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ABSTRACT
Blocking is a fundamental step in entity matching (EM). Much work

has examined the design and runtime of blockers. However, very

little if any work has examined the problem of debugging blocking

accuracy. In practice, blockers’ accuracy can vary drastically, and

using an accurate blocker is critical for many EM applications.

To address this problem, we describe theMatchCatcher solution.
Given two tables to be matched and a blocker, MatchCatcher finds
matches killed off by the blocker, so that the user can examine these

matches to understand how well the blocker does accuracy-wise

and what can be done to improve its accuracy. We show how to

quickly find such matches using string similarity joins, iterative

user engagement, rank aggregation, and active/online learning.

Extensive experiments show that MatchCatcher is highly effective

in helping users develop blockers, can help improve accuracy of

even the best blockers manually created or automatically learned.

MatchCatcher has been open sourced and used by 300+ students

in data science class projects and 7 teams at 6 organizations.

1 INTRODUCTION
Entity matching (EM) finds data instances referring to the same

real-world entity [6, 13], such as tuples (Dave Smith, San Francisco,

CA) and (David Smith, S.F., CA). This problem is critical for many

Big Data and data science applications.

When doing EM, we often must perform blocking. Consider for

example matching two tablesA and B. Real-world tables often have

hundreds of thousands, or millions, of tuples. Trying to match all tu-

ple pairs inA×B is practically infeasible. So we often perform a step

called blocking which uses domain heuristics to quickly drop many

pairs judged obviously non-matched (e.g., person tuples that do not

have the same state). The next step, called matching, matches the

remaining pairs, using rule- or learning-based techniques. Blocking

can greatly reduce the number of pairs considered in the matching

step, drastically reducing the total EM time. As a result, virtually

all real-world EM applications use blocking.

Numerous blocking methods have been developed [6]. For ex-

ample, hash blocking drops all tuple pairs that do not have the

same hash value, using a predefined hash function. This method is

popular because it is easy to understand and fast. Other methods

include sorted neighborhood, overlap, phonetic, rule-based, etc.

(see Section 2).
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Given two tables A and B to match, we often want a blocker Q
that is fast, selective, and accurate. “Fastness” is measured by the time

to applyQ to A and B to produce a set of tuple pairsC . “Selectivity”
is typically measured as the ratio |C |/|A×B |. “Accuracy” is typically
measured as the fraction of true matches surviving blocker Q , i.e.,
|M∩C |/|M |, whereM is the set of (unknown) true matches inA×B.
As such, it is also referred to as recall.

In practice, blockers can vary drastically in recall, and using

a blocker with high recall is critical for many EM applications

(see Section 2). Yet today there is still no good way to develop

such blockers. For example, given the popularity of hash blockers,

suppose we have decided to use a hash blocker Q on two tables.

While fast,Q may have low recall if the attribute values to be hashed

are dirty, misspelt, missing, or have many natural variations (e.g.,

“New York”, “NY”, “NYC”). A common way to address this problem

is to use multiple hash blockers and take the union of their outputs,

to maximize recall. However, even in this case, the recall can still

be quite low. For instance, a recent work [8] describes two real-

world datasets where extensive effort at combining hash blockers

achieves only 38.8% and 72.6% recall. Such low recalls are simply

unacceptable for many EM applications. To improve recall, we can

revise the current hash blockers, replace some of them, or adding

more blockers (of the non-hash types). To do any of these, however,
we need a way to understand whether the current blocker has low
recall, and if so, then what the possible problems are, so that we can
improve it.

TheMatchCatcher Solution: In this paper we take the first step

toward solving the above problems. We describe MatchCatcher, a
solution to debug blocker accuracy. Given two tables A and B to be

matched and a blocker Q , MatchCatcher attempts to find matches

that are “killed off” byQ , i.e., those that do not survive the blocking

step. We can examine these matches to see if they are indeed true

matches, and if so, then why they get killed off by Q . This tells us
whether Q has low recall, and if so, then how to improve it. The

following example illustrates our solution:

Example 1.1. Consider matching tables A and B in Figure 1.a.
Suppose a userU begins by creating a blockerQ1 that keeps only tuple
pairs sharing the same value for “City”. Figure 1.b shows this blocker
as Q1: a.City = b .City. (This is attribute-equivalence blocking, a
special type of hash blocking.) Applying Q1 to A and B produces a set
of tuple pairs C1 (see Figure 1.b).

UserU wants to know if blockerQ1 kills off too many true matches.
To answer this,U appliesMatchCatcher, which operates in iterations.
In the first iteration, MatchCatcher shows the user n tuple pairs
judged most likely to be matches killed off by Q1. These pairs are
listed on Figure 1.b, under “Debugger Output, Iter 1” (here n = 3).

UserU finds that the first two pairs, (a1,b1) and (a3,b2), are indeed
true matches (shown in red color on the figure). A closer examination
reveals that they do not survive blocking because their “City” values

https://doi.org/10.475/123_4
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Name City Age 
Dave Smith Altanta 18 

Daniel Smith LA 18 
Joe Welson New York 25 

Charles Williams Chicago 45 
Charlie William Atlanta 28 

Table A 

Name City Age 
David Smith Atlanta 18 
Joe Wilson NY 25 

Daniel W. Smith LA 30 
Charles Williams Chicago 45 

Table B 

a1 
a2 

a3 

a4 
a5 

b1 
b2 

b3 

b4 

First Blocker 
Q1: a.City = b.City 
C1 
(a2, b3) 
(a4, b4) 
(a5, b1) 

Debugger Output 
Iter. 1 Iter. 2 Iter. 3 
(a1, b1) (a5, b4) (a1, b4) 
(a3, b2) (a1, b3) (a2, b2) 
(a2, b1) (a1, b2) (a2, b4) 

Second Blocker 
Q2: a.City = b.City OR  
      lastword(a.Name) = lastword(b.Name) 
C2 
(a1, b1) (a4, b4) 
(a1, b3) (a5, b1) 
(a2, b1) 
(a2, b3) 

Debugger Output 
Iter. 1 
(a3, b2) … 
(a1, b2) 
(a1, b4) 

Third Blocker 
Q3: a.City = b.City OR 
      ed(lastword(a.Name), lastword(b.Name)) ≤ 2 

C3 
(a1, b1) (a3, b2) 
(a1, b3) (a5, b4) 
(a2, b1) (a5, b1) 
(a2, b3) (a5, b4) 

Debugger Output 
Iter. 1 
(a1, b2) … 
(a1, b4) 
(a2, b2) 

(a) 

(b) 

(c) 

(d) 

Figure 1: An example to illustrate MatchCatcher

do not match due to misspellings and abbreviation, e.g., “Altanta” vs.
“Atlanta”, “New York” vs. “NY”.

Next,U wants to know if there are any more true matches. Toward
this goal,U flags the true matches in the first iteration (i.e., the above
two pairs). MatchCatcher uses this feedback to find the next n pairs
judged most likely to be killed-off matches, then shows those pairs in
the second iteration (see Figure 1.b, under “Iter 2”). U finds no true
matches in this iteration, as well as in the third iteration.

At this point,U decides to stop looking for more killed-off matches,
to focus on revising blocker Q1 to improve its recall. U observes that
the problem with pair (a1,b1), which disagree on “City”, can be fixed
by adding a new hash blocker that blocks on the last word of “Name”,
i.e., keeps a tuple pair if they agree on this word (which is typically
the last name). Figure 1.c shows Q2, the revised blocker, which is the
union of two hash blockers.

Invoking MatchCatcher for Q2 produces the list shown under
“Debugger Output, Iter 1” in Figure 1.c. This list shows that while the
new blocker Q2 successfully keeps (a1,b1), it still kills off (a3,b2), a
true match. A closer examination reveals that this is due to a mispelt
last word: “Welson” vs. “Wilson”.

To fix such misspelling problems,U decides to keep a tuple pair if
the last words of “Name” are very similar, e.g., within an edit distance
of 2. This produces blocker Q3 in Figure 1.d. Here, the hash blocker
lastword (a.Name ) = lastword (b .Name ) has been replaced by the
more general blocker ed (lastword (a.Name ), lastword (b .Name ) ≤
2, where ed computes the edit distance (Section 2 shows how to execute
this blocker efficiently). InvokingMatchCatcher for Q3 brings back
no true matches, even after several iterations. Thus, user U stops,
deciding to use Q3 as the final blocker for A and B.

It is important to emphasize that MatchCatcher works with any

of the current blocker types. Indeed, it requires as input only the

two tables A and B and the setC resulting from applying the target

blocker to the tables. Further, MatchCatcher does not estimate the

actual recall, i.e., the fraction of matches surviving blocking. Doing

so would require it to know the set of true matches in A× B, which
would be solving the EM problem itself! Indeed, MatchCatcher

does not attempt to match A and B. Instead, its goal is to quickly
find a large set of plausible matches killed off by the blocker and bring
them to the user’s attention, so that the user can examine them to

find true matches, get a sense about whether the blocker kills off

too many such matches, and if so, what the problems are, so that

he/she can fix them. Section 6 shows that real-world users indeed

find MatchCatcher very helpful in answering these questions.

Challenges: While promising, developingMatchCatcher raises
difficult challenges. First, we must quickly search the vast space

D = A × B −C (where C is the blocker’s output) to find plausible

matches killed off by the blocker, and we must do so without ma-

terializing D. This search is further complicated by the fact that

at this point MatchCatcher does not even know what it means

to be a match (only the user knows). To address these problems,

we observe that matching tuples tend to have similar values for

certain attributes (e.g., Name, City). So we convert each tuple into a

string that concatenates these attributes, e.g., converting tuple a1 of
Table A in Figure 1.a into “Dave Smith Altanta”. We then perform a

top-k string similarity join (SSJ) to find the k tuple pairs with the

highest score with respect to these strings, and output these pairs

as plausible matches. The state-of-the-art solution for top-k SSJs

[28] proves too slow for our interactive setting. So we develop a

new solution that is significantly faster.

Second, to find as many plausible matches as possible, we need

to repeat the above procedure, but for different sets of attributes

(e.g., find tuple pairs that are similar with respect to Name only,

City only, both Name and City, etc.). We cannot consider all such

sets, called configs, as there are too many. So we develop a solution

to find a good set of configs.

Third, we must perform multiple related top-k SSJs, one for each

config. This raises the challenge of how to perform them jointly
across the configs. We develop an efficient solution that perform

them in parallel on multiple cores yet reuse computations across

the joins.

Finally, top-k SSJs over the configs produce a large set E of

plausible matches (e.g., in the thousands). We cannot realistically

expect the user to examine all of these matches. So we develop a

solution that uses rank aggregation and active/online learning to

rank the pairs in E, show the top n pairs to the user, ask him/her

to identify the true matches, use this feedback to rerank the pairs,

and so on, until the user has been satisfied or a stopping condition

is reached. In summary, we make the following contributions:

• We show that debugging blocker accuracy is critical for EM.

• WedescribeMatchCatcher. As far aswe know, this is the first
in-depth solution to address the above problem. Our solution

advances the state of the art in top-k string similarity joins,

and exploits active/online learning to effectively engage with

the user.

• Over the past two years, MatchCatcher has been success-

fully used by 300+ students in data science projects and by

7 teams at 6 organizations. We briefly report on this experi-

ence. We also describe extensive experiments showing that

MatchCatcher is highly effective in helping users develop

blockers, and that it can help improve the accuracy of even

the best blockers manually created or automatically learned.
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2 DEBUGGING BLOCKER ACCURACY
In this section we show that debugging blocker accuracy is critical

for EM, discuss the limitations of current solutions, then provide

an overview of the MatchCatcher solution.

Entity Matching (EM): This problem has received significant

attention (see [6, 13] for recent books and surveys). Many EM

scenarios exist, e.g., matching two tables, matching within a table,

matching a table with a knowledge base, etc. [6]. In this paper, as a

first step, we will consider the common EM scenario that matches

two tablesA and B, i.e., finds all tuple pairs (a ∈ A,b ∈ B) that refer
to the same real-world entity.

Types of Blockers: As discussed in the introduction, for large

tables A and B we typically perform EM by creating a blocker

Q , apply Q to A and B to produce a relatively small set of tuple

pairs C , then apply a matcher to pairs in C . Over the past few

decades blocking has received much attention. The focus has been

on developing different blocker types and scaling up blockers, e.g.,

[11, 17, 20, 23, 27] (see [7] for a survey).

Many blocker types have been developed. MatchCatcher works
with all of them. In what follows we briefly discuss the most im-

portant types, as Section 6 experiments with many of them.

Well-known blocker types are attribute equivalence, hash, and

sorted neighborhood. Attribute equivalence (AE) outputs a pair

of tuples if they share the same values of a set of attributes (e.g.,

blockerQ1: a.City = b .City in Figure 1.b).Hash blocking (also called
key-based blocking) is a generalization of AE, which outputs a pair

of tuples if they share the same hash value, using a pre-specified

hash function. For example, blocker Q2 in Figure 1.c combines the

hash blocker lastword (a.Name ) = lastword (b .Name ) and the AE

blockerQ1. Sorted neighborhood outputs a pair of tuples if their hash
values (also called key values) are within a pre-defined distance.

More complex types of blockers include similarity-based and

rule-based [6, 8, 17]. Similarity-based blocking (SIM) is similar to AE,

except that it accounts for dirty values, mispellings, abbreviations,

and natural variations by using a predicate involving string similar-

ity measures, such as edit distance, Jaccard, overlap, etc. [30]. Exam-

ples include blocker ed (lastword (a.Name ), lastword (b .Name ) ≤
2, which outputs tuple pairs where the last words of their names

have an edit distance of atmost 2, and blocker jaccard (a.title,b .title )
≥ 0.4, which outputs pairs of books whose titles have a Jaccard

similarity score of at least 0.4. Rule-based blocking is perhaps most

general. It outputs a tuple pair satisfying a rule or a set of rules

encoding domain heuristics, e.g., blocker Q3 in Figure 1.d consists

of two rules. Such blockers can be viewed as the union of multiple

blockers, one per rule.

