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Abstract

We present a graph-based semi-supervised
learning algorithm to address the senti-
ment analysis task of rating inference.
Given a set of documents (e.g., movie
reviews) and accompanying ratings (e.g.,
“4 stars”), the task calls for inferring nu-
merical ratings for unlabeled documents
based on the perceived sentiment ex-
pressed by their text. In particular, we
are interested in the situation where la-
beled data is scarce. We place this task
in the semi-supervised setting and demon-
strate that considering unlabeled reviews
in the learning process can improve rating-
inference performance. We do so by creat-
ing a graph on both labeled and unlabeled
data to encode certain assumptions for this
task. We then solve an optimization prob-
lem to obtain a smooth rating function
over the whole graph. When only lim-
ited labeled data is available, this method
achieves significantly better predictive ac-
curacy over other methods that ignore the
unlabeled examples during training.

1 Introduction

Sentiment analysis of text documents has received
considerable attention recently (Shanahan et al.,
2005; Turney, 2002; Dave et al., 2003; Hu and
Liu, 2004; Chaovalit and Zhou, 2005). Unlike tra-
ditional text categorization based on topics, senti-

ment analysis attempts to identify the subjective sen-
timent expressed (or implied) in documents, such as
consumer product or movie reviews. In particular
Pang and Lee proposed the rating-inference problem
(2005). Rating inference is harder than binary posi-
tive / negative opinion classification. The goal is to
infer a numerical rating from reviews, for example
the number of “stars” that a critic gave to a movie.
Pang and Lee showed that supervised machine learn-
ing techniques (classification and regression) work
well for rating inference with large amounts of train-
ing data.

However, review documents often do not come
with numerical ratings. We call such documentsun-
labeled data. Standard supervised machine learning
algorithms cannot learn from unlabeled data. As-
signing labels can be a slow and expensive process
because manual inspection and domain expertise are
needed. Often only a small portion of the documents
can be labeled within resource constraints, so most
documents remain unlabeled. Supervised learning
algorithms trained on small labeled sets suffer in
performance. Can one use the unlabeled reviews to
improve rating-inference? Pang and Lee (2005) sug-
gested that doing so should be useful.

We demonstrate that the answer is ‘Yes.’ Our
approach is graph-based semi-supervised learning.
Semi-supervised learning is an active research area
in machine learning. It builds better classifiers or
regressors using both labeled and unlabeled data,
under appropriate assumptions (Zhu, 2005; Seeger,
2001). This paper contains three contributions:

• We present a novel adaptation of graph-based
semi-supervised learning (Zhu et al., 2003)



to the sentiment analysis domain, extending
past supervised learning work by Pang and
Lee (2005);

• We design a special graph which encodes
our assumptions for rating-inference problems
(section 2), and present the associated opti-
mization problem in section 3;

• We show the benefit of semi-supervised learn-
ing for rating inference with extensive experi-
mental results in section 4.

2 A Graph for Sentiment Categorization

The semi-supervised rating-inference problem is
formalized as follows. There aren review docu-
mentsx1 . . . xn, each represented by some standard
feature representation (e.g., word-presence vectors).
Without loss of generality, let the firstl ≤ n doc-
uments be labeled with ratingsy1 . . . yl ∈ C. The
remaining documents are unlabeled. In our exper-
iments, the unlabeled documents are also the test
documents, a setting known as transduction. The
set of numerical ratings areC = {c1, . . . , cC}, with
c1 < . . . < cC ∈ R. For example, a one-star to
four-star movie rating system hasC = {0, 1, 2, 3}.
We seek a functionf : x 7→ R that gives a contin-
uous ratingf(x) to a documentx. Classification is
done by mappingf(x) to the nearest discrete rating
in C. Note this is ordinal classification, which dif-
fers from standard multi-class classification in that
C is endowed with an order. In the following we use
‘review’ and ‘document,’ ‘rating’ and ‘label’ inter-
changeably.

