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Abstract

Locomotion such as walking, jogging, and running is one of the
most basic forms of daily human motions. However, the previous
methods can hardly generate the convincing locomotion of a char-
acter following a curved path with a desired speed and style. Based
on scattered data interpolation, we propose a novel approach for
on-the-fly generation of convincing locomotion, given parameters
such as speed, turning angle, and style, on top of others given in the
previous approaches. We first present an incremental scheme for
timewarping to align the example motion clips of various speeds.
Then, we provide a novel scheme for joint angle blending which
guarantees similar poses to have similar representations. Finally,
we show how to adapt the blended motion to the target character
and the environment in an on-line, real-time manner. The resulting
motions are not only convincing but also effectively controlled to
reflect animator’s intention. Our approach is efficient enough for
on-line applications such as real-time animation systems and video
games.

CR Categories: 1.3.7 [Computer Graphics]: Three-dimensional
Graphics—Animation

Keywords: Animation, Animation with Constraints, Human Body
Simulation

1 Introduction

Locomotion such as walking, jogging, and running is one of the
most basic forms of daily human motions. Therefore, it is natural
to observe scenes with characters in locomotion frequently in com-
puter games and character animations. The importance of locomo-
tion generation is also revealed by commercial computer animation
packages equipped with locomotion generation functions in various
forms. The great demand on locomotion generation has provided a
driving force for continuing research efforts.

However, the previous methods can hardly generate the convinc-
ing locomotion of a character following a curved path with a desired
speed and style [20]. Based on mathematical models and fragments
of code to describe a human locomotion, procedural approaches are
able to produce a variety of locomotion efficiently, but results have
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often revealed some artifacts because of their kinematics-based na-
ture [2, 3, 4, 5]. Dynamics-based simulations have been tried to
automatically generate physically correct motions [12, 15, 17, 22].
Recent motion capture-based approaches have yielded realistic lo-
comotion in real time. However, they lack high-level controllability
to synthesize a curved locomotion with given aspects [6, 10, 23, 27].

In this paper, we present a novel approach for on-the-fly gen-
eration of convincing locomotion that satisfies time-varying con-
straints on its trajectory, speed, and style, which are given in an
on-line manner. Our basic idea is to generate a motion by blending
a set of example motion clips captured from live human motions.
Relying on blending, our approach is efficient enough to guaran-
tee real-time performance. Using live-captured motion clips, it also
allows us to obtain convincing motions of high quality. Finally, pa-
rameterizing example motions properly, it achieves controllability
over various aspects of motion such as speed, turning angle, and
style.

To generate a motion by blending a set of example motion clips,
we should address three issues: First, we need to provide a time-
warping scheme to align the motion clips of a wide range of speed.
Second, the conventional methods using Euler angles are required
to preprocess the example motions for effective motion blending
to ensure that similar poses use similar joint angle representation.
Without this preprocessing, similar postures would be represented
rather differently to cause difficulty in blending. Finally, since the
target character has a different size and proportions from an actor
(or puppeteer), a blended motion needs to be adapted to the target
character in an on-line manner. To tackle the first issue, we present
an incremental scheme for timewarping to align the example motion
clips of various speeds. We solve the second issue by providing a
novel scheme for blending joint angles based on quaternion alge-
bra. To address the last issue, we compute the target stance foot
print position at each frame by blending those of the example mo-
tions and then adapt the blended motion to the target character and
the environment in an on-line, real-time manner.

The remainder of this paper is organized into several sections:
We begin our discussion with reviewing previous results in Section
2 and then provide an overview of our scheme in Sections 3. Param-
eterization of given example motion clips is provided in Section 4.
In Section 5, we describe our motion blending scheme in detail. We
demonstrate experimental results in section 6. Finally, we conclude
this paper in Section 7.

2 Related work

2.1 Locomotion generation

There have been an abundance of research results to generate hu-
man locomotion. An excellent survey of these efforts can be found
in [20]. Generally, previous work of generating human locomo-
tion can be classified into three categories: procedural generation,
dynamics simulation, and motion capture-based approaches.
Procedural approaches are mainly based on kinematics. Brud-
erlin and Calvert [3, 4, 5] generated locomotion by simulating an
inverted pendulum for a stance leg. Boulic and Thalmann [2] ex-



ploited inverse kinematics to prevent invalid situations such as foot
penetration into the ground. Recently, procedural locomotion gen-
eration has been available in commercial animation packages such
as Boston Dynamics “BDI Guy”, Credo Interactive “Life Forms
Studio”, 3D Studio Max “Character Studio”, and Motion Factor
“Motivate”.

