Magellan: Toward Building
Entity Matching Management Systems
[SIGMOD Research Highlight]

Pradap Konda!, Sanjib Das*, Paul Suganthan G.C.*, Philip Martinkus', AnHai Doan',
Adel Ardalan?, Jeffrey R. Ballard*, Yash Govind*, Han Lit,
Fatemah Panahi?, Haojun Zhang*, Jeff Naughton?,
Shishir Prasad?®, Ganesh Krishnan?, Rohit Deep?, Vijay Raghavendra®

'University of Wisconsin-Madison, 2Google, *@WalmartLabs

ABSTRACT

Entity matching (EM) has been a long-standing challenge
in data management. Most current EM works focus only
on developing matching algorithms. We argue that far more
efforts should be devoted to building EM systems. We dis-
cuss the limitations of current EM systems, then describe
Magellan, a new kind of EM system. Magellan is novel in
four important aspects. (1) It provides how-to guides that
tell users what to do in each EM scenario, step by step.
(2) It provides tools to help users execute these steps; the
tools seek to cover the entire EM pipeline, not just block-
ing and matching as current EM systems do. (3) Tools are
built into the Python open-source data science ecosystem,
allowing Magellan to borrow a rich set of capabilities in data
cleaning, IE, visualization, learning, etc. (4) Magellan pro-
vides a powerful scripting environment to facilitate inter-
active experimentation and quick “patching” of the system.
We describe research challenges and present extensive ex-
periments that show the promise of the Magellan approach.

1. INTRODUCTION

Entity matching (EM) identifies data instances that refer
to the same real-world entity, such as (David Smith, UW-
Madison) and (D. M. Smith, UWM). This problem has been
a long-standing challenge in data management [13, 22]. Most
current EM works however have focused only on developing
matching algorithms [13, 22].

Going forward, we believe that building EM systems is
truly critical for advancing the field. EM is engineering
by nature. We cannot just keep developing matching al-
gorithms in a vacuum. This is akin to continuing to develop
ever-more-complex join algorithms without having the rest
of the RDBMS. At some point we must build end-to-end
systems to evaluate matching algorithms, to integrate R&D
efforts, to educate our students in EM, and to make practical
impacts.

In this aspect, EM can take inspiration from RDBMSs and
Big Data systems. Pioneering systems such as System R,
Ingres, and Hadoop have drastically helped push these fields
forward, by helping to evaluate research ideas, providing an

(©VLDB Endowment 2016. This is a minor revision of the paper enti-
tled Magellan: Toward Building Entity Matching Management Systems,
published in the Proceedings of the VLDB Endowment, Vol. 9, No. 12,
2150-8097/16/08.

DOIL: https://doi.org/10.14778/2994509.2994535.

architectural blueprint for the entire community to focus on,
facilitating more advanced systems, and making widespread
real-world impacts.

The question then is what kinds of EM systems we should
build, and how? In this paper we begin by showing that
current EM systems suffer from four limitations that prevent
them from being used extensively in practice.

First, when performing EM users often must execute many
steps. Current systems however do not cover the entire EM
pipeline, providing support for only a few steps (e.g., block-
ing, matching), while ignoring less well-known yet equally
critical steps (e.g., debugging, sampling, cleaning).

Second, EM steps often must exploit many techniques,
e.g., learning, mining, visualization, outlier detection, infor-
mation extraction (IE), crowdsourcing, etc. Current EM
systems (most of which are stand-alone monoliths that are
not designed from scratch to “play well” with other systems)
do not provide enough support for these techniques.

Third, users often have to write code to “patch” the sys-
tem (e.g., to implement a lacking functionality or combine
system components), ideally using a scripting environment,
to enable rapid prototyping and iteration. Most current EM
systems however do not provide such facilities.

Finally, in many EM scenarios users often do not know
how to proceed end to end. Suppose a user wants to perform
EM with at least 95% precision and 80% recall. Should he
or she start out using a learning or rule-based EM approach?
If learning-based, then which technique to select among the
many existing ones? How to debug? What to do if after
many tries the user still cannot reach 80% recall? Current
EM systems provide no answers to such questions.

The Magellan Solution: To address these limitations,
we describe Magellan, a new kind of EM systems currently
being developed at UW-Madison, in collaboration with sev-
eral industrial partners. Magellan (named after Ferdinand
Magellan, the first end-to-end explorer of the globe) is novel
in several important aspects.