We make two assumptions:

1. We are given asimilarity measurewij ≥ 0
between documentsxi and xj . wij should
be computable from features, so that we can
measure similarities between any documents,
including unlabeled ones. A largewij im-
plies that the two documents tend to express
the same sentiment (i.e., rating). We experi-
ment withpositive-sentence percentage(PSP)
based similarity which is proposed in (Pang and
Lee, 2005), and mutual-information modulated
word-vector cosine similarity. Details can be
found in section 4.

2. Optionally, we are given numerical rating pre-
dictions ŷl+1, . . . , ŷn on the unlabeled doc-
uments from a separate learner, for in-
stanceε-insensitive support vector regression
(Joachims, 1999; Smola and Schölkopf, 2004)
used by (Pang and Lee, 2005). This acts
as an extra knowledge source for our semi-
supervised learning framework to improve
upon. We note our framework is general and
works without the separate learner, too. (For
this to work in practice, a reliable similarity
measure is required.)

We now describe our graph for the semi-
supervised rating-inference problem. We do this
piece by piece with reference to Figure 1. Our undi-
rected graphG = (V,E) has 2n nodesV , and
weighted edgesE among some of the nodes.

• Each document is a node in the graph (open cir-
cles, e.g.,xi andxj). The true ratings of these
nodesf(x) are unobserved. This is true even
for the labeled documents because we allow for
noisy labels. Our goal is to inferf(x) for the
unlabeled documents.

• Each labeled document (e.g.,xj) is connected
to an observed node (dark circle) whose value
is the given ratingyj . The observed node is
a ‘dongle’ (Zhu et al., 2003) since it connects
only to xj . As we point out later, this serves
to pull f(xj) towardsyj . The edge weight be-
tween a labeled document and its dongle is a
large numberM . M represents the influence
of yj : if M → ∞ thenf(xj) = yj becomes a
hard constraint.

• Similarly each unlabeled document (e.g.,xi) is
also connected to an observed dongle nodeŷi,
whose value is the prediction of the separate
learner. Therefore we also require thatf(xi)
is close toŷi. This is a way to incorporate mul-
tiple learners in general. We set the weight be-
tween an unlabeled node and its dongle arbi-
trarily to 1 (the weights are scale-invariant oth-
erwise). As noted earlier, the separate learner
is optional: we can remove it and still carry out
graph-based semi-supervised learning.
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Figure 1: The graph for semi-supervised rating in-
ference.

• Each unlabeled documentxi is connected to
kNNL(i), its k nearestlabeled documents.
Distance is measured by the given similarity
measurew. We wantf(xi) to be consistent
with its similar labeled documents. The weight
betweenxi andxj ∈ kNNL(i) is a · wij .

• Each unlabeled document is also connected to
k′NNU (i), its k′ nearestunlabeled documents
(excluding itself). The weight betweenxi and
xj ∈ k′NNU (i) is b · wij . We also want
f(xi) to be consistent with its similar unla-
beled neighbors. We allow potentially different
numbers of neighbors (k andk′), and different
weight coefficients (a andb). These parameters
are set by cross validation in experiments.

The last two kinds of edges are the key to semi-
supervised learning: They connect unobserved
nodes and force ratings to be smooth throughout the
graph, as we discuss in the next section.

3 Graph-Based Semi-Supervised Learning

With the graph defined, there are several algorithms
one can use to carry out semi-supervised learning
(Zhu et al., 2003; Delalleau et al., 2005; Joachims,
2003; Blum and Chawla, 2001; Belkin et al., 2005).
The basic idea is the same and is what we use in this
paper. That is, our rating functionf(x) should be
smoothwith respect to the graph.f(x) is not smooth
if there is an edge with large weightw between
nodesxi andxj , and the difference betweenf(xi)
andf(xj) is large. The (un)smoothness over the par-

ticular edge can be defined asw
(
f(xi) − f(xj)

)2
.