Dynamics simulation approaches focus on generating physically
feasible locomotion. The basic idea of these approaches is to de-
sign an efficient controller which computes the actuator forces to
generate a desired motion. Raibert and Hodgins [22] provided
hand-designed controllers to produce physically realistic locomo-
tion for a simple biped robot. Hodgins et at. [12] extended those
controllers to more complex human models. Ko and Badler [15] in-
corporate dynamic balance control into kinematic locomotion gen-
eration. Lazro et al. [17] suggested limit cycle control to generate
a balanced walking.

Motion capture-based approaches exploit example motions to
generate a desired motion. Unuma et al. [28] applied the
Fourier analysis to motion data for interpolating and extrapolat-
ing the human locomotion such as walking motion. Bruderlin and
Williams [6] adapted the conventional signal processing techniques
to modify an animated motion. Guo and Rovergé [10] and Willey
and Hahn [29] provided an interpolation technique for example mo-
tions located regularly in the parameter space. Rose et al. [23] and
Sloan et al. [26] presented scattered data interpolation techniques
which are suitable for blending example motions located irregularly
in the parameter space. Sun and Metaxas [27] presented a hybrid
approach, coupling a procedural approach and a motion capture-
based approach.

2.2 Unit quaternion interpolation

For interpolation of two unit quaternions, slerp (spherical linear in-
terpolation) has been used [21, 25]. One popular approach for in-
terpolation of multiple unit quaternions is to interpolate the com-
ponents of quaternions individually and then to re-normalize the
result for satisfying the unitariness condition [1]. However, this
re-normalization is known to incur side effects such as singular-
ity and unexpected distortion. To avoid such re-normalization, the
exponential and logarithm mapping has been used [9, 11]. John-
stone and Williams [13] suggested a rational mapping between S2
and R3. Lee and Shin [19] proposed a general framework for con-
structing the time-domain filters for orientation data. Their scheme
satisfies such important filter properties as coordinate-invariance,
time-invariance, and symmetry. Buss and Fillmore [7] provided a
method for computing the weighted spherical averages of sample
points on d-dimensional sphere based on least squares minimiza-
tion.

2.3 Motion retargeting

Motion retargeting is to adapt a motion created for one articulated
figure to another figure with identical structure but different seg-
ment lengths [8]. Gleicher [8] gave an optimization technique using
the spacetime formulation for motion retargeting. Lee and Shin [18]
provided an interactive motion editing technique based on hierar-
chical curve fitting. They also presented a fast inverse kinematics
solver adopting the notion of an elbow circle given by Korein and
Badler [16]. Shin et al. [24] suggested an importance-based ap-
proach for on-line motion retargeting. They provided the notion of
dynamic importance of an end-effector and introduced a fast, ro-
bust inverse kinematics solver to realize the important aspect of the
end-effector according to its importance value.
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Figure 1: Overall structure.

3 Overview

Based on the framework of motion blending proposed by Rose et
al. [23] and Sloan et al. [26], our approach for locomotion gen-
eration consists of two main parts: parameterization and motion
blending as shown in Figure 1. In addition to presenting the overall
structure of our approach, we show how we extend the previous ap-
proaches in each of the parts specifically for locomotion generation.
This extension, we believe, is non-trivial and can be applicable to
motion generation in general.

As preprocessing, we parameterize the example motions to place
them in a parameter space. Rose et al. [23] introduced the notion of
verbs and adverbs for this purpose. They classified the motions of
the similar structure as a verb and placed them in the space param-
eterized by adverbs. In their original parameterization, different
styles and speeds of locomotion gave rise to different verbs. For
example, walking and running were different verbs. These verbs
were connected by using a ‘verb graph’ for their seamless transi-
tion. However, this transition makes it hard to control the speed
and style of locomotion in an on-line manner. Therefore, for on-
line control, we combine those verbs into one. On top of the orig-
inal parameters, we adopt three parameters explicitly: style, speed,
and turning angle for better control of locomotion. As a result, the
locomotion becomes a ‘large’ verb, which would have been rep-
resented by a verb graph, otherwise. Given an example motion,
we automatically compute its quantitative parameters such as speed
and turning angle. The other parameters are specified interactively
by a user.