Other types of blockers include phonetic (e.g., soundex), suffix-

array, canopy, etc. (see [6, 13] for an extensive discussion).

Efficient Execution of Blockers: Efficient techniques have been

developed to execute the above blocker types, both on a single

machine and a cluster of machines (e.g., [8, 11, 17, 20, 23]). To

execute hash/AE blocking, we partition the tuples in A and B into

blocks, such that all tuples in each block share the same hash value,

then output only pairs of tuples that are in the same block.

To execute a SIM blocker, such as ed (lastword (a.Name ), lastword
(b .Name ) ≤ 2, we build an index I (e.g., prefix filtering index [30])

on the tuples in A, say. Next, for each tuple b ∈ B, we consult I
to identify all tuples a ∈ A such that the pair (a,b) can possibly

satisfy ed (lastword (a.Name ), lastword (b .Name ) ≤ 2. We check if

(a,b) indeed satisfies this predicate, and if yes, then output the

pair. Many efficient string indexing techniques [30] can be used to

implement SIM blockers. Recent work [8] has also discussed effi-

cient techniques (e.g., using indexing and MapReduce) to execute

rule-based blockers.

Accuracy of Blockers: Blocker accuracy is typically measured

using recall, defined as follows:

Definition 2.1. [Blocker recall] Suppose applying blocker Q to two
tablesA and B produces the outputC . LetM ⊆ A×B be the (unknown)
set of true matches between A and B, then recall (Q ) = |M ∩C |/|M |.

Due to dirty data, misspellings, natural variations, synonyms,

missing values, etc., no single blocker type produces the highest

recall on all datasets. In fact, on any particular dataset, blockers can

vary drastically in recalls (e.g., 2.5-98.2% in our experiments).

Finding a blocker with high recall (ideally 100%), however, is

critical for many EM applications. Counter-terrorism EM applica-

tions often need very high coverage., i.e., finding all person de-

scriptions that match, and thus want 100% blocking recall. Similar

high-coverage examples arise in fraud detection, e-commerce, law,

medicine, insurance, and pharmaceutical industry, among others.

EM applications with inherently small numbers of matches nat-

urally do not want the blocker to kill off many of these. Finally,

EM applications often compute statistics over the matches (e.g.,

the percentage of patients attending both hospitals), which can be

seriously distorted by blockers with low recall.

Limitations of Current Work: As a result, the topic of blocker

accuracy has received growing attention. Proposed solutions in-

clude combining multiple blockers to maximize recall (e.g., [12, 18,

20]), and using a sample of tuple pairs labeled as match/no-match

to learn blockers with high recall [2, 8, 17, 21].

While promising, these solutions can still produce blockers with

varying recalls, oftentimes falling short of 100%. For example, a

recent work [8] shows that extensive manual effort to combine

hash blockers achieves only 38.8% and 72.6% recall on two datasets.

(Obviously we cannot combine all possible blockers as there are
too many of them.) Another recent work [17] learns blockers using

samples labeled by crowdsourcing, but achieves only 92% recall on

a data set. In general, due to the difficulties in obtaining a good

sample, sampling flukes, etc., today there is still no guarantee that

a blocker learned on a sample provably achieves high recall when

applied to the original tables.

Since there is still no “fool-proof” method to develop a blocker

with high recall, it follows that given a blocker Q (either created

manually or learned), it is still highly desirable to know how well

Q does recall-wise, and what the possible problems are, so that we

can improve it.MatchCatcher helps answer these questions, and
thus can be considered complementary to the above solutions. For

example, Section 6 describes a scenario where after the solution

in [8] had been used to learn a blocker, we appliedMatchCatcher
to this blocker and uncovered multiple problems, which can be

addressed to further improve the blocker recall.
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Overview of MatchCatcher: As discussed, MatchCatcher ad-
dresses the following problem:

Definition 2.2. [Finding killed-off matches] Let C be the output of
applying blockerQ to tablesA and B. Then D = A×B−C is the set of
all pairs killed off byQ . Quickly find as many true matches as possible
in D (without materializing it). This helps the user understand how
well Q does recall-wise, and what can be done to improve its recall.

Figure 2 shows the architecture of MatchCatcher. Given two

tables A and B, the Config Generator examines the two tables to

generate a set of configs, each of which is a set of attributes (e.g.,

{Name,City}). For each config д, the Top-k SSJs module performs a

top-k string similarity join to find the k tuple pairs that (a) have the

highest score with respect to the attributes in д, and (b) are killed

off by blocker Q . Note that to check Condition (b), this module

does not need to know Q . It only needs to know C , the output of
applying Q to A and B. Hence MatchCatcher works independently
of the blocker type.

The Top-k SSJs module sends all top-k lists (one per config) to

the Match Verifier. This module uses a rank aggregator to combine

the lists into a single global list, shows the top n pairs to user U ,

asksU to identify true matches, uses this feedback together with

active and online learning to rerank the pairs, and so on, until U
is satisfied or a stopping condition is met.U can examine the true

matches to understand how well blocker Q does recall-wise, and

to obtain explanations for why these matches are killed off. This

helpsU decide ifQ should be revised, and if so, then how. The next

few sections describe MatchCatcher in detail.

3 GENERATION OF CONFIGURATIONS
We now describe the Config Generator, which outputs a set of con-

figs, each being a set of attributes. We cannot consider all possible

configs, so the key challenge is to select a good subset of configs.

We show how to do so, by carefully managing attributes with many

missing values, few unique values, or long string values.

3.1 How Configurations Are Used
We first motivate the notion of configurations (or “configs” for

short) and explain how they are being used. Later we build on this

to discuss how to select a good set of configs.

Recall that we want to quickly search D = A × B −C , the set of
tuple pairs killed off by blockerQ , to find pairs that can be matches.

This raises three problems. First, D is not materialized, we only

have A, B, and C . Second, even if D is materialized, it would be

too large to search quickly. Finally, we do not even know what to

search for, since at this point MatchCatcher does not know what a

match is (only the user knows).

To address these problems, we begin by assuming that tables

A and B share the same schema S (MatchCatcher can be trivially

extended to the case of different schemas). We observe that match-

ing tuples tend to share similar values in a set of attributes, say

д (e.g., {Name,City}). So we want to quickly find tuple pairs in D
that share similar values for д and return those as possible matches.

To do so, we convert each tuple a in A into a string strд (a) that
concatenates the values of all attributes in д. For example, if a is

(David Smith, Atlanta, 43) and д = {Name,City}, then strд (a) is
“David Smith Atlanta”. This converts Table A into a set Aд of such

strings. We convert Table B into a set Bд of strings similarly.

Top-k SSJs 

Match Verifier Matches in E 
Explanations 

User feedback 

Top-n pairs 

Config Generator Tables A, B 
Set of  
configs 

Set E of match 
candidates 

Output C of blocker Q 

Active/online learning 

Figure 2: The MatchCatcher architecture

Leth(x ,y) be a string similarity measure which computes a score

in [0, 1] between two strings x and y. Examples of such measures

are Jaccard, cosine, overlap, edit distance, etc. [30]. Then next we

perform a top-k string similarity join (SSJ) between Aд and Bд
to find the k tuple pairs in A × B with the highest h(x ,y) score.
Techniques have been developed to quickly perform top-k SSJs

[28, 31]. Of course, our goal is not to find pairs in A × B, but rather
in D = A × B −C . We can modify the above techniques slightly to

ensure this, by dropping a found pair if it is in C . We then return

the k pairs in D with the highest h(x ,y) score as possible matches.

The above procedure does not require a materialized D, only
tables A, B, andC (the output of blockerQ). It can quickly search D
using a modified version of top-k SSJs to return possible matches.

Of course, at this point we still do not know if these are indeed

matches. But later we can work with the Match Verifier to quickly

shift through them to find true matches, if any. We now discuss

several important aspects of the above procedure.

Why Concatenating the Attributes? We can use a variety of

methods to find tuples that share similar values for attributes in д,
e.g., finding pairs that share similar values for each attribute in д,
then taking their intersection, say. However, given the interactive

nature of debugging, we want this step to be as fast as possible.

Hence we decide not to treat the attributes in д separately, but

concatenate all of them into a single string, then compare them

using SSJs. Section 4 shows that this method can quickly search a

very large set D. But a drawback is that we can return false positives
such as tuple pair (Jim Madison, Smithville, 32) and (Jim Smith,

Madison, 32), because their concatenated strings are very similar

given certain similarity measures. Such false positives, however,

can be “weeded out” in the Match Verifier, using user feedback and

active/online learning (see Section 5).

Which String Similarity Measure to Use? Given that similar

attribute values can still vary significantly (e.g., “Dave Smith” vs

“David Frederic Smith”), we believe that measures that treat strings

as sets (e.g., Jaccard, cosine, etc.) work better than those that treat

strings as sequences of characters (e.g., edit distance). So forMatch-
Catcher, we use the well-known Jaccard measure that tokenizes

two strings x and y into two sets of words Px and Py , then returns

|Px ∩ Py |/|Px ∪ Py | [28]. However, Theorem 4.2 shows that our

solution can also work with other set-based similarity measures,

namely overlap, cosine, and Dice [28].

Why Multiple Configurations? So far we have used just one

config д to find match candidates. Using multiple configs, how-

ever, can produce more matches. For example, config {Name,City}
may not return the pair (David Smith, Seattle) and (Dave Smith,
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ncsd 

 csd  nsd  ncd  ncs 

 cd  nd  nc 

d n 

ncsd 

 csd  nsd  ncd  ncs 

 cs  ns  nc 

 c  n 
(a) (b) 

Figure 3: An example of generating config trees.

Redmond) because the cities are different. Config {Name} however
can. Conversely, config {Name} may not return the pair (Chuck

Smith, San Francisco) and (Charles F. Smith, San Francisco) because

the names are too different, but config {Name,City} can. Together,
these two configs can return more matches than either of them

in isolation. Generating a good set of configs however is a major

challenge, which we address next.

3.2 Generating Multiple Configurations
As a baseline, we can use all subsets of attributes in S (the schema

of A and B) as configs. But this generates too many configs even

for a moderate size (e.g., |S | = 10 produces 2
|S | − 1 = 1023 configs).

We cannot use all of them because the total SSJ time would be too

high. So we must select a smaller set of configs.

To do so, we select a set of promising attributes in S , then use

them to generate configs, in a top-down fashion. In each step of

the process, we select which configs to generate next by carefully

considering the impact of attributes with many missing values, few

unique values, or long string values. The end result is a config tree
consisting of multiple configs. Later the Top-k SSJs module will

traverse this tree to perform top-k SSJs on the configs in a joint

fashion. We now elaborate on these steps.

Selecting the Most Promising Attributes: We first classify at-

tributes in S as string, numeric, categorical, and boolean, using a

rule-based classifier. Next, we drop numeric attributes (e.g., Salary,

Price) because matching tuples still often differ in their values (e.g.,

the same product having different prices). Finally, we drop cate-

gorical and boolean attributes whose appearances in tables A and

B are different. For example, if Gender has values {Male, Female}
in A but {M, F ,U } in B, then we drop it as these two sets share no

value (in general if the Jaccard score of these two sets is less than a

pre-specified threshold then we drop the attribute). The remaining

attributes are string, or categorical/boolean but with similar sets

of values. We return these as T , the set of the most promising at-

tributes to be used for config generation. (Of course, the user can

also manually curate schema S to generate T . The experiments in

Section 6 however do not involve any manual curation.)

Generating a Config Tree: Given the set T of promising at-

tributes, we generate a config tree in a top-down fashion, then

return all configs in the tree. Specifically, we start withT as the con-

fig at the root of the tree. Next, we “expand” this node by removing

each attribute fromT to obtain a smaller config of size |T | − 1. This
produces |T | new configs, which form the nodes at the next level
of the tree. We then select just one node at this level to “expand”

further, and so on (we will discuss how to select shortly). This

continues until we have reached configs of just one node. Figure

3.a shows an example config tree, assuming T = {n, c, s,d } (which
stand for Name, City, State, and Description, respectively).

Intuitively, this strategy ensures that we generate a diverse set of

|T |( |T | + 1)/2 configs of varying size |T |, |T | − 1, . . . , 1. The config
tree will also be used to guide the joint execution of top-k SSJs on

the configs (see Section 4.2). We now turn to the challenge of how

to select a node to expand in the config tree.

ManagingManyMissingValues and FewUniqueValues: Con-

sider again the config tree in Figure 3.a. Suppose we are currently

at the second level of the tree, and need to select one node among

the four nodes csd , nsd , ncd , and ncs , to expand. This selection is

equivalent to selecting an attribute to exclude from subsequent config
generation. Indeed, if we exclude attribute s , then we select node

ncd to expand (as shown in the figure). Otherwise if we exclude d ,
then we select the rightmost node ncs to expand, and so on.

So which attribute should we exclude? We observe that if an

attribute has many missing values, then keeping it for subsequent

config generation is not desirable, because we will end up with con-

figs that produce similar top-k lists. For example, suppose we have

selected config ncd to expand (as shown in Figure 3.a), and suppose

that d has many missing values, then many strings for config ncd
and config nc will be identical, potentially leading to similar top-k

lists. In the extreme case, if all values for d are missing, then these

two top-k lists are identical. Clearly, we want different configs to

produce substantially different top-k lists, to avoid redundant work

and to maximize the number of matches we can retrieve.

Another observation is that if an attribute has more unique

values than another, e.g., c vs s (which stand for City and State,

respectively), then it is better to exclude s , the one with fewer

unique values, because intuitively, if two tuples agree on c , they
are more likely to match than if they agree on s , all else being

equal. Thus, to maximize the number of matches we can retrieve,

we should strive to keep the “more specific” attributes, i.e., the ones

with more unique values.