Summing over all edges in the graph, we obtain the
(un)smoothnessL(f) over the whole graph. We call
L(f) theenergyor loss, which should be minimized.
Let L = 1 . . . l and U = l + 1 . . . n be labeled
and unlabeled review indices, respectively. With the
graph in Figure 1, the lossL(f) can be written as∑

i∈L

M(f(xi)− yi)2 +
∑
i∈U

(f(xi)− ŷi)2

+
∑
i∈U

∑
j∈kNNL(i)

awij(f(xi)− f(xj))2

+
∑
i∈U

∑
j∈k′NNU (i)

bwij(f(xi)− f(xj))2. (1)

A small loss implies that the rating of an unlabeled
review is close to its labeled peers as well as its un-
labeled peers. This is how unlabeled data can par-
ticipate in learning. The optimization problem is
minf L(f). To understand the role of the parame-
ters, we defineα = ak + bk′ andβ = b

a , so that
L(f) can be written as∑

i∈L

M(f(xi)− yi)2 +
∑
i∈U

[
(f(xi)− ŷi)2

+
α

k + βk′

( ∑
j∈kNNL(i)

wij(f(xi)− f(xj))2

+
∑

j∈k′NNU (i)

βwij(f(xi)− f(xj))2
)]

. (2)

Thusβ controls the relative weight between labeled
neighbors and unlabeled neighbors;α is roughly
the relative weight given to semi-supervised (non-
dongle) edges.

We can find the closed-form solution to the opti-
mization problem. Defining ann× n matrixW̄ ,

W̄ij =


0, i ∈ L
wij , j ∈ kNNL(i)
βwij , j ∈ k′NNU (i).

(3)

Let W = max(W̄ , W̄>) be a symmetrized version
of this matrix. LetD be a diagonaldegreematrix
with

Dii =
n∑

j=1

Wij . (4)

Note that we define a node’s degree to be the sum of
its edge weights. Let∆ = D −W be the combina-
torial Laplacianmatrix. LetC be a diagonal dongle



weight matrix with

Cii =
{

M, i ∈ L
1, i ∈ U

. (5)

Let f = (f(x1), . . . , f(xn))> and y =
(y1, . . . , yl, ŷl+1, . . . , ŷn)>. We can rewriteL(f) as

(f − y)>C(f − y) +
α

k + βk′
f>∆f . (6)

This is a quadratic function inf . Setting the gradient
to zero,∂L(f)/∂f = 0 , we find the minimum loss
function

f =
(

C +
α

k + βk′
∆

)−1

Cy. (7)

BecauseC has strictly positive eigenvalues, the in-
verse is well defined. All our semi-supervised learn-
ing experiments use (7) in what follows.

Before moving on to experiments, we note an
interesting connection to the supervised learning
method in (Pang and Lee, 2005), which formulates
rating inference as ametric labelingproblem (Klein-
berg and Tardos, 2002). Consider a special case of
our loss function (1) whenb = 0 andM → ∞. It
is easy to show for labeled nodesj ∈ L, the opti-
mal value is the given label:f(xj) = yj . Then the
optimization problem decouples into a set of one-
dimensional problems, one for each unlabeled node
i ∈ U : Lb=0,M→∞(f(xi)) =

(f(xi)− ŷi)2 +
∑

j∈kNNL(i)

awij(f(xi)− yj)2. (8)

The above problem is easy to solve. It corresponds
exactly to the supervised, non-transductive version
of metric labeling, except we use squared differ-
ence while (Pang and Lee, 2005) used absolute dif-
ference. Indeed in experiments comparing the two
(not reported here), their differences are not statis-
tically significant. From this perspective, our semi-
supervised learning method is an extension with in-
teracting terms among unlabeled data.

4 Experiments

We performed experiments using the movie re-
view documents and accompanying 4-class (C =
{0, 1, 2, 3}) labels found in the “scale dataset v1.0”

available at http://www.cs.cornell.edu/people/pabo/
movie-review-data/ and first used in (Pang and Lee,
2005). We chose 4-class instead of 3-class labeling
because it is harder. The dataset is divided into four
author-specific corpora, containing 1770, 902, 1307,
and 1027 documents. We ran experiments individu-
ally for each author. Each document is represented
as a{0, 1} word-presence vector, normalized to sum
to 1.

We systematically vary labeled set size|L| ∈
{0.9n, 800, 400, 200, 100, 50, 25, 12, 6} to observe
the effect of semi-supervised learning.|L| = 0.9n
is included to match 10-fold cross validation used
by (Pang and Lee, 2005). For each|L| we run 20
trials where we randomly split the corpus into la-
beled and test (unlabeled) sets. We ensure that all
four classes are represented in each labeled set. The
same random splits are used for all methods, allow-
ing pairedt-tests for statistical significance. All re-
ported results are average test set accuracy.