Provided with a vector of parameters, we blend the parame-
terized example motions to generate the corresponding motion at
each frame. Based on a multidimensional scattered data interpo-
lation, we divide motion blending into four steps: weight com-
putation, timewarping, posture blending, and motion retargeting.
For a given vector of parameters, we first compute the contribution
(called weight) of each example motion to the target motion using
cardinal basis functions [26]. Then, the features of each motion are
aligned by timewarping. Based on keytimes, which are important
instants of locomotion such as heel-strikes and toe-offs [10, 23],
Rose et al. aligned the example motions using timewarping func-
tions each of which maps the actual time of an example motion
onto the generic time [23]. However, the weight may change dy-
namically from frame to frame as the parameter vector changes,
and the range of speed over example motions may also be quite
large. In this case, the original version may cause a blended actual
time of the target motion to go reversely, that is, go back to the
past, with respect to the generic time. To address this issue, we in-
troduce an incremental approach for timewarping which blends the
timewarping functions of the example motions incrementally for
guaranteeing the monotonicity of the blended actual time as long as
the weight values are non-negative.

Next, we blend the timewarped example motions. For their ef-
fective blending, we provide a novel scheme based on the result
in [19]. Our scheme adopts unit quaternions rather than Euler an-
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Figure 2: Circular arc as an approximation of the root trajec-
tory.

gles to represent joint angles for a consistent parameterization over
example motions. We finally apply the blended motion to a target
character. When the size and proportions of the target character
are different from those of the actual human performer, we can-
not apply the blended posture directly to the target character, which
may cause artifacts such as foot sliding or penetration. For avoid-
ing those artifacts, we first compute the target stance foot position
at each frame by blending those of the example motions and then
employ an importance-based approach for motion retargeting [24],
which adapt the motion to the target character and the environment
in an on-line, real-time manner.

4 Locomotion Parameterization

For effective control over a variety of locomotion, we focus on three
parameters: style, speed, and turning angle. The rest of parame-
ters for an example motion are specified interactively as discussed
in [23]. We have two types of locomotion, walking and running to
which we assign zero and one, respectively, as their values of the
style parameter. Parameters such as speed and turning angle will be
computed from each example motion.

With some loss of generality, suppose that each example motion
is short enough for its speed and turning angle to be invariant over
its duration. For a lengthy motion with non-homogeneous speed
and turning angle, we need some preprocessing to decompose it
into short motions satisfying this assumption. Since a motion of
constant speed and turning angle traces a circular trajectory, we ap-
proximate the root trajectory p of a motion as a circular arc a that
best fits the projected trajectory p on the floor. Notice that a straight
line is a circular arc of infinite radius.

As shown in figure 2, let the circular arc a subtend an angle 6
starting from a point a, on the circle of radius r centered at 0. We
find the circular arc a by least-squares fitting which minimizes the
distance between p and a as follows:

Nf
mimimize Z[f)ifa(ei;o,ao,e)}2 over 0,a,,0, 1)
i=1

where P, is the point of the projected root trajectory at the ith frame,
a(6,) is the point on a after rotating a, by the angle (i x %) about
o, and N; is the number of the frames. Let | and T be the length
of the arc a and the duration of the motion, respectively. Then, the
speed of the motion is + and its turning angle is %

5 Motion Blending

Given a vector of parameters at each frame, we first determine the
weights of the example motions. We then perform timewarping to
synchronize the example motions. Next, we compute the target mo-
tion by blending them with respect to their weights. Finally, given
a trajectory on the floor, we adapt the blended posture to the tar-
get character and the environment to follow the trajectory through
motion retargeting.

5.1 Weight Computation

We employ a multidimensional scattered data interpolation tech-
nique suggested by Sloan et al. [26]. Their approach is based on
the interpolation scheme of Rose et al. [23] who used radial ba-
sis functions. Incorporating cardinal basis functions, Sloan et al.
reformulated this scheme to provide a more efficient interpolation
method. While the original version interpolates each degree of free-
dom at every frame, they computed the weights of the example mo-
tions for the given parameter vector and blended them with respect
to these weights.