First, Magellan focuses on helping power users (those who
know how to code) execute a set of EM scenarios (e.g., us-
ing supervised learning to match two tables with a target
accuracy). For each EM scenario, Magellan provides a com-
prehensive how-to guide that tells users what to do, step by
step, end to end.

Second, Magellan identifies “pain points” in each guide,
i.e., steps that require a lot of user effort, then provides tools
to address those pain points. As we will see, these tools cover

the entire EM pipeline (e.g., debugging, sampling), not just
the blocking and matching steps.

Third, the tools are being built within the Python data
science ecosystem, allowing users to easily exploit a wide
range of techniques in learning, visualization, cleaning, etc.
(as captured in numerous Python packages in this ecosys-
tem, such as pandas, scikit-learn, matplotlib, pytorch, pys-
park, etc.).

Finally, an added benefit of integration with the Python
ecosystem is that Magellan is situated in a powerful scripting
environment that users can use to prototype code to “patch”
the system.

As described, Magellan assumes that the EM process can-
not be automated. Instead it must involve the human user.
So Magellan provides a detailed how-to guide that spells out
where the human user must be involved and how, and where
a tool can be used to reduce the user effort. Thus, Magellan
is an example of “human-in-the-loop” data management sys-
tems, which have received significant recent attention [19].

Challenges: Realizing the above novelties raises major
challenges. First, it turns out that developing effective how-
to guides, even for very simple EM scenarios such as apply-
ing supervised learning to match, is already quite difficult,
as we will show in Section 3.3.

Second, developing tools to support these guides is equally
difficult. In particular, current EM work may have dismissed
many steps in the EM pipeline as engineering. But here we
show that many such steps (e.g., sampling, labeling, debug-
ging, etc.) do raise difficult research challenges.

Finally, while most current EM systems are stand-alone

monoliths, Magellan is designed to be placed within an “ecosys-

tem” and is expected to “play well” with others (e.g., other
Python packages). We say that Magellan is an “open-world
system”, because it relies on many other systems in the
ecosystem in order to provide the fullest amount of support
to the user doing EM. It turns out that building open-world
systems raises non-trivial challenges, such as designing the
right data structures and managing metadata.

Current Status: In the past three years we have started
to address the above challenges. Specifically, we have open
sourced Magellan [3]. As far as we can tell, Magellan is the
most comprehensive open-source EM system today, in terms
of the number of features it supports.

Magellan has been successfully used in five domain science
projects at UW-Madison (in economics, biomedicine, envi-
ronmental science [32, 33, 37, 9]), and at several companies
(e.g., Johnson Control, Marshfield Clinic, Recruit Holdings
[1], WalmartLabs). For example, at WalmartLabs it im-
proved the recall of a deployed EM solution by 34%, while
reducing precision slightly by 0.65%. It has also been used
by 400+ students to match real-world data in five data sci-
ence classes at UW-Madison (e.g., [2]).

Applying Magellan to the above real-world applications
raised many research challenges. Examples include helping
users finalize their matching definition [32, 19], debugging
blocking [34], debugging rule-based EM [36], human-in-the-
loop EM [19], applying deep learning to match textual data
[35], hands-off string matching, data cleaning, and more. We
have started to address some of these research challenges [34,
35, 36, 19], describe case studies [32], and summarize the
lessons learned [19, 32]. Magellan and the data generated in
this project have also been used by other research groups

Table A Table B
Name City State Name City State Matches
a,;| Dave Smith [Madison WI b,| David D.Smith | Madison WI (a, b))

o

2 Daniel W. Smith | Middleton | WI (a3, b,)

»

,| Joe Wilson | San Jose CA

a,| DanSmith | Middleton [WI

Figure 1: An example of matching two tables.
(e.g., [21, 25]).

CloudMatcher and BigGorilla: In terms of broader
impacts, Magellan is an on-premise EM solution for power
users. In a related project, we have been developing Cloud-
Matcher, a hands-off cloud/crowd EM service for lay users
(to be deployed soon at cloudmatcher.io) [27, 17, 26]. Our
Magellan work has significantly influenced the development
of CloudMatcher, by suggesting desired functionalities and
pointing out possible limitations of such EM services [27].