We compare our graph-based semi-supervised
method with two previously studied methods: re-
gression and metric labeling as in (Pang and Lee,
2005).

4.1 Regression

We ran linearε-insensitive support vector regression
using Joachims’ SVMlight package (1999) with all
default parameters. The continuous prediction on a
test document is discretized for classification. Re-
gression results are reported under the heading ‘reg.’
Note this method does not use unlabeled data for
training.

4.2 Metric labeling

We ran Pang and Lee’s method based on metric la-
beling, using SVM regression as the initial label
preference function. The method requires an item-
similarity function, which is equivalent to our simi-
larity measurewij . Among others, we experimented
with PSP-based similarity. For consistency with
(Pang and Lee, 2005), supervised metric labeling re-
sults with this measure are reported under ‘reg+PSP.’
Note this method does not use unlabeled data for
training either.

PSPi is defined in (Pang and Lee, 2005) as the
percentage of positive sentences in reviewxi. The
similarity between reviewsxi, xj is the cosine angle
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Figure 2: PSP for reviews expressing each fine-grain
rating. We identified positive sentences using SVM
instead of Näıve Bayes, but the trend is qualitatively
the same as in (Pang and Lee, 2005).

between the vectors(PSPi, 1−PSPi) and(PSPj , 1−
PSPj). Positive sentences are identified using a bi-
nary classifier trained on a separate “snippet data
set” located at the same URL as above. The snippet
data set contains 10662 short quotations taken from
movie reviews appearing on the rottentomatoes.com
Web site. Each snippet is labeled positive or neg-
ative based on the rating of the originating review.
Pang and Lee (2005) trained a Naı̈ve Bayes classi-
fier. They showed that PSP is a (noisy) measure for
comparing reviews—reviews with low ratings tend
to receive low PSP scores, and those with higher
ratings tend to get high PSP scores. Thus, two re-
views with a high PSP-based similarity are expected
to have similar ratings. For our experiments we de-
rived PSP measurements in a similar manner, but us-
ing a linear SVM classifier. We observed the same
relationship between PSP and ratings (Figure 2).

The metric labeling method has parameters
(the equivalent ofk, α in our model). Pang and
Lee tuned them on a per-author basis using cross
validation but did not report the optimal parameters.
We were interested in learning a single set of
parameters for use with all authors. In addition,
since we varied labeled set size, it is convenient
to tunec = k/|L|, the fraction of labeled reviews
used as neighbors, instead ofk. We then used
the samec, α for all authors at all labeled set

sizes in experiments involving PSP. Becausec is
fixed, k varies directly with |L| (i.e., when less
labeled data is available, our algorithm considers
fewer nearby labeled examples). In an attempt to
reproduce the findings in (Pang and Lee, 2005),
we tunedc, α with cross validation. Tuning ranges
are c ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and α ∈
{0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0}.
The optimal parameters we found arec = 0.2 and
α = 1.5. (In section 4.4, we discuss an alternative
similarity measure, for which we re-tuned these
parameters.)

Note that we learned a single set of shared param-
eters for all authors, whereas (Pang and Lee, 2005)
tunedk andα on a per-author basis. To demonstrate
that our implementation of metric labeling produces
comparable results, we also determined the optimal
author-specific parameters. Table 1 shows the ac-
curacy obtained over 20 trials with|L| = 0.9n for
each author, using SVM regression, reg+PSP using
sharedc, α parameters, and reg+PSP using author-
specificc, α parameters (listed in parentheses). The
best result in each row of the table is highlighted in
bold. We also show in bold any results that cannot
be distinguished from the best result using a paired
t-test at the 0.05 level.