Given the vector p of parameters, the weight w;(p) of the ith
example motion is defined as

NP Ne
w;(p) :;E)aﬂAi(p)—'— erinj(p)7 )
= j=

where A (p) and &, are the linear basis functions and their coeffi-
cients, R; (p) and rj; are the radial basis functions and their coef-
ficients, respectively. Np and Ne are the number of the parameters
and that of the examples. For interpolating the example motions
exactly, the weight of the ith example motion is one at p; and be-
comes zeroat p;, i # j, that is, Wi(pj) =1fori=jand Wi(pj) =0
fori# j.

Ignoring the second term of Equation (2), we first solve for the
linear coefficients a, to fix the first term:

NP
Wi (p) = IgoaﬂAi (p). ®3)

The linear bases are simply A (p) = p,, which is the Ith compo-
nent of p, and Aq(p) = 1. We employ a least squares method to
determine the unknown coefficients a; of the linear bases using the
parameter vector p; of each example and its weight w; (p; ).

We employ the radial basis functions to interpolate the residuals
w;(p) = Wi (p) leNjoaﬂAi (p) for all i. The radial basis function

R (p) is a function of the Eculidean distance between p and P; in

the parameter space:

Rj(p)—8<%>, for1<j<Ne, @)

where B(-) is the cubic B-spline function, and o is the dilation fac-
tor, which is the minimum separation to the nearest other example
in the parameter space. The coefficients r, j are calculated by solv-
ing the linear system:

rR=w, (5)

where r is an Ne x Ne matrix of the unknown coefficients r;;, and R
and w are the matrices of the same size defined by the radial basis
functions and the residuals, respectively, such that Rij =R (pj) and

W;j =W, (p;). Provided with the solutions for &, and r;;, we obtain
the weight of each example motion from Equation (2).
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5.2 Incremental Timewarping

To blend the example motions of various speed, we align the ex-
ample motions by employing a notion of keytimes which are im-
portant instances of a motion such as moments of heel-strikes and
toe-offs [10, 23]. All example motions consist of the same sequence
of keytime phases, that is, the example motions start with the same
foot and take the same number of steps. We denote an actual key-
time by K;,1 <i <N,, where N, is the number of the keytimes.
Based on the keytimes, timewarping is defined as a piecewise
linear mapping of actual time T € [Kl,KNk} onto generic time t €

[0,1]. Given an actual time T, the corresponding generic time t(T)

IS

tU)Om—D+KT:mE>N;1 (6)
m+ m

for the largest msuch that T > K. Figure 3 shows an example of
this timewarping with 5 keytimes.

Once all example motions have reparameterized with the generic
time, we can compute the actual time of a blended motion at a given
generic time. Sloan et al. [26] computed the actual time of the
target motion by weighted summing the actual times of the example
motions at a given generic time, that is,

Ne
T(t) =Y wT(t), )
i=1

where w; and T, (t) are the weight value and the actual time of the
ith example at the generic time t, respectively. This approach works
well when the weight of each example motion is fixed during the
whole cycle of the motion. In general, the weight may change dy-
namically from frame to frame according to the parameter vector,
and the speed variation over example motions may also be quite
large. In this case, a blended actual time may go reversely, that is,
go back to the past, with respect to the generic time. For example,
see the generic time interval [t’,t”] as given in Figure 4(a).

To blend those motions of various speed with time-varying
weights, we propose an incremental timewarping technique. The
basic idea is to blend the change rates of the actual times with re-
spect to the generic time rather than the actual times themselves
and to accumulate the weighted change rate for incrementally up-
dating the current actual time of the blended motion. With this
incremental approach, we can guarantee the monotonicity of the
blended timewarping function as long as the weight values are non-
negative. From Equation (6), we define the untimewaping function,
which maps the generic time t onto the actual time T:

T(t) =Km+{(N— Dt = (m=D)[}(Kp,; —Km).  (8)
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Figure 4: (a) Timewarping of Rose et al.; (b) Our incremental
timewar ping.