The ideas underlying Magellan can potentially be applied
to other types of data integration problems (e.g., schema
matching, information extraction, data cleaning, etc.). We
have started to flesh out a similar system-building agenda
for data integration [20, 18]. We have also been partnering
with Recruit Institute of Technology to encourage a commu-
nity around BigGorilla, a repository of data preparation and
integration tools [41]. The goal of BigGorilla is to foster an
ecosystem of such tools, as a part of the Python data science
ecosystem, for research, education, and practical purposes.

The rest of this paper motivates Magellan then discusses
the solution architecture, empirical evaluation, lessons learned,
and ongoing research directions. This paper is a condensed
version of [29]. More details can be found in that paper and
in [30, 31], and on the Magellan project’s homepage [3].

2. LIMITATIONS OF CURRENT
ENTITY MATCHING SYSTEMS

Entity matching (EM) has received much attention [13,
22]. A common EM scenario finds all tuple pairs that match,
i.e., refer to the same real-world entity, between two tables A
and B (see Figure 1). Other EM scenarios include matching
tuples within a single table, matching into a knowledge base,
matching XML data, etc. [13].

Most EM works have developed matching algorithms that
exploit rules, learning, clustering, crowdsourcing, among oth-
ers [13, 22]. The focus is on improving the matching accu-
racy and reducing costs (e.g., run time). Trying to match
all pairs in A x B often takes very long. So users often em-
ploy heuristics to remove obviously non-matched pairs (e.g.,
products with different colors), in a step called blocking, be-
fore matching the remaining pairs. Several works have stud-
ied this step, focusing on scaling it up to large amounts of
data (see Section 5).

In contrast to the extensive effort on matching algorithms,
there has been relatively little work on building EM systems.
As of 2016 we counted 18 major non-commercial systems
(e.g., D-Dupe, DuDe, Febrl, Dedoop, Nadeef [13]), and 15
major commercial ones (e.g., Tamr, Data Ladder, IBM In-
foSphere, IBM Midas [28, 38]). Our examination of these
systems (see [30]) reveals the following four major problems:

1. Systems Do Not Cover the Entire EM Pipeline:
When performing EM users often must execute many steps,
e.g., blocking, matching, exploration, cleaning, extraction
(IE), debugging, sampling, labeling, etc. Current systems
provide support for only a few steps in this pipeline, while

ignoring less well-known yet equally critical steps.

For example, all 33 systems that we have examined pro-
vide support for blocking and matching. Twenty systems
provide limited support for data exploration and cleaning.
There is no meaningful support for any other steps (e.g.,
debugging, sampling, etc.). Even for blocking the systems
merely provide a set of blockers that users can call; there
is no support for selecting and debugging blockers, and for
combining multiple blockers.

2. Difficult to Exploit a Wide Range of Techniques:
Practical EM often requires a wide range of techniques,
e.g., learning, mining, visualization, data cleaning, IE, SQL
querying, crowdsourcing, keyword search, etc. For example,
to improve matching accuracy, a user may want to clean the
values of attribute “Publisher” in a table, or extract brand
names from “Product Title”, or build a histogram for “Price”.
The user may also want to build a matcher that uses learn-
ing, crowdsourcing, or some statistical techniques.

Current EM systems do not provide enough support for
these techniques, and there is no easy way to do so. Incorpo-
rating all such techniques into a single system is extremely
difficult. But the alternate solution of just moving data
among a current EM system and systems that do cleaning,
IE, visualization, etc. is also difficult and time consuming.
A fundamental reason is that most current EM systems are
stand-alone monoliths that are not designed from the scratch
to “play well” with other systems. For example, many cur-
rent EM systems were written in C, C++, C#, and Java,
using proprietary data structures. Since EM is often iter-
ative, we need to repeatedly move data among these EM
systems and cleaning/IE/etc systems. But this requires re-
peated reading/writing of data to disk followed by compli-
cated data conversion.

3. Difficult to Write Code to “Patch” the System: In
practice users often have to write code, either to implement a
lacking functionality (e.g., to extract product weights, or to
clean the dates), or to tie together system components. It is
difficult to write such code correctly in “one shot”. Thus ide-
ally such coding should be done using an interactive script-
ing environment, to enable rapid prototyping and iteration.
This code often needs access to the rest of the system, so
ideally the system should be in such an environment too.
Unfortunately only 5 out of 33 systems provide such set-
tings (using Python and R).