Combining the above two observations, we define the e-score

(shorthand for “expected benefit”) of an attribute as follows:

Definition 3.1. [E-score of an attribute] Let nA ( f ) be the ratio of
the number of non-missing values of attribute f inA over the number
of tuples inA, and uA ( f ) be the ratio of number of unique values of f
inA over the number of non-missing values of f inA. We definenB ( f )
anduB ( f ) similarly. Define eA ( f ) = 2nA ( f )uA ( f )/[nA ( f )+uA ( f )]
and define eB ( f ) similarly. Then we define the e-score of attribute f
as e ( f ) = eA ( f )eB ( f ).

We then select the attribute with the lowest e-score to exclude

at each level of the config tree. For example, suppose e (n) > e (d ) >
e (c ) > e (s ). Then at the second level of the tree in Figure 3.a, we

exclude attribute s , which means selecting node ncd to expand. At

the third level of the tree, we exclude c , which means selecting node

nd to expand.

Managing Long String Attributes: Many datasets contain at-

tributes with long string values, e.g., Comment, Desc, etc. Figure

4 shows two tuples where attribute Desc has such long values.

Such long attributes can cause two problems. First, they can cause

multiple configs to generate very similar top-k lists.
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Name: Bryan Lee,  City: Austin,  State: TX, 
Desc: Joined in 8/2003, promoted to team lead 5/2005,  promoted to 
director of sales 4/2009. Currently on unpaid leave until 1/2013. 

Name: Bryan M. Lee,  City: Austin,  State: TX, 
Desc: Outstanding customer service record 03-05. Achieved sales of 
$2M/year 05-09. Shortlisted for VP of sales 2011. Shortlisted for VP 
of marketing 2012. 

Figure 4: Examples of tuples with long string attributes.

Example 3.2. Consider again the config tree in Figure 3.a. Suppose
attribute d has long string values (such as those shown in Figure 4).
Then all seven configs involving d can generate similar top-k lists
because the long values of d “overwhelm” the short values of the
remaining attributes. So when moving from a config involving d to
another (e.g., from ncd to nd), the strings do not change much, and
therefore their similarity scores also do not change much (we formalize
this notion below), leading to similar top-k lists.

The second problem is that if the long string values are different

for matching tuples, then a config involving this long attribute will

fail to return the match. For example, the two tuples in Figure 4

match, but any config involving attribute Desc will not return this

match, because the values for Desc here are very different, and so

the score between the two tuples will be low.

To address this, we modify our config-tree generation procedure

as follows. Suppose we need to select a config node in the tree to ex-

pand. Before, we select дdef ault , the one without the attribute with
the smallest e-score. Now, we first run a procedure FindLongAttr to
see if there is any attribute that is “too long” (i.e., likely to adversely

affect selecting good configs). If such an attribute flonд exists, then

we select the config without flonд to expand. Otherwise we select

дdef ault , as usual.

Example 3.3. Consider again Figure 3.a, which shows the “default”
config tree with root ncsd . To handle long attributes, once we are at the
second level, we do not automatically select ncd (the config without s ,
the attribute with the smallest e-score) for expansion. Instead, we run
FindLongAttr at this level. Suppose it returns d (thus judging d to be
too long). Then we select ncs , the config without d , for expansion. This
produces new configs cs , ns , and nc (see Figure 3.b). Suppose running
FindLongAttr at the level of these new configs returns no attribute.
Then we select config nc (the config without s , the attribute with the
smallest e-score) for expansion (see Figure 3.b).

We now explain procedure FindLongAttr. The key challenge is

to formalize what it means to be “too long”. Let p be a node in the

config tree. Suppose that when running the default config genera-

tion procedure (the one that does not consider long attributes), we

end up selecting q, a child node of p, for expansion, and that we

eventually generate a subtree Tq rooted at q (see Figure 5.a).

We say that an attribute f is too long if it “overwhelms” many

config nodes in subtreeTq , specifically if it overwhelms at least half

of the configs in F (Tq ), the set of configs in Tq that contain f . In
turn, we say that f overwhelms a config r ∈ F (Tq ) (see Figure 5.a)
if the top-k list obtained from config r is “roughly the same” as the
top-k list obtained from config q (we formalize this below). Intuitively,
we want to avoid such cases, because we want each config to return

a different top-k list, to maximize the number of true matches that

we will find. So if we find that f overwhelms at least half of the
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Figure 5: Finding attributes judged too long.

configs in F (Tq ), then we judge f to be too long and should be

removed. That is, instead of selecting q for expansion, we will select

the config (in the same tree level as q) that does not contain f .
Of course, we do not have access to the top-k lists of r and

q. So we develop a condition which if true would suggest that

the two lists are “roughly the same”. Specifically, let simд (a,b) =
h(strд (a), strд (b)) be the string similarity function between the

string values of two tuples a and b, for config д. Suppose that for
all tuple pairs (a,b) in D = A × B −C we have

Condition 1 : |simq (a,b) − simr (a,b) |/simq (a,b) ≤ α ,

for a small pre-specified α value, say 0.2. Then we can say that

when we switch config from q to r , the score of each tuple pair does

not change much, so the top-k list for r will stay roughly the same

as that of q.
Checking Condition 1 for all pairs (a,b) in D is not feasible.

Hence we perform a theoretical analysis for an idealized scenario

(described below). Of course, this idealized scenario rarely happens

in practice. But understanding it helps us come up with an efficient

heuristic to check Condition 1.

Let Lf (a) be the length (i.e., the total number of words) of at-

tribute f in tuple a, Lq (a) be the sum of the lengths of all attributes

in q, for tuple a, and so on. The idealized scenario assumes that

(a) attribute f takes the same proportion of the total length of q
in both a and b, i.e., Lf (a)/Lq (a) = Lf (b)/Lq (b) = β , and (b) the

remaining length of q is equally distributed among the remaining

attributes of q, i.e., Lk (a) = [(1− β )Lq (a)]/( |q | − 1) for all attribute
k in q − { f }, and the same condition applies to tuple b.

Example 3.4. Consider the two tuples a and b in Figure 5.b, where
q = {u,v,w, f } and r = {w, f }. We assume that Lf (a)/Lq (a) =
Lf (b)/Lq (b) = β , andLu (a)/Lq (a) = Lv (a)/Lq (a) andLu (b)/Lq (b)
= Lv (b)/Lq (b).

Then we can show that (see Appendix H for a proof sketch):

Theorem 3.5. Let a ∈ A and b ∈ B be two tuples that satisfy the
above assumptions. If

• (R1) simq (a,b) ≥ [

√
(1 + α )2 + 8 − (1 + α )]/4, and

• (R2) β ≥ 1 −
( |q |−1)
|q\r | ·

α
(1+α ) ·

max {Lq (a),Lq (b ) }
Lq (a)+Lq (b )

,

then pair (a,b) satisfies Condition 1.

Intuitively, this theorem says that if simq (a,b) is sufficiently high

(Requirement R1), and attribute f is sufficiently long (Requirement

R2), then simr (a,b) will be close to simq (a,b). It is not difficult

to show that the quantity on the right-hand side of R1 is upper

bounded by 0.5. In practice, we observe that users typically examine

only the top few tens of pairs in each top-k list (see Section 5), and
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that if these pairs are true matches, their scores often exceed 0.5,

making R1 true. As a result, if R2 is also true, then attribute f is

long enough to “overwhelm” these pairs. That is, these pairs will

change little score-wise when switching from config q to r , thus
typically will still show up in the top few tens of pairs of the top-k

list for r , an undesirable situation.

To avoid such situations, we will focus on checking R2. Checking
R2 for many pairs (a,b) is not practical. So we approximate this

checking using average lengths, i.e., we (a) replace the quantity β in

the left-hand side ofR2 withmin{ALf (A)/ALq (A),ALf (B)/ALq (B)},
where ALf (A) for example is the average length of attribute f in

Table A, and (b) replace Lq (a) and Lq (b) in the right-hand side of

R2 with ALq (A) and ALq (B), respectively.
Procedure FindLongAttr then works as follows. Suppose we have

selected config q for expansion (because it does not contain s , the
attribute with the least e-score). Then for each attribute f (other

than s), we (a) identify F (Tq ), the set of configs inTq that contain f ,
(b) declare f “too long” if the above approximate checking is true

for at least half of the configs r ∈ F (Tq ). It is not difficult to prove

that at most one attribute f will be found too long. If so, we do not

select q, but select instead the config that does not contain f for

expansion. Otherwise, we select q, as usual. This procedure takes
less than a second in our experiments.

Discussion: Note that we do not completely remove attributes

with many missing values, few unique values, or long values from

config generation. Instead, each such attribute f may be removed

only at some point during the generation process. Configs generated
earlier still contain f .

Further, our work here is related to, but very different from work

such as [3, 9, 15]. Those works find attributes that are discriminative

for classification, often using a labeled sample (as many works in

learning do). Here we do not look for discriminative attributes.

Instead, we look for attributes such that if two tuples agree on

their values, then they are likely to match. For example, suppose all

tuples in table A have the same value “US” for “Country”, and all

tuples in table B have the same value “Canada”. Then “Country” is

a discriminative attribute because if two tuples disagree on it, they

definitely do not match. For our purpose, however, “Country” has

little expected benefits, because if two tuples agree on it, it is still

not likely that they match (not as much as if they agree on “State”

and “City” say).

In fact, the work [25] also treats attributes with missing val-

ues and few unique values in a way similar to ours (for blocking

and matching). However, it does not handle long attributes, and

uses only one config, and thus is significantly outperformed by

MatchCatcher (see Section 6).

4 TOP-K STRING SIMILARITY JOINS
So far we have discussed generating a set of configs.We now discuss

performing top-k SSJs over these configs (one per config). Previous

work has discussed top-k SSJs for a single config [28]. Here we

significantly improve that work (and our solution can be applied to

top-k SSJ situations beyond this paper). We then discuss executing

multiple top-k SSJs jointly, by reusing results across the configs, in

a parallel fashion.

a b c e a b c e b c d e b c f gf f hw x y z 
0.75 0.8 0.6 0.8 0.8 

s(x,w) = 0.8 
s(z, y) = 0.43 

s(x,w) = 0.8 
s(x, y) = 0.67 

(a) 

(b) (c) 
Figure 6: An illustration of top-k computation.

It is important to note that all SSJ algorithms discussed below

(including ours) work with the set-based similarity measures Jac-

card, cosine, overlap, and Dice [28]. For ease of exposition, however,

we will explain them using the Jaccard measure.

4.1 Improving Top-k Join for a Single Config
As far as we can tell, the state of the art in top-k SSJs is TopKJoin
[28]. Given a set J of strings, TopKJoin finds the k string pairs with

the highest similarity scores, for a pre-specified k , in a branch-and-

bound fashion. Specifically, it maintains a prefix for each string in

J , incrementally extends these prefixes, finds string pairs whose

prefixes overlap, computes their similarity scores, use these scores

to maintain a top-k list, then extends the prefixes again, and so on.

Example 4.1. Suppose J consists of the four strings w,x ,y, z in
Figure 6.a. We begin by creating a prefix p (w ) = “a” for w , then a
prefix p (x ) = “a” for x . At this point the prefixes of the pair (x ,w )
overlap. Hence we compute the Jaccard score 0.8 for this pair, then
initializes the top-k list K to be containing just this pair. (Here we
assume k = 2.)

Next, we create prefix p (y) = “b”. This does not produce any
new pair whose prefixes overlap. So we continue by creating prefix
p (z) = “b”. This produces a new pair whose prefixes overlap: (z,y)
with score 0.43. Figure 6.b shows the updated top-k list K .

Next, we select one prefix to extend (we will discuss shortly how).
Suppose we select p (x ) and extend it by one token. Then p (x ) = “ab”
(see Figure 6.a). This produces two new pairs whose prefixes overlap:
(x ,y) with score 0.67 and (x , z) with score 0.43. Figure 6.c shows the
updated top-k list K . We then select another prefix to extend, and so
on. Finding new pairs with overlapping prefix can be done efficiently
using an inverted index from token to the prefixes of the strings [28].

We now discuss how to select a prefix to extend. Suppose we

have imposed a global ordering on all tokens, and sorted the tokens

in each stringw,x ,y, z in that order (see Figure 6.a). Suppose also

that we have created prefixes of size 1, namely p (w ) = “a”,p (x ) =
“a”,p (y) = “b”,p (z) = “b”, and are now deciding which prefix to

extend. Suppose we select p (w ) and extend it by one token, to be

“ab”. Then it is easy to show that the scores of all new pairs generated

by this extension are capped by 0.75. Indeed, any new pair must

involvew . Let such a pair be (w,v ). Then the first common token

that they share should be “b” (the token just being added to p (w )).
So they can share at most this token b and the remaining “unseen”

tokens ofw . Thus |w ∩v | ≤ 3. Since |w ∪v | ≤ |w | = 4, it follows

that the Jaccard score of (w,v ) is capped by 3/4=0.75. We write 0.75

on top of token “b” inw to indicate that when we extend p (w ) to
include this token, the score of any new pair generated by TopKJoin
will be capped by 0.75. Similarly, we can write 0.8 for the second

tokens of x , y, z (see Figure 6.a).
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We then select the prefix that when extended will include the

token with the highest “cap” number (in the hope that it will gen-

erate new pairs with the highest possible scores). In this case, we

select p (x ) (but p (y) and p (z) also work).

We now discuss how to stop. Observe that the “cap” number for

“c” in x is 0.6. By the time we have to consider whether to extend

p (x ) to include “c”, the top-k list already has a lower-bound score

of 0.67 (see Figure 6.c), greater than 0.6. As a result, we do not have

to extend p (x ) to include “c”, and in fact, prefix extension on x can

be stopped at this point. TopKJoin terminates when all prefix ex-

tensions have stopped, either early (as described above) or because

the prefix has covered the entire string. The paper [28] describes

TopKJoin in detail, including optimizations to avoid redundant com-

putations.