The change rate of the actual time is the same as the first deriva-
tive of the untimewarping function. Thus, given the generic time t
and its change At, we compute the change AT of actual time as
follows:

AT = (%Wi(t)l"i (t)) A, )
i=1

where w; (t) and T, (t) are the weight and the derivative value of the
untimewarping function of the ith motion at time t, respectively.

Figure 4(b) illustrates our incremental timewarping. For two mo-
tions M, and M, let the derivatives of untimewarping functions at
the generic time t’ be ', and T',, respectively. Given the actual time
T’ of the blended motion at the generic time t’, the actual time at
the generic time t’ + At is

T+ AT =T + (wy ()T +w, (1)) At, (10)

where w, (t') and w,(t’) are the weights for example motions at the
generic time t’.

5.3 Posture Blending

We generate the target posture at a given generic time by blending
the corresponding postures of example motions at the same generic
time. The posture of an articulated body is defined by the position
of the root segment, its orientation, and the joint angles. We blend
not only the joint angles but also the root positions and orientations
of the example postures to obtain the posture of the target character,
which will be adapted to a given trajectory.

We take a simple weighted sum to blend the root positions. How-
ever, due to the non-linearity of the orientation space, this scheme
can not be applied directly to blending orientation data such as root
orientations and joint angles. With Euler angles, it is non-trivial
to ensure that similar poses use similar Euler angles. We provide
a new orientation blending scheme to address this problem, based
on orientation filtering [19]. Our scheme uses unit quaternions to
represent orientations.

We begin joint angle blending with computing the reference ori-
entation of each joint at each generic time step. Due to antipodal
equivalence, it is well-known that an orientation has two equiva-
lent quaternion representations. To ensure that similar poses have
similar representations, we need to place all quaternion representa-
tions for the example poses in the hemisphere on the unit quaternion
space S? defined by the reference orientation.

The basic idea for blending orientations is to transform the ori-
entation data into their analogues in a vector space with respect to
a reference orientation, to compute their weighted sum, and then to
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Figure 5: Distance metrics: (a) angular distance; (b) proposed
distance metric.

transform the result back to the orientation space. The main con-
nection between unit quaternions and vectors is the logarithm and
exponential maps. By the logarithm map, a unit quaternion q is
transformed into its corresponding displacement vector v with re-
spect to a reference orientation g, that is,

v = log(q, 1q). (11)

Here, if g lies outside the hemisphere defined by q., that is,
[llog(a;1q)|| > =/2, then we use —q rather than g to ensure its
consistent representation. This also guarantees that a posture has
its unique representation. The original orientation (or its antipodal
equivalence) is recovered by the exponential map:

g =g, exp(v). (12)

Geometrically, these logarithm and exponentiation give map-
pings between the tangent space Tg, S® = R3 at the reference unit

quaternion g, and the unit quaternion space S° [14, 19]. The
logarithm map of a unit quaternion is not well defined at —I =
(—1,0,0,0), and the exponential and logarithm maps provide a nat-
ural, non-singular parameterization for “small” angular displace-
ments [19]. Thus, before mapping orientation data into their vec-
tor displacements, we choose the reference orientation that is as
“close” to all example unit quaternions as possible.

To choose the reference orientation, we first define the distance
metric between two quaternions. Buss and Fillmore [7] used the
geodesic norm 6 = || Iog(q{1q2)|\ as their distance metric to find
the spherical average of points on a d-dimensional sphere S9. How-
ever, since they were interested in averaging points on S, they did
not address the problem caused by the antipodal equivalence prop-
erty of the unit quaternion space. For an antipodal pair, g and —q
in S3, their distance measure is || log ((—q)~1q) || which is 7, even
though they represent an identical orientation. \We suggest a new
distance metric to avoid such a problem. This metric also leads to
an efficient algorithm for finding the reference orientation.

We begin with the angular distance between two quaternions to
address the antipodal equivalence problem. Since g and —q repre-
sent the same orientation, the angular distance between two quater-
nions, g, and g, is

dist(dy,d,) = min (| log (a3 ay ) [, 11og (a (~a)) 1) - (13)

Therefore, the reference quaternion g, is obtained by minimizing
the sum of squared distances:

Ne
E=Y ||dist(q.,q;)]> (14)
i=1

However, this distance metric is not differentiable at 6 = % as
shown in Figure 5(a). Thus, we introduce an alternative distance
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Figure 6: Unit quaternion blending.

metric based on a sinusoidal function:

dist(aly, a,) = sin(|| log(a; ay)|))- (15)

This metric not only approximates the angular distance well but also
is differentiable at any point in [0, ) as illustrated in Figure 5(b).