4. Little Guidance for Users on How to Match: In
our experience this is by far the most serious problem with
current EM systems. In many EM scenarios users simply
do not know what to do: how to start, what to do next?
Interestingly, even the simple task of taking a sample and
labeling it (to train a learning-based matcher) can be quite
complicated in practice, as we show in Section 3.3. Thus,
it is not enough to just build a system consisting of a set
of tools. It is also critical to provide step-by-step guidance
to users on how to use the tools to handle a particular EM
scenario and what to do when no tool is available. No EM
system that we have examined provides such guidance.

3. THE MAGELLAN SOLUTION

‘We now describe Magellan and discuss how it addresses the
above limitations. Figure 2 shows the Magellan architecture.
The system targets a set of EM scenarios. For each EM

Facilities for Lay Users

GUIs, wizards, ...

[]
ln'l Power Users

EM Development Stage
Scenarios

Production Stage

— EM

Supporting tools
\pporting Workflow

(as Python commands)

Supporting tools

How-to (as Python commands)

Guides

Data samples Original data

Python Interactive Environment
Script Language

Data Analysis Stack Big Data Stack

pandas, scikit-learn, matplotlib, PySpark, mrjob, Pydoop,

Figure 2: The Magellan architecture.

scenario it provides a how-to guide. The guide proposes
that the user solve the scenario in two stages: development
and production.

In the development stage, the user develops a good EM
workflow (e.g., one with high matching accuracy). The guide
tells the user what to do, step by step. For each step which
is a “pain point”, the user can use a set of supporting tools
(each of which is a set of Python commands). This stage is
typically done using data samples. In the production stage,
the guide tells the user how to implement and execute the
EM workflow on the entirety of data, again using a set of
tools.

Both stages have access to the Python interactive script-
ing environment (e.g., Jupyter Notebook). Further, tools
are built into the Python data science ecosystem. Thus,
Magellan is an “open-world” system, as it often has to bor-
row functionalities (e.g., cleaning, extraction, visualization)
from other Python packages in the ecosystem.

Finally, the current Magellan is geared toward power users
(who can program). In the future facilities for lay users (e.g.,
GUIs, wizards) can be laid on top (see Figure 2), and lay
user actions can be translated into sequences of commands
in the underlying Magellan. In what follows we elaborate on
the Magellan architecture.

3.1 EM Scenarios and Workflows

We classify EM scenarios along four dimensions: (1) Prob-
lems: Matching two tables; matching within a table; match-
ing a table into a knowledge base; etc. (2) Solutions: Using
learning; using learning and rules; performing data clean-
ing, blocking, then matching; performing IE, then cleaning,
blocking, and matching; etc. (8) Domains: Matching two
tables of biomedical data; matching e-commerce products
given a large product taxonomy as background knowledge;
etc. (4) Performance: Precision must be at least 92%, while
maximizing recall as much as possible; both precision and
recall must be at least 80%, and run time under four hours;
etc.

An EM scenario can constrain multiple dimensions, e.g.,
matching two tables of e-commerce products using a rule-
based approach with desired precision of at least 95%. Clearly
there is a wide variety of EM scenarios. So we build Mag-
ellan to handle a few common scenarios, and then extend it
to more scenarios over time. Specifically, for now we will
consider the three scenarios that match two given relational
tables A and B using (1) supervised learning, (2) rules, and

(3) learning plus rules, respectively. These scenarios are very
common. In practice, users often try Scenario 1 or 2, and if
neither works, then a combination of them (Scenario 3).

As discussed earlier, to handle an EM scenario, a user of-
ten has to execute many steps, such as cleaning, IE, block-
ing, matching, etc. The combination of these steps form an
EM workflow. Figure 4 shows a sample workflow (which we
explain in Section 3.3).

3.2 Development Stage vs. Production Stage

From our experience with real-world users doing EM, we
propose that the how-to guide tell the user to solve the EM
scenario in two stages: development and production. In the
development stage the user finds a good EM workflow, typ-
ically using data samples. In the production stage the user
applies the workflow to the entirety of data. Since this data
is often large, a major concern here is to scale up the work-
flow. Other concerns include quality monitoring, logging,
crash recovery, etc. The following example illustrates these
two stages.

