trusted;

Comparing versions
The entire background job is done now except for one
final step. I have to rewrite TPC-H query number 7.
Listing 3 shows the new version of query 7.

Listing 3. Altered version of TPC-H query number 7.

SELECT
 sn supp_nation,
 cn cust_nation,
 l_year,
 sum(volume) revenue
FROM
 (
 SELECT /*+ INDEX(idx_cust)
 INDEX(idx_supp) */
 substr(get_supp_nation(l_suppkey), 1, 25) sn,
 substr(get_cust_nation(l_orderkey), 1, 25) cn,
 to_char(l_shipdate, 'YYYY') l_year,
 l_extendedprice * (1 - l_discount) volume
 FROM
 lineitem
 WHERE
 ((substr(get_supp_nation(l_suppkey), 1, 25)
 = 'FRANCE'
 AND substr(get_cust_nation(l_orderkey), 1, 25)
 = 'GERMANY')
 OR (substr(get_supp_nation(l_suppkey), 1, 25)
 = 'GERMANY'
 AND substr(get_cust_nation(l_orderkey), 1, 25)
 = 'FRANCE'))
 AND l_shipdate
 BETWEEN to_date('1995-01-01', 'yyyy-mm-dd')
 AND to_date('1996-12-31', 'yyyy-mm-dd')
) shipping
GROUP BY
 sn,
 cn,
 l_year
ORDER BY
 supp_nation,
 cust_nation,
 l_year;

In Listing 3, the differences from the original query
are: the FROM clause refers just one (!) table now;
n1.n_name was replaced by substr(get_supp_
nation(l_suppkey), 1, 25); n2.n_name was replaced by
substr(get_cust_nation(l_orderkey), 1, 25); and I added
hints to the inner SELECT. There are also small differences
in the alias I introduced just to make the code narrower.
The differences are in italics.

The original query took 809 seconds (13 minutes and
29 seconds), and the new query took only 123 seconds (2
minutes and 3 seconds), representing a gain of more than
650 percent. This was the original execution plan:

Plan
--
SELECT STATEMENT Optimizer=CHOOSE
 SORT (GROUP BY)
 NESTED LOOPS
 NESTED LOOPS
 NESTED LOOPS
 NESTED LOOPS
 NESTED LOOPS
 TABLE ACCESS (FULL) OF 'ORDERS'
 TABLE ACCESS (BY INDEX ROWID) OF 'CUSTOMER'

6 http://www.oracleprofessionalnewsletter.comOracle Professional September 2000

 INDEX (UNIQUE SCAN) OF 'PK_CUSTOMER' (UNIQUE)
 TABLE ACCESS (BY INDEX ROWID) OF 'NATION'
 INDEX (UNIQUE SCAN) OF 'PK_NATION' (UNIQUE)
 TABLE ACCESS (BY INDEX ROWID) OF 'LINEITEM'
 INDEX (RANGE SCAN) OF 'PK_LINEITEM' (UNIQUE)
 TABLE ACCESS (BY INDEX ROWID) OF 'SUPPLIER'
 INDEX (UNIQUE SCAN) OF 'PK_SUPPLIER' (UNIQUE)
 TABLE ACCESS (BY INDEX ROWID) OF 'NATION'
 INDEX (UNIQUE SCAN) OF 'PK_NATION' (UNIQUE)

Here’s the new execution plan:

Plan
--
SELECT STATEMENT Optimizer=CHOOSE
 SORT (GROUP BY)
 TABLE ACCESS (BY INDEX ROWID) OF 'LINEITEM'
 BITMAP CONVERSION (TO ROWIDS)
 BITMAP OR
 BITMAP AND
 BITMAP INDEX (SINGLE VALUE) OF 'IDX_CUST'
 BITMAP INDEX (SINGLE VALUE) OF 'IDX_SUPP'
 BITMAP AND
 BITMAP INDEX (SINGLE VALUE) OF 'IDX_CUST'
 BITMAP INDEX (SINGLE VALUE) OF 'IDX_SUPP'

Am I fooling myself?
If you’ve reached this point, you might be asking, “But
what if I update any table between ORDERS and
NATION? What happens to the index?” The answer is
nothing happens to the index. Therefore, the index won’t
be updated nor rebuilt upon changes in ORDERS,
CUSTOMER, NATION, or SUPPLIER. It also means that
an execution plan using the FBIs wouldn’t yield the same
results as an execution plan doing the nested loop over
the five tables. That’s why this technique is specially
suited to data warehouses where updates in the
dimensions are rare.

An interesting tidbit
Remember the counters from DBMS_FBI? After the
execution of the new query (and upon re-initialization to
zero), their values were:

CUST counter = 5924

SUPP counter = 5924

Thus, the functions were executed after all—but far
fewer times than what would be expected. The subtlety is
that query number 7 refers to Customer’s Nation (and to
Supplier’s Nation) in both the WHERE and the SELECT
clauses. What’s interesting is that I can make Oracle use
the indexes instead of executing the functions if the
function call is in the WHERE clause. But if the function
call appears in the SELECT clause, the function is really
executed. Consequently, the executed plan isn’t only
going for the bitmap indexes. From the total of 6,001,215
records, only 5,924 (about 0.1 percent) will be selected
using just the values stored in the indexes. For those 5,924
records of the inner SELECT, I’ll call a function to
calculate the Nations of Customer and Supplier. This
happens because the system isn’t intelligent enough. It
knows the values of Customer’s and Supplier’s Nations
for every record (stored in the FBIs), but it still calculates
them again using the functions.