With the new distance metric, the reference orientation g, can be
found by minimizing the objective function:

Ne
E=) sin’6, (16)
i=1

where 6, = || log(a; q;)||. Since sin? 6, = (1 —cos? 6,) and cos 6, =
a - g., we have

E= NZl (1-@'-a?). an

To find g, that minimizes E subject to the unitariness constraint of
a quaternion, we employ the lagrangian multiplier method:

9E_,0c

where C = 1—]|g,||? and A is the lagrangian multiplier. Plugging
Equation (17) into Equation (18), we have

Ne
(Z q 'QiT) 0. =Ag. or AQ, =AQ,, (19)
i=1

where g, is represented as a 4 x 1 vector, A is a 4 x 4 matrix, and
A is a real number. The problem of finding g, in Equation (19) is
a typical eigenvector problem. Since a 4 x 4 matrix has a maxi-
mum of four eigenvectors, we examine of those solutions to choose
the best one which minimizes the objective function E as given in
Equation (17).

Figure 6 illustrates our unit quaternion blending scheme. Given
the reference orientation g, (Figure 6(a)), we transform each ex-
ample orientation ¢ into its corresponding displacement vector v;
through the logarithm map, that is, v; = Iog(q;lqi) (Figure 6(b)).
Then, we blend v;, 1 <i < Ne with respect to their weights to ob-

tain the displacement vector v = ZiN:elwivi (Figure 6(c)). Finally,
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Figure 7: Foot positions in the global and the local coordinate
frames: (a) example motion; (b) target motion.

we compute the blended orientation g by transforming v back to
the orientation space and apply it to q., that is, q = g, exp(v) (Fig-
ure 6(d)).

Now, we adapt the blended root position and orientation to a
given trajectory. We first adjust the root position. Let p(t) and
d'(t) be the curved trajectory provided by a user and the tangent
vector of the trajectory at time t. Here, we assume that pt(t) is a
planar curve given on the floor. We compute the target root position
p(t) so that its projection on the floor is coincident with pt(t) while
preserving its elevation:

p(t) =p(t) +(p'(t) —B(1)), (20)

where p(t) is the blended root position and p(t) is its projection
on the floor. We then adjust the blended orientation of the root.
The direction d(t) for the character to move forward is obtained
by blending the tangent vectors of the arcs that approximate the
projected root trajectories of the example motions. We determine
the target root orientation (t) such that the forward direction d(t)
coincides with dt(t). Let ¢ be the angular distance between d(t)
and dt(t). The unit quaternion to rotate by ¢ about the unit normal
vector n of the floor is €¢/2. Therefore, the target root orientation
q(t) is

a(t) =e"2q(), (21)

where q(t) is the blended root orientation.

5.4 Motion Retargeting

When the target character has a different size and proportion from
the actual human performer, we are not able to simultaneously
preserve both the joint angles of the blended posture and its end-
effector positions. Therefore, there may be artifacts such as foot
sliding and penetration. To obtain a convincing locomotion of the
target character, we need to adjust the blended posture in an on-
line, real-time manner while keeping the characteristics of the orig-
inal motion. For this purpose, we employ an importance-based ap-
proach for on-line motion retargeting introduced by Shin et al. [24].

To employ their approach, we have to provide the target stance
foot position as input data at each frame. We obtain it by blending
the foot positions of the example motions. To do that, we first repre-
sent each of them in the local coordinate frame of its root segment.
For the ith example motion, the foot position f;’(t) at time t in the

local coordinate frame is

fi/(t) = o 1) (F; (1) —pi (1) 0; (1), (22)

where f,(t) is the foot position of the ith example motion at time t
measured in the global coordinate frame, and p; (t) and g (t) are the
position of the root segment and its orientation, respectively. The
target foot position f’(t) is obtained by blending f;/(t), 1 <i < Ne
with respect to their weights w;:

f/(t) = %wifi'(t). (23)

Given the target root position p(t) and orientation §(t) which de-
fine the local coordinate frame of the root segment, the target foot
position f(t) in the global coordinate frame is

ft)=ae) ') a1t +p(). (24)

A target foot position may vary from time to time in accordance
with its weight change. Therefore, we force the target foot posi-
tion to be fixed while the foot contacts the floor. The duration of
contact can be easily obtained from the keytimes. When the foot
is approaching or contacting the floor, we change the joint angles
to keep the foot position f(t). Otherwise, we keep the joint angles
to preserve the motion characteristics inherited from the example
motions.

