
COMPUTER SCIENCES DEPARTMENT
UNIVERSITY OF WISCONSIN-MADISON

CS 736 Bart Miller
Fall 1988

Project List
(Brief Description Due: Wednesday, October 26)

(Midway Interview: Friday, November 18)
(Final Report Due: Thursday, December 15)

General Comments

The projects are intended to give you an opportunity to study a particular area related to operating sys-
tems. Your project may require a test implementation, measurement study, simulation, literature search,
paper design, or some combination of these.

The project suggestions below are briefly stated.They are intended to guide you into particular areas
and you are expected to expand these suggestions into a full project descriptions.This gives you more free-
dom in selecting an area and more burden in defining your own project. There may be more issues listed
for a project than you can cover. If you have a topic of your own that is not listed below, you should come
and talk with me so we can work out a reasonable project description.

You will write a paper that reports on your project.This paper will structured as if you were going to
submit it to a conference.I will provide more details on the project report later in the semester.

You can work in teams of two people on the project and report.

Projects

(1) Operating System Utility Program Reliability − The Fuzz Generator: The goal of this project is to
evaluate the robustness of various UNIX utility programs, given an unpredictable input stream.This
project has two parts. First,you will build a fuzzgenerator. This is a program that will output a ran-
dom character stream. Second, you will take the fuzz generator and use it to attack as many UNIX
utilities as possible, with the goal of trying to break them.For the utilities that break, you will try to
determine what type of input cause the break.

The fuzz generator will generate an output stream of random characters.It will need several options
to give you flexibility to test different programs.Below is the start for a list of options for features
that fuzzwill support. It is important when writing this program to use good C and UNIX style, and
good structure, as we hope to distribute this program to others.

-p only the printable ASCII characters

-a allASCII characters

-0 includethe null (0 byte) character

-l generaterandom length lines (\n terminated strings)



-f name record characters in file ‘‘name’’

-d nnn delay nnn seconds following each character

-r name replay characters in file ‘‘name’’ to output

The fuzzprogram should be used to test various UNIX utilities. These utilities include programs like
vi, mail, cc, make, sed, awk, sort, etc. The goal is to first see if the program will break and second to
understand what type of input is responsible for the break.

(2) Security in a Workstation CPU Server:The Condor system allows users to automatically run their
programs on any of a collection of idle workstations. Itautomatically chooses an idle workstation,
checkpoints the program, and can move the program to another workstation when the owner returns.
This system was developed in our Computer Sciences Department.

While Condor is an effective system for load distribution and providing free cycles to the user com-
munity, it has only briefly addressed security issues. If you own a workstation, you would like to be
confident that the guest programs that are running cannot access or damage your resources (processes,
files, devices, etc.). The goal of this project is to study the existing Condor features, evaluate the
UNIX security facilities, and then design and implement security modifications to Condor.

(3) Visual Shell:Personal computers, like the Mac, are easy to use because of their simple and visual user
interfaces. Thegoal of this project is to build a visual shell for UNIX. This shell uses graphic display
and mouse input to list files, delete files, start programs, build pipes, redirect input and output, etc.
Ke yboard input will also be need to be smoothly integrated in the design.

This shell should also allow for more advanced features such as non-linear pipes, editing of com-
mands and program output (and feeding this back into programs), visual aliases, etc.

(4) A Language for Distributed Games:DREGS is a system for helping design and build distributed,
multi-player games. DREGSruns on our local uVax, Bobcat, and IBM RT/PC workstations. This
project involves the interaction of distributed systems and programming languages.

The DREGS design includes a language call GDL (game description language) that simplifies the pro-
gramming of the games. Currently, games are hand-coded according to a GDL-like coding style.The
goal of this project would be to build a simple GDL compiler. There are several games that currently
run under DREGS, and part of this project would be to convert at least one of these to directly use
GDL. Thisproject is especially suited to a person with a strong interest in compilers.

An alternative version of this project would be to investigate the use of an object-oriented program-
ming language (probably C++) to support a set of standard classes to support GDL.You would then
go on to implement these classes and test them by converting one of the simpler games.

The current DREGS system is described in two papers (I can supply copies of these):

A. Bricker, M. Clark, T. Lebeck, B.P. Miller, and P. Wu, ‘‘Experience with DREGS’’, Proc. of the
1987 Summer USENIX Conf., Phoenix, June 1987.

A. Bricker, T. Lebeck and B.P. Miller, ‘‘DREGS: A Distributed Runtime Environment for Game Sup-
port’’, Proc. of the EUUG 1986 Conf., Manchester, England, September 1986.

(5) A Resource Scheduler for a Distributed Environment:The Computer Sciences Dept. has a resource
scheduling problem: that of scheduling conference rooms.This problem has several interesting char-
acteristics.



First, the service must be accessible from throughout the campus network, but not from outside the
campus (or department). Second, we need some level of protection. Ifone person makes a reserva-
tion, then another person should not be able to delete it.Third, data consistency must be preserved.
This means that if two people are making reservations, you must serialize requests and avoid race con-
ditions. Fourth, you will need a decent user interface. Theusers should be able to gracefully examine
the schedule and make reservations. Agraphic interface (using X windows) would be best.

(6) Distributed Simulation Algorithm:Chandy has developed a simulation algorithm that is supposed to
provide good parallel execution in a distributed environment. Thegoal of this project is to take the
description of Chandy’s algorithm, build an implementation of a simulation, and evaluate its perfor-
mance (as compared to a sequential version).

(7) Expert Systems in Operating Systems:Expert systems and programming languages such as Prolog are
receiving increasing attention.How might this affect the design of an operating system?Will an
operating system that supports expert systems look any different from current systems?

From a different perspective, how might the techniques from expert systems be applied to the design
and implementation of operating systems?What parts of an operating system could benefit from
these techniques.