Food for thought
This particular query allows for an extra improvement. By
re-writing it in some way, it’s possible to remove the
function calls from the inner SELECT clause. With this
new improvement, the functions appear only in the
WHERE clause, and that doesn’t transform into a function
call. Therefore, it’s possible to have no function calls at all!
Not even one. Can you figure it out?

For a hint, look at this new execution plan:

Plan
--
SELECT STATEMENT Optimizer=CHOOSE
 SORT (GROUP BY)
 VIEW
 SORT (UNIQUE)
 UNION-ALL
 TABLE ACCESS (BY INDEX ROWID) OF 'LINEITEM'

XML • Web D evelopmen t • SQL Server • Visual B asic • MS Access • O racle • Visual C++ •
Delphi • FoxPro • XML • Web Development • SQL S erver • Visual Basic • MS A ccess • Oracle

Sign up now for Pinnacle’s FREE eNewsletters!
Get tips, tutorials, and news from gurus in the field

delivered straight to your Inbox.

http://www.FREEeNewsletters.com

XML • Web D evelopmen t • SQL Server • Visual B asic • MS Access • O racle • Visual C++ •
Delphi • FoxPro • XML • Web Development • SQL S erver • Visual Basic • MS A ccess • Oracle

More on FBIs
• Oracle8i SQL Reference:

http://technet.oracle.com/doc.pdf/server.815/

a67779.pdf

• Function Based Indexes, by Thomas Kyte:

http://govt.oracle.com/~tkyte/article1/index.html

• Function Based Indexes, by Chris Kempster:

http://www.dbasupport.com/dsc/ora8/fbi.shtml

• Oracle PL/SQL Language Pocket Reference,

by Steven Feuerstein, Bill Pribyl, and Chip Dawes,

1st Edition, April 1999

Continues on page 18

18 http://www.oracleprofessionalnewsletter.comOracle Professional September 2000

Views with Sorts in Oracle8i
Jay Wortman

Oracle Tip!

ONE noteworthy new Oracle8i Release 8.1.5 feature is the

ORDER BY clause in a view. Oracle almost hid this feature in

the documentation. I remember my disbelief in my early days of

writing Oracle code, when I discovered that the ORDER BY clause

wasn’t allowed in a view definition. I simply added the ORDER BY

to the SELECT definition.

This table definition is useful for the examples:

CREATE TABLE Products(
 Prod VARCHAR2(20),
 Code NUMBER(5),
 Description VARCHAR2(40));

Here are view definitions that list the results in (ascending

by default) Prod order and descending Code order:

CREATE VIEW Prod_Order_View AS
SELECT * FROM Products
ORDER BY Prod;

CREATE VIEW Code_Order_View_Desc AS
SELECT * FROM Products
ORDER BY Code DESC;

Selecting from the view is the same:

SELECT *
FROM Prod_Order_View;

SELECT *

FROM Code_Order_View_Desc;

Adding an ORDER BY when selecting from a view overrides

the original definition. This SELECT lists the results in ascending

order by CODE (though resulting in confusing code):

SELECT *
FROM Prod_Order_View
ORDER BY Code;

And here’s a last example showing a (descending)

Description column:

SELECT *
FROM Prod_Order_View
ORDER BY Description DESC;

The ORDER BY is valid in in-line views as well. ▲

WORTMAN.SQL at www.oracleprofessionalnewsletter.com

Jay Wortman is an independent consultant and has lived in Paris for

more than 19 years. He ran his own consulting business in Paris for a

number of years and now travels around Europe working on projects.

He’s an Oracle specialist (Oracle Certified DBA v7.3, v8.0 and v8.1), and

his favorite projects include data warehouse and Web applications. He

speaks fluent French and fluent Java. wortman_j@hotmail.com.

Avoid Costly Joins with FBIs . . .
Continued from page 6

 BITMAP CONVERSION (TO ROWIDS)
 BITMAP AND
 BITMAP INDEX (SINGLE VALUE) OF 'IDX_CUST'
 BITMAP INDEX (SINGLE VALUE) OF 'IDX_SUPP'
 TABLE ACCESS (BY INDEX ROWID) OF 'LINEITEM'
 BITMAP CONVERSION (TO ROWIDS)
 BITMAP AND
 BITMAP INDEX (SINGLE VALUE) OF 'IDX_CUST'
 BITMAP INDEX (SINGLE VALUE) OF 'IDX_SUPP'

This new query took only 114 seconds (1 minute and
54 seconds), and it’s over 700 percent better than the
original query.

The solution is available in this month’s Source Code
files at www.oracleprofessionalnewsletter.com.

Conclusions
If you’re going to include this technique in your
production environment, you must remember a
few things:

• You have to create the functions and declare them

as DETERMINISTIC.
• You have to create the indexes (bitmap or normal)

using the functions.
• VARCHAR2 columns require special treatment using

the SUBSTR function.
• The indexes have to be analyzed.
• You have to alter session parameters

(QUERY_REWRITE_ENABLED,
QUERY_REWRITE_INTEGRITY).

• You have to specify the indexes to use with
optimizer hints.

• If you update data from any of the tables the indexes
use, you have to drop and rebuild said tables, or the
results might be different. ▲

BIZARRO.RTF at www.oracleprofessionalnewsletter.com

Pedro Bizarro is a graduate student at University Nova de Lisboa and a

teaching assistant in all database courses at University of Coimbra,

Portugal. He’ll finish his master’s by December 2000. He’s already a

Fulbright grantee for his Ph.D. program, starting September 2001.

bizarro@dei.uc.pt.