6 Experimental Results

For our experiments, we used twenty example motion clips of hu-
man locomotion: ten walking motions, five slow running motions,
and five fast running motions. They are different from each others
in speed and turning angle. We computed the speed and turning
angle of each example as described in Section 4. Every motion
contains two steps and starts with the right step. We interactively
tagged the keytimes at the instances of heel-strikes and toe-offs. We
use a human model of 43 degrees of freedom: 6 DOF’s for the root
position and orientation, 9 DOF’s for the body joints, and 28 DOF’s
for the limbs.

Our first experiment is to generate the locomotion that follows
a given curved trajectory of specific style and speed. Figures 9(a)
through 9(c) exhibit the resulting motions with the same curved
trajectory, which is represented as a B-spline curve. We generated
the locomotion that follows the trajectory by exploiting the turning
angle parameter obtained from the tangent vector of the trajectory
at each frame. As shown in the figures, the resulting motions are
also effectively controlled in style and speed by the corresponding
parameters.

In next experiment, we demonstrate the on-line, real-time capa-
bility of our motion generation scheme. We took a sequence of
mouse pointer positions as on-line input data and made the target
character chase the pointer. Based on the sampled pointer positions
at each frame, we computed the speed and turning angle parame-
ters. The style of the motion was selected in accordance with the
speed of the mouse pointer. As shown in Figure 10, we used run-
ning motions when the character moves fast; otherwise, we used
walking motions.

For the final experiment, we generated locomotion on a terrain.
The terrain was represented by a NURBS surface of which con-
trol points were placed on a regular grid, and their heights were
randomly perturbed. To adapt a blended motion to the terrain, we
adjusted the height of a target foot position so that it lies on the
ground. Thus, the resulting motion did not suffer from artifacts
such as foot sliding and penetration even on the terrain as shown in
Figure 11.
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Figure 8: Computation timesof our algorithm obtained by vary-
ing the number of example motions

Figure 8 gives the overall performance of our approach exclud-
ing rendering time. The experiments were performed on an IBM
compatible PC with Pentium 111 800MHz CPU and 512 Mb mem-
ory. The timing data were obtained by varying the number of exam-
ple motions. The figure shows that the computation time is linearly
proportional to the number of example motions. With twenty exam-
ple motions, it took 1.2 milliseconds per frame to produce a target
motion. Thus, we are able to generate more than 800 frames per
second.

7 Conclusion

In this paper, we describe a novel approach to produce convinc-
ing locomotion of human-like characters in real time. Our goal is
on-the-fly generation of locomotion that satisfies time-varying con-
straints on its trajectory, speed, and style given in an on-line man-
ner. The basic idea of this paper is blending a set of pre-recorded
example motions to achieve the desired motion based on the mo-
tion blending techniques suggested by Rose et al. [23] and Sloan
et al. [26]. We extend their approaches specifically for locomotion
generation in several ways: In order to blend the example motions
of a wide range of speed, we provide an incremental approach for
timewarping, while addressing the artifacts caused by the previous
approaches. We present a novel scheme for blending joint angles
based on quaternion algebra to guarantee their consistent represen-
tations. To apply the blended motion to characters of various size
and proportion, we compute the target positions of feet by blend-
ing those of the example motions and then adapt the motion to the
target character and the environment in an on-line manner. The ex-
perimental results demonstrate that the proposed approach can pro-
duce convincing motions in real time. We believe that our approach
can be extended to be applicable to motion generation in general.
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Figure 9: Mation following the trajectory: (a) walking; (b) slow running; (c) fast running.

Figure 10: Locomotion chasing the mouse pointer.

Figure 11: L ocomotion on aterrain.