ExXAMPLE 1. Consider matching two tables A and B each
having 1M tuples. Working with such large tables will be very
time consuming in the development stage, especially given
the iterative nature of this stage. Thus, in the development
stage the user U starts by sampling two smaller tables A’ and
B’ from A and B, respectively. Next, U performs blocking
on A" and B'. The goal is to remove as many obviously non-
matched tuple pairs as possible, while minimizing the number
of matching pairs accidentally removed. U may need to try
various blocking strategies to come up with what he or she
judges to be the best.

The blocking step can be viewed as removing tuple pairs
from A’xB'. Let C be the set of remaining tuple pairs. Next,
U may take a sample S from C, examine S, and manually
write matching rules, e.g., “If titles match and the numbers
of pages match then the two books match”. U may need to try
out these rules on S and adjust them as necessary. The goal
is to develop matching rules that are as accurate as possible.

Once U has been satisfied with the accuracy of the match-
ing rules, the production stage begins. In this stage, U exe-
cutes the EM workflow that consists of the developed blocking
strategy and matching rules on the original tables A and B.
To scale, U may need to rewrite the code for blocking and
matching to use Hadoop or Spark. O

As described, these two stages are very different in nature:
one goes for accuracy and the other goes for scaling (among
others). Consequently, they will require very different sets
of tools. We now discuss developing tools for these stages.

Development Stage on a Data Analysis Stack: We
observe that what users try to do in the development stage
is very similar in nature to data analysis tasks, which an-
alyze data to discover insights. Indeed, creating EM rules
can be viewed as analyzing (or mining) the data to discover
accurate EM rules. Conversely, to create EM rules, users
also often have to perform many data analysis tasks, e.g.,
cleaning, visualizing, finding outliers, IE, etc.

As a result, if we are to develop tools for the development
stage in isolation, within a stand-alone monolithic system, as
current work has done, we would need to somehow provide a
powerful data analysis environment, in order for these tools
to be effective. This is clearly very difficult to do.

So instead, we propose that tools for the development

stage be developed on top of an open-source data analy-
sis stack, so that they can take full advantage of all the data
analysis tools already (or will be) available in that stack.
In particular, two major data analysis stacks have recently
been developed, based on R and Python. The Python stack
for example includes the Python language, numpy and scipy
packages for numerical/array computing, pandas for rela-
tional data management, scikit-learn for machine learning,
among others. More tools are being added all the time. As
of March 2018, there were 536 Python packages available in
the popular Anaconda distribution. There is a vibrant com-
munity of contributors to continuously improve this stack.

For Magellan, since our initial target audience is the IT
community, where we believe Python is more familiar, we
have been developing tools for the development stage on the
Python data analysis stack.

Production Stage on a Big Data Stack: In a sim-
ilar vein, we propose that tools for the production stage,
where scaling is a major focus, be developed on top of a
Big Data stack. Magellan uses the Python Big Data stack,
which consists of many software packages to run MapReduce
(e.g., Pydoop, mrjob), Spark (e.g., PySpark), and parallel
and distributed computing in general (e.g., pp, dispy).

In the rest of this paper we will focus on the development
stage, leaving the production stage for subsequent papers.

3.3 How-to Guides and Tools

We now discuss developing how-to guides and tools to
support these guides. First, we show that even for relatively
simple EM scenarios (e.g., matching using supervised learn-
ing), a good guide can already be quite complex. Thus de-
veloping how-to guides is a major challenge, but such guides
are critical in order to successfully guide the user through
the EM process. Second, we show that each step of the
guide, including those that prior work may have viewed as
trivial (e.g., sampling, labeling), can raise many interesting
research challenges.

Recall that Magellan currently targets three EM scenar-
ios (Section 3.1). For space reasons, we will focus on the
scenario of matching using supervised learning, and on de-
veloping a guide for the development stage of this scenario.
Figure 3 shows the current version of this guide, listing only
the top six steps. While each step may sound fairly infor-
mal (e.g., “create a set of features”), the full guide (available
with Magellan’s release) is far more complex and spells out
in detail what to do (e.g., run a Magellan command to au-
tomatically create the features). We developed this guide
based on observing how real-world users (e.g., at Walmart-
Labs and Johnson Control) as well as students in several
UW-Madison classes handled this scenario.