The QJoin Algorithm: TopKJoin has a major limitation. Every

time it generates a new pair (u,v ), it immediately computes the

similarity score of (u,v ) (then updates the top-k list). Computing

this score turns out to be very expensive, especially if u and v are

long strings. In a sense, it is also “premature”, because it can be

shown that when we generate (u,v ) (as a new pair), we only know

that they share a single token. There is no evidence yet that they

share more tokens and thus are likely to have high similarity score.

If they indeed share only one or few tokens, and yet we still compute

their score, then that score is likely to be low. So the pair will not

make it into the top-k list, yet we have wasted time computing it

score.

To address this problem, when generating new pairs, we do not

immediately compute their scores. Instead, we keep track of the

number of common tokens each pair has, and update this number

whenever a prefix is extended. We then compute the score of a pair

only if it has q common tokens, and thus is likely to have a high

score. It is difficult to select q analytically, so we select it empirically

as follows. Assuming at least four CPU cores, we begin by running

the modified TopKJoin for q = 1, q = 2, etc., on all cores, one q value
for each core, for k = 50. (Note that TopKJoin always does q = 1.)

Then whichever core finishes first, we keep the process on that core

running to produce the rest of the top-k list (effectively selecting

the q value associated with that core), and kill the processes on the

other cores.

It is straightforward to adapt the above algorithm to work with

two tables (instead of just one), and to remove a pair from the

top-k list (during the top-k computation) if it happens to be in the

candidate setC . Henceforth we refer to this new algorithm asQJoin.

4.2 Joint Top-k Joins Across All Configs
TopKJoin can only be applied to a single config [28]. Our setting

however involves multiple related configs. We now describe a so-

lution to find top-k lists jointly across the configs. To do so, we use

QJoin, but modify it to reuse similarity score computations and

top-k lists across the configs, and process the configs in parallel.

Reusing Similarity Score Computations: As discussed in Sec-

tion 4.1, computing the similarity score of a pair (a,b) is very ex-

pensive, especially for long strings. Hence, we want to reuse such

computations across the configs. To do so, we process the configs

in the config tree in a breadth-first order, e.g., processing the root

  f1f2f3 

  f2f3  f1f3   f1f2 

 f1  f2 

a b f1 f2 f3 

(a,b): o(f1, f1)=2        
o(f1, f2)=3 
… 
o(f3, f3)=1	

H (a,c): … 

f1 f2 f3 

Figure 7: Reusing across top-k computations.

config f1 f2 f3 of the config tree in Figure 7 (where the fi -s are
attributes), then the next-level configs, f2 f3, f1 f3, f1 f2, and so on.

When processing a config д (i.e., finding its top-k list), we keep

track of certain information, then reuse it when processing configs

in the subtree of д. For example, consider again the config tree in

Figure 7. We start by tokenizing the strings wrt the root config

f1 f2 f3 into multisets of word-level tokens. Next, we process the

config f1 f2 f3. This process computes the Jaccard score of multiple

tuple pairs. When computing the score of such a pair, say (a,b),
we compute and store the number of overlapping tokens between

any two attributes fi of a and fj of b in an in-memory database H .

Figure 7 illustrates this step. Here, o( f1, f1) = 2 means attributes

f1 of a and f1 of b share two tokens. (We only store in H attribute

pairs that share tokens.)

Then we can reuse H to drastically speed up processing configs

in the subtree rooted at f1 f2 f3. For example, consider processing

config f1 f2. If during this process we need to re-compute the score

of (a,b) (now with respect to only f1 and f2), then we can use H
to compute Overlapf1f2 (a,b) = o( f1, f1) + o( f1, f2) + o( f2, f1) +
o( f2, f2), then compute the above score as

Overlapf1f2 (a,b)/(Lf1f2 (a) + Lf1f2 (b) −Overlapf1f2 (a,b)),

where Lf1f2 (a) for instance is the length in tokens of the concate-

nation of f1 and f2 for a. Computing the score of (a,b) this way is

far faster than computing from scratch.

Note that while processing config f1 f2, if we have to compute

the score of a new pair (c,d ) not yet inH , then we will store similar

overlap information for (c,d ) inH , to enable reuse when processing

configs in the subtree rooted at f1 f2, and so on.

Reusing Top-k Lists: When applying to a config д, algorithm
QJoin starts with an empty top-k list K , then gradually grows K as

it iteratively expands the prefixes. In our setting, however, since we

process multiple configs, a promising idea is to use the top-k list of

a previous config to initialize the top-k list of the current config.

For example, after processing config д = f1 f2 f3 (Figure 7), we
store its top-k listKд . Thenwhen processing configh = f1 f2, we use
the database H described earlier (which stores overlap information)

to re-adjust all scores in Kд . This is necessary because these scores

are computed wrt f1 f2 f3, but now we want them to be adjusted to

consider only f1 f2. This re-adjustment is fairly straightforward (and

inexpensive) because the overlap information for all pairs in Kд
should already be in H . Next, we run the algorithm QJoin as usual

to process config h = f1 f2, but using the Kд list with the adjusted

scores as the initial top-k list Kh (instead of using an empty list).

Observe that the above procedure enables reusing top-k lists

from a parent to a direct child (e.g., from f1 f2 f3 to f1 f2). Reusing
across the “siblings” appears much more difficult. For example,

given the top-k list for f1 f3, there is no obvious way to quickly
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adjust its scores for f1 f2, using database H . Hence, currently we do

not yet consider such sibling reuse.

Finally, reuse does not come for free. It helps avoid computing

certain similarity scores from scratch, but incurs an overhead of

storing and looking up the overlap information. If the tuples are

short, then the overhead can easily overwhelm the savings. As a

result, we trigger reuse only if the average tuple length is at least t
tokens (currently set to 20).

Parallel Processing of the Configs: Finally we explore parallel

processing on multiple cores. (We consider multicore single ma-

chines for now because many data analyst users do not know how

to use a machine cluster.) An obvious idea is to process each config

across multiple cores. For example, we can split Table A into two

halves A1 and A2 and Table B into B1 and B2, find the top-k list for

A1 and B1 on the first core, the top-k list for A1 and B2 on the sec-

ond core, etc., then merge the top-k lists. In practice, this approach

suffers from severe skew: one core finishes quickly while another

runs forever. While it is possible to split the tables intelligently to

mitigate skew, this adds considerable overhead and implementation

complexity.

As a result, we opted for processing one config per core. Specifi-

cally, we traverse the config tree breadth-first, and assign configs

to cores in that order (when a core finishes, it gets the next config

“in queue”). This solution continuously utilizes all cores. But it raises
two problems. First, two configs (e.g., f1 f2 f3 and f1 f2) may concur-

rently write, or one reads and the other writes, into database H ,

causing concurrency control issues. To address concurrent writes,

observe that only configs with non-empty subtrees (e.g., f1 f2 f3 and
f1 f2 in Figure 7) will write. For each such config д, we require it to
write into a separate in-memory database Hд .

To address dirty reads (e.g., f1 f2 f3 writes into a database while

f2 f3 reads from it), we note that here each “write” just inserts a
value; it never modifies or deletes. For such cases there are atomic

hashmaps that perform atomic inserts, thus avoiding dirty reads. So

we implement each database Hд as one such hashmap (using the

Atomic Unordered Hashmap in Facebook’s C++ Folly package).

Finally, if a parent config, e.g., д = f1 f2 f3, has not yet finished,
then a direct-child config, h = f1 f2, cannot reuse д’s top-k list. In

such situations, we start config h with an initial empty top-k list.

When config д finishes, it sends its top-k list to h. Config h merges

its current top-k list with the new top-k list from д, to obtain a

potentially better top-k list, then continues. Appendix A shows the

pseudo code of the complete algorithm, and the following theorem

shows its correctness (see Appendix I for a proof sketch):

Theorem 4.2. Given two tables A and B, the outputC of a blocker
on A and B, a set of configs G, a string similarity measure which
is Jaccard, consine, overlap, or Dice, and a value k , the algorithm
described in Appendix A returns a set of top-k lists, where each top-k
list is the output of applying Algorithm QJoin to A,B, and C , using a
config д ∈ G and the given similarity measure and k value.

5 INTERACTIVE VERIFICATION
So far we have discussed processing configs to obtain a set of tuple

pairs. We now discuss identifying true matches in this set, via user

engagement, rank aggregation, and active/online learning.

a: 1.0 (1) 
b: 0.8 (2) 
c: 0.8 (2) 
d: 0.6 (4) 

a: 0.9 (1) 
c: 0.7 (2) 
d: 0.6 (3) 

b: 0.8 (1) 
a: 0.5 (2) 
c: 0.3 (3) 
d: 0.2 (4) 

L1 L2 L3 
    a (1) 
    b (2) 
    c (2) 
    d (4) 

L * 

Figure 8: Combining top-k lists using MedRank.

Engaging the User: Let E be the union of the top-k lists obtained

from processing all configs. Typically E is large (e.g., 3,011-7,089 in

our experiments) and the true matches make up just a small portion

of E. Thus expecting a userU to be able to examine the entire set E
to find true matches is unrealistic.

A reasonable solution is to rank the pairs in E such that the

true matches “bubble” to the top, then present the ranked list to

U . However, our experiments with a variety of ranking methods

(see below) suggest it is very difficult to do so. Typically, the top

of the ranked list indeed contains multiple matches. But then the

remaining matches tend to be scattered far and wide in the list.

As a result, we decided to engage userU : we rank the pairs in E,
present the top-n pairs to U (currently n = 20), ask U to identify

the true matches, use this feedback to rerank the list, then present

the next top-n pairs toU , and so on. As such, we helpU iteratively

identify true matches, but use this identification to help “bubble”

the remaining matches to the top of the ranking.

Using Rank Aggregation: Letm be the number of configs and

L1, . . . ,Lm be the top-k lists obtained from these configs. To engage

userU , we first need to aggregate these lists into a single list. Many

aggregation methods exist, e.g., [4, 14]. Here we use MedRank [14],

a popular method. To use MedRank, we first sort each list Li in
decreasing order of score, then associate each item in the list with

a rank, i.e., an integer, such that the higher the score, the lower the

rank and items with the same score receive the same rank. Next,

we compute for each item a global rank which is the median of its

ranks in the lists. Finally, we sort the items in increasing order of

global rank, breaking ties randomly, to obtain a list L∗ which is the

aggregation of all top-k lists Li -s.

Example 5.1. Figure 8 shows three top-k lists L1,L2,L3 and the
global list L∗. A line such as “a: 1.0 (1)” under L1 means that item “a”
in list L1 has score 1.0 and has been assigned rank 1. The ranks for “a”
is 1, 1, 2 (see Figure 8). So its global rank is 1. The ranks for “b” is 2, 4,
1 (here “b” is missing from L2, which has ranks 1-3; so we assign to it
rank 4). Thus “b”’s global rank is 2. And so on.

Once we have obtained the global list L∗, we can present the

top-n items of L∗ to user U . But how do we incorporate the user

feedback for the next iteration? A reasonable solution is to use

weighted median ranking (WMR): we first assign an equal weight

wi = 1/m to each top-k list Li (i ∈ [1,m]). At the end of the first

iteration, we adjust wi = wi · [1 + loд(1 + ri )], where ri is the
number of true matches user U has identified that appear in Li ,
then normalize all weightswi . At the start of the next iteration, we

merge the lists L1, . . . ,Lm again, usingWMR to compute the global

rank of each item. Next, we present the top-n pairs in this merged

list to the user, and so on. Intuitively, the top-k lists in which more

true matches appear will become more important, and the weighted

global ranking will be “leaning toward” those lists.

Using Learning: WMR does not perform well in our experiments

(see Section 6). It uses a very limited combination model which
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fails to fully utilize user feedback. To address this, we explored

active learning. Specifically, we iteratively show the next n items

of L∗ to user U , until we have obtained at least one match and

one non-match. Suppose we have carried out t iterations, then this

produces a set T of nt labeled items. We use T to train a random

forest classifier F , use F to find n most informative items in L∗,
show them to the user to label, add the newly labeled items to T ,
then retrain F , and so on.

Active learning alone however is not quite suited for our purpose.

Its goal is to learn a good classifier as soon as possible. Hence it

typically shows userU controversial items that it finds difficult to

classify. But many or most of these items can be non-match. User

U , however, wants to find many true matches as soon as possible

(so thatU can examine them to quickly understand the problems

with the blocker).

The above two goals conflict. To address this problem, we adopt

a hybrid solution. After we have obtained the training set T and

trained a classifier F , as described above, for the next iteration, we

show user U n items where n/4 items are the top controversial

items chosen by F , as described above. The remaining 3n/4 items

however are those with the highest positive prediction confidence,
where the confidence is computed as the fraction of decision trees

in F that predict the item as a match. Intuitively, the first n/4 items

are intended to help the active learner, whereas the remaining 3n/4
items can contain many true matches, and are intended to help the

user quickly find many true matches in the first few iterations.

After three such iterations, we stop active learning completely

(judging that classifier F has received enough labeled controversial

examples in order to do well), but continue the online-learning pro-

cess with F . Specifically, in each subsequent iteration, we show user

U the top n items with the highest positive prediction confidence,

produced by F . Once these items have been labeled by U , we add

them to the existing training set, retrain F , and so on.

When to Stop? A natural stopping point is when user U finds

no new matches in 2 consecutive iterations. Of course, U can stop

earlier or continue. If the required blocker recall is very high, U
can continue for many iterations. Otherwise, U can stops after

the first few iterations (because if these iterations contain many

matches, then examining them often already reveals problems with

the blocker, whichU can then fix).

6 EMPIRICAL EVALUATION
We evaluatedMatchCatcher in three ways. First, we asked volun-

teers to provide blockers for several datasets. These blockers vary

in recall, types, and complexity, representing blockers that users

may write at various points during the blocker development process.

We show that MatchCatcher works well with these blockers, thus

can effectively support the users in the development process.

Second, we performed best-effort blocking on several datasets, by

asking volunteers to manually develop the best hash-based blockers,

or applying a state-of-the-art solution to learn the best blockers.

We show that even in this case MatchCatcher can help uncover

problems and improve the blockers.