(Pang and Lee, 2005) found that their metric la-
beling method, when applied to the 4-class data we
are using, was not statistically better than regres-
sion, though they observed some improvement for
authors (c) and (d). Using author-specific parame-
ters, we obtained the same qualitative result, but the
improvement for (c) and (d) appears even less sig-
nificant in our results. Possible explanations for this
difference are the fact that we derived our PSP mea-
surements using an SVM classifier instead of an NB
classifier, and that we did not use the same range of
parameters for tuning. The optimal shared parame-
ters produced almost the same results as the optimal
author-specific parameters, and were used in subse-
quent experiments.

4.3 Semi-Supervised Learning

We used the same PSP-based similarity measure
and the same shared parametersc = 0.2, α =
1.5 from our metric labeling experiments to per-
form graph-based semi-supervised learning. The
results are reported as ‘SSL+PSP.’ SSL has three



reg+PSP reg+PSP
Author reg (shared) (specific)

(a) 0.592 0.592 0.592(0.05, 0.01)
(b) 0.501 0.498 0.496(0.05, 3.50)
(c) 0.592 0.589 0.593(0.15, 1.50)
(d) 0.496 0.498 0.500(0.05, 3.00)

Table 1: Accuracy using shared (c = 0.2, α = 1.5)
vs. author-specific parameters, with|L| = 0.9n.

additional parametersk′, β, and M . Again
we tuned k′, β with cross validation. Tuning
ranges arek′ ∈ {2, 3, 5, 10, 20} and β ∈
{0.001, 0.01, 0.1, 1.0, 10.0}. The optimal parame-
ters arek′ = 5 andβ = 1.0. These were used for all
authors and for all labeled set sizes. Note that unlike
k = c|L|, which decreases as the labeled set size de-
creases, we letk′ remain fixed for all|L|. We setM
arbitrarily to a large number108 to ensure that the
ratings of labeled reviews are respected.

4.4 Alternate Similarity Measures

In addition to using PSP as a similarity measure be-
tween reviews, we investigated several alternative
similarity measures based on the cosine of word
vectors. Among these options were the cosine be-
tween the word vectors used to train the SVM re-
gressor, and the cosine between word vectors con-
taining only words with high (top 1000 or top 5000)
mutual information values. The mutual information
is computed with respect to the positive and negative
classes in the 10662-document “snippet data set.”
Finally, we experimented with using as a similarity
measure the cosine between word vectors containing
all words, each weighted by its mutual information.
We found this measure to be the best among the op-
tions tested in pilot trial runs using the metric label-
ing algorithm. Specifically, we scaled the mutual in-
formation values such that the maximum value was
one. Then, we used these values as weights for the
corresponding words in the word vectors. For words
in the movie review data set that did not appear in
the snippet data set, we used a default weight of zero
(i.e., we excluded them. We experimented with set-
ting the default weight to one, but found this led to
inferior performance.)

We repeated the experiments described in sec-
tions 4.2 and 4.3 with the only difference being

that we used the mutual-information weighted word
vector similarity instead of PSP whenever a simi-
larity measure was required. We repeated the tun-
ing procedures described in the previous sections.
Using this new similarity measure led to the opti-
mal parametersc = 0.1, α = 1.5, k′ = 5, and
β = 10.0. The results are reported under ‘reg+WV’
and ‘SSL+WV,’ respectively.

4.5 Results

We tested the five algorithms for all four authors us-
ing each of the nine labeled set sizes. The results
are presented in table 2. Each entry in the table rep-
resents the average accuracy across 20 trials for an
author, a labeled set size, and an algorithm. The best
result in each row is highlighted in bold. Any results
on the same row that cannot be distinguished from
the best result using a pairedt-test at the 0.05 level
are also bold.

The results indicate that the graph-based semi-
supervised learning algorithm based on PSP simi-
larity (SSL+PSP) achieved better performance than
all other methods in all four author corpora when
only 200, 100, 50, 25, or 12 labeled documents
were available. In 19 out of these 20 learning sce-
narios, the unlabeled set accuracy by the SSL+PSP
algorithm was significantly higher than all other
methods. While accuracy generally degraded as we
trained on less labeled data, the decrease for the SSL
approach was less severe through the mid-range la-
beled set sizes. SSL+PSP remains among the best
methods with only 6 labeled examples.