Dataset Tuple type Table A Table B # of 
matches

# of 
attrs

Average 
length

Amazon-Google software product 1363 3226 1300 5 205, 38
Walmart-Amazon electronic product 2554 22074 1154 7 76, 179

ACM-DBLP paper 2294 2616 2224 5 16, 19
Fodors-Zagats restaurant 533 331 112 7 11, 10

Music1 song 100000 100000 2978 8 9, 9
Music2 song 500000 500000 73646 8 9, 9
Papers paper 455996 628231 unknown 7 17, 18

Table 1: Datasets for our experiments.

Dataset Blocker Q 

A-G (OL) title_overlap_word<3  (HASH) attr_equal_manuf  (SIM) title_cos_word<0.4 
(R) title_jac_word<0.2 AND manuf_jac_3gram<0.4 

W-A (OL) title_overlap_word<3  (HASH) attr_equal_brand   (SIM) title_cos_word<0.4 
(R) price_absdiff>20 OR title_jac_word<0.5 

A-D 
(OL) authors_overlap_word<2 (SIM) title_jac_3gram<0.7 
(R1) title_cos_word<0.8 AND authors_jac_3gram<0.8 
(R2) year_abs_diff>0.5 OR title_jac_word<0.7 

F-Z (OL) name_overlap_word<2  (HASH) attr_equal_city  (SIM) addr_jac_3gram<0.3 
(R) (name_cos_word<0.5 AND type_jac_3gram<0.7) OR addr_jac_3gram<0.3 

M1 
(OL) artist_name_overlap_word<2  (HASH) attr_equal_artist_name 
(SIM) title_cos_word<0.5  (R) year_absdiff>0.5 OR title_cos_word<0.7 

M2 
(HASH1) attr_equal_artist_name (HASH2) attr_equal_release_OR_attr_equal_artist_name 
(SIM1) title_cos_word<0.6 (SIM2) title_cos_word<0.7 (SIM3) title_cos_word<0.8 

Table 2: Blockers for the first set of experiments.

Finally, we asked real-world users in several data science classes,

domain science projects, and at several organizations to useMatch-
Catcher. We show that MatchCatcher has proven highly effective

in helping these users develop blockers.

6.1 Supporting Users in Developing Blockers
For this experiment we need “gold” matches, so we use the six

datasets shown in the first six rows of Table 1. As far as we can tell,

these datasets are the largest ones used in previous EM work for

which “gold” matches are available. Here we created two versions

of the Music dataset, Music1 and Music2, to ensure a diversity of

size (from 331 to 100K to 500K of tuples per table). Appendix B

describes these datasets in more details.

For each dataset we asked volunteers to create multiple blockers

(see Table 2). They are of the types described in Section 2: overlap

(OL), hash (HASH), similarity-based (SIM), and rule-based (R). For

example, the first row of Table 2 describes 4 blockers for dataset

A-G. These include a hash blocker on attribute “manufacturer” and

a rule-based blocker that combines two SIM blockers. See Appendix

C for more details on these blockers. (The next subsection describes

experiments with the best hash blockers manually created for these

datasets.)

Developing a blocker is typically a long process in which users

often start with a simple blocker, then gradually revise it into a

more complex one with higher recall. The above blockers differ in

type, recall, and complexity, representing blockers that users may

write at various points during the above process. We now show that

MatchCatcher can help debug these blockers, suggesting that it

can support the user during the entire development process.

Overall Accuracy: First we examine the top-k SSJs module. The

first two columns of Table 3 list datasets and blockers. Column

C lists the size of C , the output of the blocker on Tables A and B.
Column MD lists the number of true matches in D = A × B − C .
This number varies drastically, e.g., 137-1,267 for A-G, 87-566 for

W-A, etc., suggesting that blocker recall often varies widely and

that it is important to debug to improve recall.
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Q C MD E ME F I

A-G

OL 8,388 291 4,063 190 (65.3) 166 (87.4) 40

HASH 1,835 1,267 3,337 820 (64.7) 803 (97.9) 97

SIM 7,406 192 4,341 104 (54.2) 73 (70.2) 29

R 27,650 137 4,362 76 (55.5) 65 (85.5) 24

W-A

OL 210,782 87 6,570 48 (55.2) 37 (77.1 ) 7

HASH 256,341 201 5,089 168 (83.6) 147 (87.5) 26

SIM 46,900 135 7,089 56 (41.5) 46 (82.1) 7

R 4,265 566 5,027 256 (45.2) 233 (91.0) 33

A-D

OL 56,869 41 4,270 41 (100.0) 37 (90.2 ) 8

SIM 2,487 61 3,335 59 (96.7) 56 (94.9) 11

R1 3,764 41 3,843 41 (100.0) 38 (92.7) 10

R2 2,173 107 3,011 104 (97.2) 101 (97.1) 16

F-Z

OL 115 47 5,079 46 (97.9) 46 (100.0) 5

HASH 10,165 52 4,653 51 (98.1) 51 (100.0) 5

SIM 2,146 13 5,908 12 (92.3) 12 (100.0) 5

R 124 33 5,239 32 (97.0) 32 (100.0) 5

M1

OL 253,286 778 5,045 673 (86.5) 671 (99.7) 38

HASH 212,296 188 4,948 100 (53.2) 100 (100.0) 13

SIM 2,601,349 78 5,050 38 (48.7) 36 (94.7) 7

R 89,344 202 5,213 113 (55.9) 109 (96.5) 11

M2

HASH1 11,115,136 4,530 5,428 661 (14.6) 648 (98.0) 47

HASH2 14,632,318 3,844 5,735 450 (11.7) 432 (96.0) 35

SIM1 27,461,378 2,220 5,420 1,012 (45.6) 1,012 (100.0) 54

SIM2 14,924,148 3,238 5,533 1,087 (33.6) 1,087 (100.0) 58

SIM3 8,512,446 4,228 5,587 1,151 (27.2) 1,151 (100.0) 61

Table 3: Accuracy in retrieving the killed-off matches.
Column E lists the size of E, the union of all top-k lists over

the configs (for k = 1000). Column ME lists the number of true

matches in E (the numbers outside parentheses), and shows that set

E contains a substantial fraction of true matches in D, e.g., 54-65%
for A-G, 41-83% for W-A, 96-100% for A-D, etc. (see the numbers in

parentheses). This suggests that the top-k module can effectively

find the true matches in D.
Next we examine the Match Verifier. We want to know its ac-

curacy if run until its natural stopping point (see Section 5). It is

difficult to recruit enough real users for this large-scale experiment

involving 25 blockers. So we use synthetic users, whom we assume

can identify the true matches accurately (we describe multiple ex-

periments with real users below).

Column F of Table 3 show that this module can retrieve a large

number of matches in E, e.g., 65-803 for A-G (see the numbers

outside parentheses), and that the retrieval rate is very high, e.g.,

70-98% for A-G, 77-91% for W-A, etc. (see the numbers inside paren-

theses). Finally, Column I shows that the total number of iterations

is 5-13 in 12 cases, 16-40 in 8 cases, 47-61 in 4 cases, and 97 in

1 case. The higher number of iterations is often due to the larger

number of matches that have to be retrieved from E, e.g., for blocker
HASH of dataset A-G, the module needed 97 iterations to retrieve

803 matches, a reasonable number of iterations given that each

iteration shows only 20 tuple pairs to the user.

Thus, if the user runs the Match Verifier until its natural stopping

point, he/she can retrieve a large number of matches. This is good

news for applications in which blocker recall is critical, thus the

user may want to examine all matches that the module can retrieve.

Accuracy & Explanations for the First Few Iterations: To

examine if users can quickly find many matches and explanations,

we asked volunteers tomanually work with the Match Verifier for the
first three iterations. Table 4 shows the results (for space reasons we
only list five blockers for five datasets, the results for other blockers

are similar). The table shows that the user needed only 7-10 mins

to examine the first three iterations, was able to identify a large

number ofmatches (28-43), andwas able to identifymultiple reasons

for why they are killed off (a reason such as “large threshold (18)”

means that tuple pair #18 was killed off due to the blocker using a

large threshold, and this was the first pair where the user observed

this problem). Overall, the results suggest that after examining the

first few iterations, the user can already identify multiple problems

with the blocker (which he/she can then fix).

6.2 Debugging State-of-the-Art Blockers
Suppose a user has manually developed a good standard blocker, or

has used state-of-the-art techniques to learn a blocker, we want to

know ifMatchCatcher can still help improve the blocker’s accuracy.

Toward this goal, we performed two experiments.

Hash Blockers: First, we asked a user well-trained in EM to

develop the best possible hash blockers for five datasets (the first

five in Table 1). For example, for dataset A-G, this user created the

blocker Q1 which keeps a pair of tuples if they agree on “manu-

facturer” or on a hash of “price” or on a hash of “title”. Thus, Q1

combines three hash blockers. (Appendix D describes all five block-

ers in details.) We selected hash blocking because it is well-known,

easy to understand, and fast. Hence it is considered a standard

blocking method commonly used in practice. On the five datasets

A-G, W-A, A-D, F-Z, and Music1, the best hash blockers achieve

75.6, 95.1, 100, 97.3, and 100% recall, respectively.

We then asked the same user to useMatchCatcher to try improv-

ing the above hash blockers. For A-D and Music1, which already

have 100% recall, using MatchCatcher the user did not find any

killed-off matches (as expected), so debugging terminated early.

For A-G, W-A, and F-Z, however, debugging significantly improved

recall from 75.6 to 99.7, 95.1 to 99.6, and 97.3 to 100%, respectively.

Appendix D describes one such debugging scenario in details.

Learned Blockers: From a group of researchers we obtained

Papers, the dataset described in the last row of Table 1. For this

dataset, they have applied the method in [8] to learn blockers using

a sample labeled by crowdsourcing, and we were able to obtain

three such blockers (learned on three separate samples). Appen-

dix D describes these blockers, which are the best blockers that

the learning method has found in a very large space of blockers,

including hash ones. Unfortunately, we do not have the entire set

of “gold” matches for Papers (we do have some “gold” matches, but

not all of them). Hence, we are unable to report recalls for these

blockers.

We then asked a user to apply MatchCatcher to these blockers.

After 5 iterations, the user found 76, 61, and 65 matches for the

three blockers, respectively. More importantly, the user was able to

identify a set of reasons for why these matches were killed off and

suggestions for improving the blockers (see Appendix D). Given the

lack of “gold” matches, we were not able to improve the blockers

then compare their recalls. Nevertheless, the above experiments

suggest that blockers learned using state-of-the-art solutions can

still have many problems and MatchCatcher can help pinpoint

these, to help the user improve recall.
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Blocker # iteration Label time Blocker problems

OL (A-G)
3 iterations

31 matches

8 mins

large threshold (18); attribute “manuf" is sprinkled

in the attribute “title" (18)

HASH (W-A)
3 iterations

43 matches

10 mins

different words for the same brand (6); missing val-

ues in attribute “brand" (13)

SIM (A-D)
3 iterations

28 matches

7 mins

large threshold (16); attribute “title" contains subti-

tle in one table (22)

R (F-Z)
3 iterations

32 matches

7 mins

different descriptions for attribute “type" (11); un-

normalized attribute “address" (33); attribute “city"

is sprinkled in “name" (47)

R (M1)
3 iterations

41 matches

10 mins

input tables are not lower-cased (5); missing values

in attribute “year" (12)

Table 4: Accuracy in the first 3 iterations and explanations.
6.3 MatchCatcher “in the Wild”
Over the past two years variations of MatchCatcher have been

used by 300+ students in 4 data science classes and 7 EM teams at 6

organizations. The feedback has been overwhelmingly positive. For

example, 18 teams used MatchCatcher in a class project, and re-

ported that it helped (a) discovering data that should be cleaned, (b)

finding the correct blocker types and attributes, (c) tuning blocker

parameters, and (d) knowing when to stop. We have reported on

some of this experience in a separate paper (not cited for anonymity

reasons). Overall, we found that many real-world users have used

MatchCatcher as an integral part of an end-to-end blocker devel-
opment process: start with a simple blocker, useMatchCatcher to
identify problems, improve the blocker, and so on, until Match-
Catcher no longer reports substantial problems with the blocker.

6.4 Runtime & Scalability
MatchCatcher was implemented in Cython, and all experiments

used a RedHat 7.2 Linux machine with Intel E5-1650 CPU. The top-k

module took 6.6-9.4 secs (for dataset A-G), 97-310 (W-A), 2.8-3.2

(A-D), 0.2 (F-Z), 12.1-24.4 (M1), 57-230 (M2), and 65-344 (Papers),

respectively. For the first five datasets, these times are quite small

except 97-310 secs for W-A. On W-A, the k-th pair on the top-k list

(recall that k = 1000) often has a very low score, e.g., 0.21-0.225.

Thus the top-k module took more time. The last two datasets (M2

and Papers) are much larger (500K tuples per table), and so took

longer to run. In all cases, however, the total time is still under 5.8

minutes.

To examine how the top-k module scales, we measure its time

as we vary the size of the two largest datasets, M2 and Papers,

at various percentages of the original datasets (which have 500-

600K tuples per table). Figure 9 shows the results for the first three

blockers in Table 3 for M2 and all three blockers for Papers, for

k = 100 (the left two plots) and k = 1000. The results show that

the top-k module scales linearly or sublinearly as the table size

grows. Finally, on all datasets the Match Verifier took under 0.1

sec to aggregate the top-k lists, and 0.14-0.18 secs to process user

feedback in each iteration.

6.5 Additional Experiments
Appendixes E-G describe extensive experiments on the performance

of theMatchCatcher components, sensitivity analysis, and compar-

ison with a recent related work. For space reasons we only briefly

summarize those experiments here.

Performance of the Components: We show that using multiple

configs instead of just one config significantly increases the number

of retrieved matches, by 10-74%. Handling long attributes increases
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Figure 9: Runtime of top-k module for varying table sizes.

the recall of E (the fraction of matches in D that are in E) by up

to 11%, compared to not handling them in config generation. Our

experiments also show that the joint top-k processing strategy over

multiple configs significantly outperforms the baseline of executing

each config individually, by as much as 3.5 times. Finally, we found

that active/online learning significantly outperforms weighted me-

dian ranking in the Match Verifier.

Sensitivity Analysis: We found that increasing k (the number

of pairs retrieved per config) does increase the number of true

matches retrieved, but only up to a certain k , and comes at the cost

of higher runtime, and that using 3 active learning iterations (as

we currently do) provides a good balance between increasing the

classifier accuracy and increasing recall in the Match Verifier.

Comparison with Recent Work: We found MatchCatcher sig-
nificantly outperforms the work in [25], which uses a single config,

e.g., improving the recall of E by 26-47% on the A-G dataset.

7 ADDITIONAL RELATEDWORK
We have discussed related work throughout the paper. We now

discuss additional related work. As far as we can tell, a recent

work (citation removed for anonymity reasons) is the first to raise

the need for debugging for blocking. But it does not discuss any

debugging solution in depth, as we do here. Other related works

include debugging for data cleaning [16], schema mapping [5], and

data errors in spreadsheets [1]. They do not address EM and their

solutions do not apply to our context. But they do underscore the

importance of debugging for data integration and cleaning.

SSJs have received much attention, e.g., [19, 29] (see [30] for

a survey). Top-k SSJs are studied in [28, 31]. [31] proposes a B+

tree based index to scale top-K SSJs on edit distance. It does not

work well for datasets with large textual difference [30], however, a

common occurrence in our case. The work [28], which uses prefix

filtering to find the top-k pairs, is better suited to our case. But it

does not handle long strings well [30]. Here we have significantly

improved this work and extended it to work over multiple configs.

Rank aggregation has been studied extensively in the database/IR

communities, e.g., [4, 10, 14]. Active learning (AL) for EM has been

studied in [17, 22, 24]. But they perform extensive AL to learn an

accurate matcher. In contrast, we use only a few AL iterations to

learn a classifier with reasonable accuracy, then use it to surface

matches for debugging purposes. The above work also does not

combine AL with online learning as we do. Finally, the work [26]

uses a learning-based UI model similar to ours, but for IR tasks.
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8 CONCLUSIONS & FUTUREWORK
We have shown that debugging blocker accuracy is critical for EM,

and have describedMatchCatcher, a solution to this problem. As

for future work, in certain cases the user may find a large number of

killed-off matches. So we plan to develop a method to automatically

explain why each match is killed off by the blocker, summarize

these explanations, then present the summary to the user. When

fixing a problem affecting a killed-off match, the user may want to

know how pervasive this problem is (and focus on fixing the most

pervasive ones first). For this purpose, given a killed-off match, we

plan to develop a method to find all tuple pairs that are similar to

that match (from a blocking point of view).
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Algorithm 1 Joint Top-k String Similarity Join

Procedure JointTopkSimJoin(TA, TB , C, G, k1, k2, n)
Input: tokenized set table TA on A, TB on B , blocking candidate setC , config tree G, k1 for

top-k size, k2 for selecting q , n for the number of cores

Output: a set K of top-k lists

1: K ← ∅, H ← ∅

2: Q ← queue by breadth-first traverse of G

3: д ← Q.pop() // get the root config of the config tree

4: q ← 1

5: RunInitialQJoinThreads(TA, TB , C, д, k1, k2, n, q, K , H )
6: RunParallelQJoinThreads(TA, TB , C, G, k1, q, K , H )

7: return K

Procedure RunInitialQJoinThreads(TA, TB , C, д, k1, k2, n, q, K , H )

1: for i = 1 to n do in parallel
2: Run QJoin(TA, TB , C, д, k2, i ) on core i with q = i , record Hi
3: if core i first finishes QJoin do
4: q ← i and stop QJoin on other cores

5: H ← H ∪ {Hq }
6: Continue QJoin(TA, TB , C, д, k1, q) on core q and update Hq
7: Kд ← top-k1 list by QJoin on core q
8: K ← K ∪ {Kд }
9: return

Procedure RunParallelQJoinThreads(TA, TB , C, G, k1, q, K , H )

1: while Q.size() > 0 and has idle cores do
2: c ← Q.pop()
3: Kc ← [] // a list that will store the top-k pairs for c
4: p ← parent of c in G

5: A← ancestors of c in G

6: HA ← {Ha ∈ H | a ∈ A}
7: if c has children in G do
8: Hc ← ∅
9: H ← H ∪ {Hc }
10: Run QJoin(TA, TB , C, c, k1, q) to update Kc by reusing HA on a new core; update

11: Kc by reusing top-k list Kp of p when QJoin on p is finished; record

12: new pairs in Hc if c has children in G

13: K ← K ∪ {Kc }
14: return

A PSEUDO CODE FOR JOINT TOP-K SSJ
Algorithm 1 shows the pseudo code for the joint top-k SSJ algorithm

described in Section 4.2.

B DATASETS
Table 5 shows the schema for the datasets in Table 1. The first six

datasets in Table 5 have been used in prior EMwork and are publicly

available. The datasets Music1 and Music2 have just one table (this

is a case of deduplication within a single table), so we use it as both

tables A and B to develop blockers. The Papers dataset is obtained

from a group of EM researchers. We omit further description of

these datasets for anonymity reasons.

C MATERIALS FOR SECTION 6.1
We now provide more details for the blockers in Table 2 and used

in Section 6.1. For ease of exposition, we have replicated that table

as Table 6 shown above. The volunteers have created four types of

blocker for the datasets: OL, HASH, SIM, and R.

OL: The basic OL blocker format is attr_overlap_tok<t, meaning

that a tuple pair with values (v1,v2) on the attribute attr is tokenized
by the tokenizer tok to get two token sets (s1, s2), and if the overlap

of (s1, s2) is less than the threshold t, the blocker will drop the pair.

Here attr is one of the string attributes in Table 2, and the tokenizer

tok can be word-based, k-gram based, etc. For example, the OL

blocker of A-G “title_overlap_word<3” means that if the overlap of

the titles of a tuple pair, tokenized by the word-based tokenizer, is

less than 3, then drop the pair.

Dataset Schema
Amazon-Google id, title, description, manufacturer, price
Walmart-Amazon id, title, category, brand, modelno, price, proddescrlong

ACM-DBLP id, title, authors, venue, year
Fodors-Zagats id, name, addr, city, phone, type, class

Music1
id, title, release, artist_name, duration, artist_familiarity,
artist_hotness, year

Music2 the same as for Music1
Papers id, title, authors, journal, month, year, publication_type

Table 5: Schemas of the datasets in our experiments.

Dataset Blocker Q 

A-G (OL) title_overlap_word<3  (HASH) attr_equal_manuf  (SIM) title_cos_word<0.4 
(R) title_jac_word<0.2 AND manuf_jac_3gram<0.4 

W-A (OL) title_overlap_word<3  (HASH) attr_equal_brand   (SIM) title_cos_word<0.4 
(R) price_absdiff>20 OR title_jac_word<0.5 

A-D 
(OL) authors_overlap_word<2 (SIM) title_jac_3gram<0.7 
(R1) title_cos_word<0.8 AND authors_jac_3gram<0.8 
(R2) year_abs_diff>0.5 OR title_jac_word<0.7 

F-Z (OL) name_overlap_word<2  (HASH) attr_equal_city  (SIM) addr_jac_3gram<0.3 
(R) (name_cos_word<0.5 AND type_jac_3gram<0.7) OR addr_jac_3gram<0.3 

M1 
(OL) artist_name_overlap_word<2  (HASH) attr_equal_artist_name 
(SIM) title_cos_word<0.5  (R) year_absdiff>0.5 OR title_cos_word<0.7 

M2 
(HASH1) attr_equal_artist_name (HASH2) attr_equal_release_OR_attr_equal_artist_name 
(SIM1) title_cos_word<0.6 (SIM2) title_cos_word<0.7 (SIM3) title_cos_word<0.8 

Table 6: Blockers for the first set of experiments.

HASH: A HASH blocker such as attr_equal_manu f outputs a

pair of tuples if they agree on the value of “manufacturer”. Such a

blockermay combinemultiple HASH blockers. For example, blocker

HASH2 of datasetM2 is the union of twoHASHblockers on “release”

and “artist_name”, respectively.

SIM: A SIM blocker has the format attr_sim_tok<t. Here sim is a

similarity measure (e.g., Jaccard, cosine, etc.), tok is a tokenizer, and
t is a threshold. For example, the SIM blocker “title_jac_3gram<0.7”

states that if the Jaccard similarity on titles of a tuple pair, tokenized

by the 3gram-based tokenizer, is less than 0.7, then drop the pair.

Note that if distance-based measures are used (e.g., edit distance

and its variants), we should reverse the less than sign to greater
than, and the format to be used is attr_dist>t.

R: A rule-based blocker is the union of a set of rules, where each

rule is a conjunction of blockers as described above. Rules can also

contain blockers of new types, e.g., a blocker that checks for the

absolute difference in the values of “year”. For example, blocker R of

M1 states that a tuple pair will be dropped if the absolute difference

on attribute “year” is greater than 0.5, or the word-based cosine

similarity on “title” is less than 0.7.

D MATERIALS FOR SECTION 6.2
We now provide additional materials for Section 6.2.

Experiments with Hash Blockers: Table 7.a describes the five

hash blockers that were manually created for five datasets. Each

blocker is a disjunction of hash keys on attributes. For example, the

blocker of A-G is a union of three hash keys: attribute “manufac-

turer”, truncated value of attribute “title” (only select the longest

word in “title” as the hash key), and truncated “price” (only keep the

first digit of “price” and set all others to 0, e.g., price 599.99 will be

500.00 after truncation). Other hash blockers are created similarly.
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Dataset Best hash blocker 

A-G manuf OR trunc_title OR 
trunc_price 

W-A brand OR modelno OR category 
OR trunc_title OR trunc_price 

A-D year 
F-Z name OR addr OR city OR type 
M1 title OR release OR artist_name 

(a) 

R1 
(title_dice<0.61 AND title_jac<0.5) OR title_jac<0.32 
OR (authors_dice<0.49 AND authors_jac<0.14) OR 
(authors_dice<0.13 AND title_overlap<5.5) 

R2 (title_dice<0.73 AND title_jac<0.36) OR 
authors_jac<0.14 

R3 authors_dice<0.2 OR (title_dice<0.7 AND 
title_jac<0.35) 

(b) 

Table 7: Blockers for the second set of experiments.

We now describe a real-world debugging scenario in which a

user U used MatchCatcher to debug and revised the blocker for

A-G shown in Table 7.a (we will refer to this blocker as Q0). After

invoking MatchCatcher and manually labeling the first 5 itera-

tions,U retrieves 70 true matches (out of the 100 pairs proposed by

MatchCatcher).
U examines these matches and finds the following problems.

First, two tuples of amatch does not agree on the hash key trunc_title
due to “manufacturer” being sprinkled into “title”. For example, a

match (a,b) with a.title = "boomerang web designer" and b .title
= "webpage designer" does not agree on trunc_title which are

"boomerang" and "designer". However, "boomerang" is the manu-

facturer which should not appear in the title. Second, two tuples do

not match due to missing values in the attributes used formanu f
and trunc_price .

At this point,U realizes that there are dirty data issues and that

hash blockers might not work well. U observes that the titles of

(a,b) shares common tokens even if they do not agree on the hash

key, and thinks that this problem can be fixed using an OL blocker.

SoU revisesQ0 to a rule-based blockerQ1 = "title_overlap_word<3

OR manuf OR trunc_price".U then redoes blocking using Q1.

To see if Q1 is accurate,U invokesMatchCatcher again, labels
5 iterations, and retrieves 27 matches. Examining the matches,

U finds that the threshold 3 of the OL blocker in Q1 is too high.

For example, a match (a,b) with a.title = "bryce 6" and b .title =
"re:launch bryce 6" is killed off by Q1 as the overlap value is only

2. Thus, U revises Q1 by decreasing the threshold to 2. The new

blocker Q2 is "title_overlap_word<2 OR manuf OR trunc_price".

U debugs Q2 using MatchCatcher and retrieves 9 true matches

after labeling 5 iterations. Examining the matches, U finds that

the threshold for the OL blocker is still too high, e.g., a match

(a,b) with a.title = "prey" and b .title = "aspyr media inc prey" is

killed off as the overlap value is only 1. SoU further revises Q2 to

Q3 = "title_overlap_word<1 OR manuf OR trunc_price". Invoking

MatchCatcher for Q3 brings back no true matches in 5 iterations.

SoU uses Q3 as the final blocker (which has 99.7% recall).

Experiments with Learned Blockers: Table 7.b describes the

three rule-based blockers automatically learned using a state-of-

the-art solution (as described in Section 6.2). Each blocker is a

disjunction of rules where each rule is a conjunction of SIM blockers

(described in Appendix B). Note that all blockers use the word-

based tokenizer. For example, blocker R3 drops a tuple pair if (1)
the word-based Dice similarity on "authors" is less than 0.2, or (2)

the word-based Dice and Jaccard similarity on "title" are less than

0.7 and 0.35 respectively.

We now describe a case in our experiments showing that a real

userU can useMatchCatcher to debug and revise blocker R1. After

invokingMatchCatcher for this blocker and manually labeling 5

iterations,U retrieves 76 matches out of 100 candidates.

Examining these matches, U finds the following four problems.

First, “title” contains many other random text (perhaps from other

attributes). For example, a match (a,b) with a.title = "LETTER

Communicated by Gal Chechik Parametric Embedding for Class

Visualization" and b .title = "Parametric Embedding for Class Vi-

sualization." is killed off by R1 due to low word-based Jaccard and

Dice similarity. Here the prefix "LETTER ... Chechik" should not be

in the title.