Note that the SSL algorithm appears to be quite
sensitive to the similarity measure used to form the
graph on which it is based. In the experiments where
we used mutual-information weighted word vector
similarity (reg+WV and SSL+WV), we notice that
reg+WV remained on par with reg+PSP at high la-
beled set sizes, whereas SSL+WV appears signif-
icantly worse in most of these cases. It is clear
that PSP is the more reliable similarity measure.
SSL uses the similarity measure in more ways than
the metric labeling approaches (i.e., SSL’s graph is
denser), so it is not surprising that SSL’s accuracy
would suffer more with an inferior similarity mea-
sure.

Unfortunately, our SSL approach did not do as
well with large labeled set sizes. We believe this



PSP word vector
|L| regression reg+PSP SSL+PSP reg+WV SSL+WV

A
ut

ho
r

(a
)

1593 0.592 0.592 0.546 0.592 0.544
800 0.553 0.554 0.534 0.553 0.517
400 0.522 0.525 0.526 0.522 0.497
200 0.494 0.498 0.521 0.494 0.472
100 0.463 0.477 0.511 0.462 0.450
50 0.439 0.458 0.499 0.438 0.429
25 0.408 0.421 0.465 0.400 0.404
12 0.401 0.378 0.451 0.335 0.398
6 0.390 0.359 0.422 0.314 0.389

A
ut

ho
r

(b
)

811 0.501 0.498 0.481 0.503 0.473
800 0.501 0.497 0.478 0.503 0.474
400 0.471 0.471 0.465 0.471 0.450
200 0.447 0.449 0.452 0.447 0.429
100 0.415 0.423 0.443 0.415 0.397
50 0.388 0.396 0.434 0.387 0.376
25 0.373 0.380 0.418 0.364 0.367
12 0.354 0.360 0.399 0.313 0.353
6 0.348 0.352 0.380 0.302 0.347

A
ut

ho
r

(c
)

1176 0.592 0.589 0.566 0.594 0.514
800 0.579 0.585 0.559 0.579 0.509
400 0.550 0.556 0.544 0.551 0.491
200 0.513 0.519 0.532 0.513 0.479
100 0.484 0.495 0.521 0.484 0.466
50 0.462 0.476 0.504 0.461 0.456
25 0.459 0.472 0.484 0.439 0.454
12 0.420 0.405 0.477 0.356 0.414
6 0.320 0.382 0.366 0.334 0.322

A
ut

ho
r

(d
)

924 0.496 0.498 0.495 0.499 0.490
800 0.500 0.501 0.495 0.504 0.483
400 0.474 0.478 0.486 0.477 0.463
200 0.459 0.459 0.468 0.459 0.445
100 0.444 0.445 0.460 0.444 0.437
50 0.429 0.431 0.445 0.429 0.428
25 0.411 0.411 0.425 0.400 0.409
12 0.393 0.362 0.405 0.335 0.391
6 0.393 0.357 0.403 0.312 0.393

Table 2: 20-trial average unlabeled set accuracy for each author across different labeled set sizes and meth-
ods. In each row, we list in bold the best result and any results that cannot be distinguished from it with a
pairedt-test at the 0.05 level.



is due to two factors: a) the baseline SVM regres-
sor trained on a large labeled set can achieve fairly
high accuracy for this difficult task without consid-
ering pairwise relationships between examples; b)
PSP similarity is not accurate enough. Gain in vari-
ance reduction achieved by the SSL graph is offset
by its bias when labeled data is abundant.

5 Discussion

We have demonstrated the benefit of using unla-
beled data for rating inference. There are several
directions to improve the work: 1. We will inves-
tigate better document representations and similar-
ity measures based on parsing and other linguis-
tic knowledge, as well as reviews’ sentiment pat-
terns. For example, several positive sentences fol-
lowed by a few concluding negative sentences could
indicate an overall negative review, as observed in
prior work (Pang and Lee, 2005). 2. Our method
is transductive: new reviews must be added to the
graph before they can be classified. We will extend
it to the inductive learning setting based on (Sind-
hwani et al., 2005). 3. We plan to experiment with
cross-reviewer and cross-domain analysis, such as
using a model learned on movie reviews to help clas-
sify product reviews.
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