Second, “title” also contains redundant prefix/suffix. For example,

a match (a,b) with a.title = "Abstract Matching Nuts and Bolts

(Extended Abstract Version)" and b .title = "Matching Nuts and

Bolts Abs." is killed off by the blocker. Third, “authors” contains

incomplete values. For example, a match (a,b) with a.authors =
"Jieh-Sheng Lee" and b .authors = "Jieh-Sheng Lee, Jieh Hsiang, Po-

Hao Tsang" is killed off by the blocker. Finally, the tokenization

may cause problems, e.g., R1 uses a white space as the tokenization
delimiter, butU finds that for authors the delimiter should be either

a white space or a comma.

U can then revise R1 in several ways. First, due to dirty data

problems, Jaccard or Dice similarity measures could be too strict

in some rules in R1. Therefore, U can replace the last rule in R1
which is "authors_dice<0.13 AND title_overlap<5.5" with a new rule

"authors_overlap< 2 AND title_overlap<4". Second, in the word-

based tokenizer for attribute "authors",U can use as the delimiters

a comma or a white space, rather than always a single white space.

E PERFORMANCE OF THE COMPONENTS
Multiple Configurations: We show that multiple configs are

necessary to help the system achieve higher recall. For space rea-

sons, we only discuss the results for five blockers: OL, HASH, SIM,

R, and R, for datasets A-G, W-A, A-D, F-Z, and M1, respectively (the

results for the other blockers are similar). For these blockers, the

number of matches that the string similarity detector can retrieve

(in set E), for the best single config vs. using multiple configs is

109 vs 190, 139 vs 168, 53 vs 59, 29 vs 32, and 90 vs 113, respec-

tively. Thus, clearly using multiple configs significantly increases

the number of retrieved matches, by 10-74%.

Handling Long Attributes: On the two datasets A-G and W-A,

if we do not remove attributes judged too long, then the recall of

E (i.e., the fraction of matches in D that are in E) drops by 4-8%

and 1-11%, respectively, as shown in Table 8. Similarly the recall

of F drops by 4-8% and 0-10%, respectively. (On the remaining

five datasets MatchCatcher does not detect any attributes that are

too long.) These results suggest that handling long attributes can

substantially increase the recall, by up to 11%.

Effects of Different Top-k Strategies: We compare four strate-

gies to generate top-k lists: ori (run topk-join for each config),

ori+para (run topk-join in parallel), new+para (run QJoin, our im-

proved version of topk-join, in parallel; see Section 4.1 for a de-

scription of both topk-join and QJoin), and new+para+reuse (the

previous strategy with reuse, see Section 4.2).

Figure 10 shows the runtime of these four strategies for four

datasets, as we vary k (F-Z is too small, so all strategies took negli-

gible time to run; and we omit results for M2 and Papers for space
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Q
Recall by

RLH

Recall by

KLH

# of iter. by

RLH

# of iter. by

KLH

A-G

OL 57.0 (65.3) 53.3 (59.5) 40 38

HASH 63.4 (64.7) 59.3 (60.1) 97 91

SIM 38.0 (54.2) 29.7 (46.4) 29 25

R 47.5 (55.5) 40.2 (47.5) 24 21

W-A

OL 42.5 (55.2) 36.8 (50.6) 7 7

HASH 73.1 (83.6) 73.6 (82.6) 26 31

SIM 34.1 (41.5) 29.6 (36.3) 7 8

R 41.2 (45.2) 31.6 (34.3) 33 31

Table 8: Performance comparison of Remove-Long-Early
Heuristic (RLH) and Keep-Long Heuristic (KLH) on the two
datasets with long attribute, with K = 1000.
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Figure 10: Effects of different top-k generation strategies.

reasons). Also for space reasons, we only show the result for one

blocker per dataset (the results are similar for other blockers). The

figure shows that new+para, the new top-k algorithm and parallel

processing combined (the blue line), significantly reduces runtime

on all four datasets. This reduction is especially large on the two

datasets with long average tuple length (A-G and W-A). On these

two datasets, adding reuse also significantly reduces runtime (the

red line). On the other two datasets, however, their average tuple

lengths are small and reuse is ineffective (as its overhead over-

whelms the savings).

In all four cases, MatchCatcher selects the correct strategy (the

red lines for A-G and W-A and the blue line for A-D and M1),

which outperforms ori (the green line), often by a large margin,

e.g., 2.8 times and 3.5 times better at k = 1000 for A-G and W-A,

respectively.

Effects of Learning for Interactive Verification: Finally, we

found that active/online learning-based ranking (AOR) significantly

outperforms weighted median ranking (WMR) for interactive veri-

fication (see Section 5). For example, on two datasets A-G and W-A,

for blockers OL, HASH, SIM, R, strategy AOR retrieves 30-167 more

matches than WMR in 7 cases, and 17 fewer matches in 1 case

(blocker HASH of dataset A-G). For the first 5 iterations, AOR also

outperforms WMR, achieving 1-57% higher precision in 7 cases,

and -14% lower precision in 1 case (again blocker HASH of A-G).

Table 9 shows the comparison on the datasets in detail. Note that

the "N/A" in the last column means the result is unknown as the

interactive verification using WMV terminates earlier before the

fifth iteration.

Q
F by

AOR

F by

WMV

P@3N

by AOR

P@5N

by AOR

P@3N

by WMV

P@5N

by WMV

A-G

OL 166 57 47.3 50.2 41.6 40.0

HASH 803 820 42.6 55.2 56.7 69.0

SIM 73 28 27.6 24.4 25.0 22.0

R 65 23 23.0 20.6 23.3 19.0

W-A

OL 37 7 53.0 35.8 11.7 7.0

HASH 147 99 73.3 78.2 61.7 50.0

SIM 46 4 50.3 45.4 6.7 N/A

R 233 66 65.6 75.8 20.0 18.0

A-D

OL 37 36 53.8 35.5 51.7 36.0

SIM 56 35 52.5 46.3 20.0 24.0

R1 38 25 40.7 33.9 25.0 18.0

R2 101 82 23.3 41.1 20.0 15.0

F-Z

OL 46 40 76.7 46.0 60.0 40.0

HASH 51 49 85.0 51.0 68.3 43.0

SIM 12 10 20.0 12.0 11.7 10.0

R 32 19 53.3 32.0 30.0 19.0

M1

OL 671 339 100.0 100.0 100.0 100.0

HASH 100 10 64.3 71.4 16.7 N/A

SIM 36 7 53.0 36.0 11.7 N/A

R 109 27 60.0 71.2 33.3 21.0

M2

HASH1 648 188 35.0 54.0 10.0 9.0

HASH2 432 88 33.0 55.0 5.0 12.0

SIM1 1,012 1,012 65.0 74.0 97.0 97.0

SIM2 1,087 1,087 75.0 76.0 98.0 99.0

SIM3 1,151 1,151 100.0 99.0 100.0 99.0

Table 9: Performance comparison of the active/online
learning-based ranking (AOR) and weighted-median-based
verification (WMV) on six datasets with K = 1000.
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Figure 11: The effects of varying k.

F SENSITIVITY ANALYSIS
We now examine howMatchCatcher performs as we vary major

parameters.

The Number k of Pairs Retrieved Per Config: Recall that E is

the union of the top-k lists (produced by the detector), and that F is

the set of matches returned by the interactive verifier. As we vary

k , we observe that the recalls of E and F increase steeply, up to k =

1500, 1500, 300, 1000 for datasets A-G, W-A, A-D, M1, respectively,

then plateau after that, as shown in Figure 11. This suggests that

increasing k does increase recall, but only up to a certain k , and
comes at the cost of higher runtime. As a result, the current k =

1000 appears to provide a reasonable balance between achieving

high recall while keeping the runtime low.

The Number of Active Learning Iterations: Recall from Sec-

tion 5 that the interactive verifier uses active learning (AL) in

the first 3 iterations (then it stops AL and uses only online learn-

ing). When we vary the number of AL iterations from 0 to 10 (for

k = 1000, 600, 200), we observed that the recall of set F increases,

maxing out at 2-4 iterations, then decreases. As discussed in Section
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Q ME by CTL ME by CKL ∆
relative

∆
absolute

A-G

OL 190 (65.3) 87 (29.9) 118.4 35.4

HASH 820 (64.7) 494 (39.0) 66.0 25.7

SIM 104 (54.2) 16 (8.3) 550.0 45.8

R 76 (55.5) 11 (8.0) 590.9 47.5

W-A

OL 48 (55.2) 9 (10.3) 433.3 44.9

HASH 168 (83.6) 116 (57.7) 44.8 25.9

SIM 56 (41.5) 1 (0.7) 5500.0 40.8

R 256 (45.2) 97 (17.1) 163.9 28.1

A-D

OL 41 (100.0) 38 (92.7) 7.9 7.3

SIM 59 (96.7) 41 (67.2) 43.9 29.5

R1 41 (100.0) 33 (80.5) 24.2 19.5

R2 104 (97.2) 83 (77.6) 25.3 19.6

F-Z

OL 46 (97.9) 36 (76.6) 27.8 21.3

HASH 51 (98.1) 46 (88.5) 10.9 9.6

SIM 12 (92.3) 12 (92.3) 0.0 0.0

R 32 (97.0) 19 (57.6) 68.4 39.4

M1

OL 673 (86.5) 330 (42.4) 103.9 44.1

HASH 100 (53.2) 34 (18.1) 194.1 35.1

SIM 38 (48.7) 9 (11.5) 322.2 37.2

R 113 (55.9) 22 (10.9) 413.5 45.0

Table 10: Performance comparison of Configuration Tree
Learning (CTL) and Candidate Key Learning (CKL) on five
dataset with K = 1000.

5, this is because more AL iterations can improve the accuracy of

the classifier, but does not necessarily show more matches to the

user. As a result, using 3 AL iterations appears to provide a good

balance between increasing the classifier accuracy and increasing

recall.

G COMPARISONWITH A RELATEDWORK
Finally, we compare our configuration generation method (named

Configuration Tree Learning, CTL) with [25]. We denote the so-

lution in that paper as CKL (for Candidate Key Learning). After

applying CKL, for each of our datasets it generates only one con-

figuration (i.e., one candidate key).

Table 10 shows the results of the two methods. ∆
relative

is the

relative recall improvement of CTL over CKL in percentage (i.e.,

(ME by CTL - ME by CKL) / ME by CKL), and ∆
absolute

is the ab-

solute recall improvement of CTL over CKL. From the table we

can see that CTL significantly outperforms CKL in all cases except

for the SIM blocker of F-Z, for which they achieve the same per-

formance. For example, for datasets A-G, CTL achieves 66.0-590.9

relative recall improvement in percentage and 25.7-47.5 absolute

recall improvement in percentage.

H PROOF FOR THEOREM 3.5
We show the proof sketch of Theorem 3.5. Without loss of gener-

ality, suppose Lq (a) ≤ Lq (b). Denote simq (a,b) =
kq

Lq (a)+Lq (b )−kq

and simr (a,b) =
kr

Lr (a)+Lr (b )−kr
, where kq ,kr are the overlaps of

(a,b) on q and r respectively with kr ≤ kq . Then we can rewrite

Condition 1 as

����
kq

Lq (a)+Lq (b )−kq
−

kr
Lr (a)+Lr (b )−kr

���� ≤ α . Based on

the assumptions of the theorem, we have Lr (a) = (1 −
1−β
|q |−1 ·

|q \ r |) · Lq (a), and similar for Lr (b). Let c = 1 −
1−β
|q |−1 · |q \ r |,

Condition 1 ⇔
����

kq
Lq (a)+Lq (b )−kq

−
kr

cLq (a)+cLq (b )−kr

���� ≤ α . Notice

that
kr

cLq (a)+cLq (b )−kr
is an increasing function of kr and [kq −

(1− c )Lq (b)] ≤ kr ≤ kq , we have
[kq−(1−c )Lq (b )]

cLq (a)+cLq (b )−[kq−(1−c )Lq (b )]
≤

kr
cLq (a)+cLq (b )−kr

≤
kq

cLq (a)+cLq (b )−kq
. Therefore to get Condition

1 satisfied, we only need to bound the following two inequalities,

kq
cLq (a) + cLq (b ) − kq

−
kq

Lq (a) + Lq (b ) − kq
≤ α ·

kq
Lq (a) + Lq (b ) − kq

(1)

kq
Lq (a) + Lq (b ) − kq

−
[kq − (1 − c )Lq (b )]

cLq (a) + cLq (b ) − [kq − (1 − c )Lq (b )]
≤ α ·

kq
Lq (a) + Lq (b ) − kq

(2)

Bounding Inequality 1: Ineq. 1 ⇔
kq

cLq (a)+cLq (b )−kq
≤ (1 +

α ) ·
kq

Lq (a)+Lq (b )−kq
⇔ c ≥

Lq (a)+Lq (b )+αkq
Lq (a)+Lq (b )

· 1

1+α . Plugin c =

1 −
1−β
|q |−1 · |q \ r |, we have

c ≥
Lq (a) + Lq (b ) + αkq

Lq (a) + Lq (b )
·

1

1 + α

⇔1 −
1 − β
|q | − 1

· |q \ r | ≥
Lq (a) + Lq (b ) + αkq

Lq (a) + Lq (b )
·

1

1 + α

⇔β ≥ 1 −
|q | − 1
|q\r |

·
α

1 + α
·
Lq (a) + Lq (b ) − kq

Lq (a) + Lq (b )
.

Since kq ≤ min{Lq (a),Lq (b)} = Lq (a), if we put harder con-

straint on β by requiring β ≥ 1−minkq
|q |−1
|q\r | ·

α
1+α ·

Lq (a)+Lq (b )−kq
Lq (a)+Lq (b )

=

1 −
|q |−1
|q\r | ·

α
1+α ·

Lq (b )
Lq (a)+Lq (b )

= 1 −
|q |−1
|q\r | ·

α
1+α ·

max{Lq (a),Lq (b ) }
Lq (a)+Lq (b )

.

Thus, we get the second requirement R2 in the theorem that if

β ≥ 1 −
|q |−1
|q\r | ·

α
1+α ·

max{Lq (a),Lq (b ) }
Lq (a)+Lq (b )

is satisfied, Ineq. 1 can be

bounded.

Bounding Inequality 2: Now we find the requirements for

bounding Ineq. 2 based on R2 derived above. Let d = 1 − c =
1−β
|q |−1 · |q \ r |. Then Ineq. 2 can be rewritten as

kq
Lq (a) + Lq (b ) − kq

−
kq − dLq (b )

(1 − d ) (Lq (a) + Lq (b )) − (kq − dLq (b ))
≤ α

kq
Lq (a) + Lq (b ) − kq

⇔
kq − dLq (b )

(1 − d ) (Lq (a) + Lq (b )) − (kq − dLq (b ))
≥ (1 − α ) ·

kq
Lq (a) + Lq (b ) − kq

⇔α ≥
d · (Lq (b ) − kq )[Lq (a) + Lq (b )]

kq · [(Lq (a) + Lq (b ) − kq ) − dLq (a)]
(3)

Let f (kq ) =
d (Lq (b )−kq )[Lq (a)+Lq (b )]

kq ·[(Lq (a)+Lq (b )−kq )−dLq (a)]
be a function of kq ,

then the first derivative of f (kq ) is

f ′(kq ) =
d[Lq (a) + Lq (b)][(d − 1)Lq (a)Lq (b) − (kq − Lq (b))

2
]

{kq · [(Lq (a) + Lq (b) − kq ) − dLq (a)]}2
< 0

Therefore f (kq ) is monotonically decreasing as kq grows. So if Ineq.

3 is satisfied for small kq , we can bound Ineq. 2 generally. Notice

that kq cannot be too small (e.g., when kq = dLq (a), the maximum

possible value of

simq (a,b )−simr (a,b )
simq (a,b )

is 1, which is impossible to

bound by α ), hence we need to set a lower bound requirement on kq .

Assume simq (a,b) =
kq

Lq (a)+Lq (b )−kq
≥ θ ⇒ kq ≥

θ
1+θ (Lq (a) +

Lq (b)). Notice that the right-hand-side of Ineq. 3 is an increasing

function of d , if we put harder constraint on α by requiring

α ≥ max

kq,d

d · (Lq (b) − kq )[Lq (a) + Lq (b)]

kq · [(Lq (a) + Lq (b) − kq ) − dLq (a)]
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, Ineq. 2 can be bounded. From R2 derived about, we know d =

1− c ≤ α
1+α

Lq (b )
Lq (a)+Lq (b )

. Thus, we plugin d = α
1+α

Lq (b )
Lq (a)+Lq (b )

and

kq =
θ

1+θ (Lq (a) + Lq (b)), and we have

α ≥ max

kq ,d

d · (Lq (b ) − kq )[Lq (a) + Lq (b )]
kq · [(Lq (a) + Lq (b ) − kq ) − dLq (a)]

=

α
1+α Lq (b )

[
Lq (b ) − θ

1+θ (Lq (a) + Lq (b ))
]

θ
1+θ

[
1

1+θ (Lq (a) + Lq (b ))2 − α
1+α Lq (a)Lq (b )

]
(4)

Let д(Lq (a)) be the right-hand-side of Ineq. 4 as a function of

Lq (a), we can getд
′(Lq (a)) < 0⇔ C1Lq (a)

2+2(C1−1)Lq (b)Lq (a)+

(C1 + C2 − 2)Lq (b)
2 < 0 ⇔

1−C1−
√
1−C1C2

C1

Lq (b) < Lq (a) <

1−C1+
√
1−C1C2

C1

Lq (b), where C1 =
θ

1+θ and C2 =
α

1+α . As we can

easily see C1 ≤ 0.5 and C2 ≤ 0.5, we have
1−C1−

√
1−C1C2

C1

Lq (b) < 0

and
1−C1+

√
1−C1C2

C1

Lq (b) > Lq (b). Then we get д′(Lq (a)) < 0when

Lq (a) ∈ [0,Lq (b)] and д(Lq (a)) is monotonically decreasing. Since

we assume simq (a,b) ≥ θ , we have Lq (a) ≥ θLq (b), therefore

д(Lq (a)) ≤ д(θLq (b)) =
α

1+α (1−θ )
θ− θ

1+θ
α

1+α θ
. Let д(θLq (b)) ≤ α , we can

finally have

α
1+α (1−θ )

θ− θ
1+θ

α
1+α θ

≤ α ⇔ θ ≥

√
(1+α )2+8−(1+α )

4
, which is

R1 described in the theorem. This means if R1 is satisfied, we can
bound Ineq. 2.

In all, if R1 and R2 are both satisfied under the theorem assump-

tions, Condition 1 can be satisfied. □

I PROOF FOR THEOREM 4.2
We show the proof sketch for Theorem 4.2. Basically we need to

prove the following two parts. First, the correctness ofQJoin. That is,
given a similaritymeasurem ∈ Mset = {Jaccard, cosine,overlap,Dice},
for each config д ∈ G QJoin will return the correct top-k list. Sec-

ond, the correctness of the joint top-k similarity join (JTSJ) with

reusing. Without loss of generality, we use Jaccard as the similarity

measure for the proof, and we show how to extend it to all measures

inMset in Appendix I.3.

I.1 Correctness of QJoin
We show the correctness of QJoin on a config д. For ease of mathe-

matical exposition, we follow the same notations and terminology

in [28].

Lemma I.1. Let r be a tuple in table A or B sorted by a global
order, the probing similarity upper bound for the t-th token is ut =
1 −

max{0,t−q }
Lд (r )

with parameter q in QJoin.

Proof. If the token overlap is min{t ,q} in the prefix of t to-
kens of r with any other tuple s , the maximum possible overlap of

(r , s ) is min{t ,q} + (Lд (r ) − t ) = Lд (r ) + min{0,q − t }. Therefore

the similarity score simд (r , s ) ≤
Lд (r )+min{0,q−t }

Lд (r )+Lд (s )−(Lд (r )+min{0,q−t }) ≤

Lд (r )+min{0,q−t }
Lд (r )

= 1 −
max{0,t−q }

Lд (r )
. The equality can be achieved

when s has length of Lд (s ) = Lд (r ) +min{0,q − t } with all tokens

appearing in r . □

Lemma I.1 shows the new probing similarity upper bound for

prefix event generation in QJoin. When QJoin terminates, we can

classify all tuple pairs of A × B into 4 parts.

(1) the verified set, denoted as V . All tuple pairs in this set will

have q common tokens in the prefix and the similarity scores

will be actually calculated (verified as a top-k candidate).

(2) the active set, denoted as K , contains all pairs with common

tokens in the prefix but the number is less than q. We can

further decompose this set into K1 and K2. For each tuple

pair (a,b) in K1, all prefix events generated by tokens in a
and b have been visited, meaning (a,b) has been verified in

fact but the overlap is less than q. All pairs in this set will

be traversed before the termination of QJoin to update T
(the traverse is cheap since we have the number of common

tokens for each pair). For each pair (a,b) in K2, at least one

token in a or b hasn’t been visited in the prefix event queue.

(3) the filtered set, denoted as F . All tuple pairs in this set have

no common token in the prefix and therefore are filtered

from considering as a top-k candidate.

(4) the candidate setC . Pairs in this set should not appear in the

top-k list.

Let T be the top-k list returned by QJoin, and tlb be the largest

value of the unvisited prefix events at the termination of QJoin. We

know for any (a,b) inT , the similarity score simд (a,b) ≥ tlb . Since
T contains the top-k pairs in V and K1. We only need to prove all

similarity scores in K2 ∪ F are less than or equal to tlb .

Lemma I.2. The similarity scores of all pairs in K2∪F are less than
or equal to tlb .

Proof. We first consider F . Pairs in F can be split into two parts

F0 and F1. F0 contains all pairs with no token can be added into

the prefix event queue, meaning the pairs are actually verified with

similarity score 0 which is less than tlb . F1 = F \ F0 contains all
pairs with at least one unseen token that can be extended into

the prefix. Specifically, for each (a,b) ∈ F1, suppose a has unseen

tokens and the first index is i . Clearly simд (a,b) ≤ 1 − i
Lд (a)

<

up,i = 1 −
max{0,i−q }

Lд (a)
≤ tlb .

For each (a,b) ∈ K2, suppose a has unseen tokens and the first

index is i . Because a and b share at most q tokens in the prefix, we

have simд (a,b) ≤ 1 −
max{0,i−q }

Lд (a)
= up,i ≤ tlb .

Thus, for each pair (a,b) ∈ K2∪F , we have simд (a,b) ≤ tlb . □

Lemma I.2 shows that all pairs in K2 ∪ F have similarity scores

less than or equal to tlb . As we mentioned above,T contains the top-

k pairs in V ∪ K1 with similarity scores no less than tlb , therefore
T contains the top-k pairs in A × B \C . This proves the correctness
of QJoin.

I.2 Correctness of JTSJ
Based on the correctness of QJoin, it’s obvious that the parallel

processing of configs without reusing will be correct as each QJoin
on a config will run independently on a single thread. So we only

need to prove that concurrent execution of multiple configs with

reusingwill produce correct top-k lists for all of them. The following

proof will be based on the condition of concurrent execution of the
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configs as describe in Algorithm 1. Two reusing strategies have been

utilized which are reusing similarity score computations and reusing
top-k lists, as described in Section 4.2. Since they are unrelated to

each other, we prove the correctness of each.

Reusing Similarity Score Computations: Recall we reuse sim-

ilarity score computations across configs described in Section 4.2.

Specifically, for each д ∈ G, if д has a subtree, we will maintain a

database Hд for it.

Lemma I.3. Let Gs ∈ G be the set of configs having a subtree. For
each д ∈ Gs , Hд will record the correct reusing information for all
tuple pairs that have been verified in QJoin on д.

Proof. Since we maintain a separate Hд for each д ∈ Gs , dur-

ing the execution of Algorithm 1, there will be one and only one

thread updating Hд which is the one executing QJoin on д. Hence
there are no writing conflicts to each Hд . So we only need to prove

for each descendant r ⊂ д, if a tuple pair (a,b) having reuse in-

formation in Hд , we can get the correct similarity score for it on

r . Let д = { fд1 , fд2 , . . . , fдk } with k attributes. By definition the

reuse information Iд (a,b) = {o( fi , fj ) | ( fi , fj ) ∈ д × д}. As r ⊂ д,
it’s easy to getOverlapr (a,b) =

∑
(fi ,fj )∈r×r o( fi , fj ) from Iд (a,b).

Then we have simr (a,b) =
Over lapr (a,b )

Lr (a)+Lr (b )−Over lapr (a,b )
. This proves

the lemma. □

Lemma I.3 proves that each database will maintain the correct

information for reusing. The next lemma will show that no dirty

read happens.

Lemma I.4. Let д be a config with a database Hд and r ⊂ д is a
descendant. If д and r are executed concurrently, for any pair (a,b)
that will be verified in QJoin on r , we can get the correct similarity
score simr (a,b) by only using Iд (a,b) if we have the reuse information
Iд (a,b) in Hд .

Proof. When QJoins on д and r are running concurrently, Hд is

updated while QJoin on r is consulting it. So we only need to prove

there is no dirty read when Hд is consulted for reusing. That is, for

any pair (a,b) that is verified for QJoin on r , we will have either
Iд (a,b) in Hд with complete reuse information, or Iд (a,b) not in
Hд , but not some intermediate state in between (e.g., Iд (a,b) in
Hд with incomplete reuse information). This requires the insertion

operation to Hд to be atomic. As mentioned in Section 4.2, we use

the Atomic Unordered Hashmap in Facebook’s C++ Folly package

which guarantees atomic insertion toHд , no dirty read will happen.

This proves the lemma. □

Based on Lemma I.3 and I.4, we show for any config д ∈ G, we
can get the correct top-k list by reusing similarity computation.

Let N = {n | ancestors of д in G}, and HN = {Hn | n ∈ N } be
the corresponding reuse databases. For any pair (a,b) that will
be verified by the QJoin on д, by Lemma I.3 if we have the reuse

information In (a,b) for some n ∈ N , In (a,b) will record correct

reuse information. According to Lemma I.4, for any n ∈ N that

is concurrently executed with д, if In (a,b) exists, we can get the

correct simд (a,b) by using In (a,b). This proves the correctness of
reusing similarity computations in JSTJ.

Reusing Top-k lists: The correctness of reusing top-k lists is

obvious. Let Tд be the actual top-k list for config д, and T̂д be the

top-k list right after merging its parent’s top-k list. Denote Tд[i]
be the similarity score of i-th pair of Tд sorted from high to low

(similar for T̂д[i]). Clearly we have T̂д[k] ≤ Tд[k]. According to

QJoin, all pairs with similarity scores greater than T̂д[k] will be

found and inserted into T̂д[k]. This means at the termination of

QJoin, T̂д will be identical to Tд or T̂д[k] = Tд[k]. As we will only
merge the top-k list after QJoin on д’s parent is finished, there is
no concurrency issue for the merging procedure. All of these prove

the correctness of reusing top-k lists in JSTJ.

I.3 Extending to All Measures inMset

To generalizeQJoin to all measures inMset , we need to modify the

probing similarity upper bound. It’s not hard to prove the following

upper bound for each measure which is similar to the deduction

in Lemma I.1: Jaccard similarity measure with u Jaccard,t = 1 −

max{0,t−q }
Lд (s )

, cosine similarity with ucosine,t =

√
1 −

max{0,t−q }
Lд (s )

,

Overlap similarity with uOver lap,t = Lд (s ) − max{0, t − q}, and

Dice similarity with uDice,t =
2(Lд (s )−max{0,t−q })
2Lд (s )−max{0,t−q } .

It’s easy to extend reusing similarity score computations to all

measures inMset , since the calculation of similarity scores inMset
only requires the number of common token overlap of a tuple pair

and the information is stored in the reusing databases.
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