The guide states that to match two tables A and B, the
user should load the tables into Magellan (Step 1), do block-
ing (Step 2), label a sample of tuple pairs (Step 3), use
the sample to iteratively find and debug a learning-based
matcher (Steps 4-5), then return this matcher and its esti-
mated matching accuracy (Step 6). We now briefly discuss
these steps (see [30] for more details). For ease of exposition,
we will assume that tables A and B share the same schema.

Downsampling Tables: = We begin by loading the two
tables A and B into memory. If these tables are large (e.g.,
each having 100K+ tuples), we should sample smaller tables
A’ and B’ from A and B respectively, then do the develop-

—_

. Load tables A and B into Magellan. Downsample if necessary.

N

. Perform blocking on the tables to obtain a set of
candidate tuple pairs C.

w

. Take a random sample S from C and label pairsin S as
matched/ non-matched.

4. Create a set of features then convert S into a set of feature vectors H.
Split H into a development set I and an evaluation set J.

W

. Repeat until out of debugging ideas or out of time:

(a) Perform cross validation on I to select the best matcher.
Let this matcher be X.

(b) Debug X using I. This may change the matcher X, the data, labels,
and the set of features, thus changing I and J.

N

. LetY be the best matcher obtained in Step 5. Train Y on I,
then apply to J and report the matching accuracy on J.

Figure 3: The top-level steps of the guide for the
EM scenario of matching using supervised learning.

ment stage with these smaller tables. Since this stage is iter-
ative by nature, working with large tables can be very time
consuming. Random sampling however does not work, be-
cause tables A’ and B’ may end up sharing very few matches.
Thus we need a tool that samples more intelligently, to en-
sure a reasonable number of matches between A’ and B’.
We have developed such a tool, which proved quite effective
in our experiments (see [30]).

This tool however has a limitation: it may not get all
important matching categories into A’ and B’. If so, the
EM workflow created using A" and B’ may not work well on
the original tables A and B. For example, consider match-
ing companies. Tables A and B may contain two match-
ing categories: (1) tuples with similar company names and
addresses match because they refer to the same company,
and (2) tuples with similar company names but different
addresses may still match because they refer to different
branches of the same company. Using the current tool, ta-
bles A" and B’ may contain many tuple pairs of Case 1, but
no or very few pairs of Case 2.

To address this problem, we are working on a better “down-
sampler”. Our idea is to use clustering to create groups of
matching tuples, then analyze these groups to infer match-
ing categories, then sample from the categories. Major chal-
lenges here include how to effectively cluster tuples from the
large tables A and B, and how to define and infer matching
categories accurately.

Blocking to Create Candidate Tuple Pairs: Next,
we apply blocking to the tables A’ and B’ to generate a set
C of tuple pairs (a € A’,b € B’). Many blocking solutions
have been developed [13]. In practice, however, users often
have three questions which current work has not addressed:
(1) how to select the best blocker, (2) how to debug a given
blocker, and (3) how to know when to stop?

Selecting the Best Blocker: There is no satisfactory solution
yet to this problem. For now, based on our experience,
we recommend that the user try successively more complex
blockers. Specifically, the user can try overlap blocking first
(e.g., “matching tuples must share at least k tokens in an at-
tribute x”), then attribute equivalence blocking (AE) (e.g.,
“matching tuples must share the same value for an attribute
y”). These blockers are very fast, and can significantly cut
down on the number of candidate tuple pairs. Next, the
user can try other well-known blocking methods (e.g., sorted

neighborhood, hash) if appropriate. Finally, the user can try
rule-based blocking. This means the user can use multiple
blockers and combine them in a flexible fashion (e.g., apply-
ing AE to the output of overlap blocking).

Debugging Blockers: Given a blocker L, how do we know if
it does not remove too many matches? We have developed a
debugger to answer this question [34]. Suppose applying L
to A" and B’ produces a set C of tuple pairs (a € A’,b € B').
Then D = A’ x B'\ C is the set of all tuple pairs removed
by L. The debugger examines D to return a list of k tuple
pairs in D that are most likely to match. If the user U finds
many matches in the list, then that means blocker L has re-
moved too many matches. U would need to modify L to be
less “aggressive”, then apply the debugger again. Eventually
if U finds no or very few matches in the list, U can assume
that L has removed no or very few matches, and thus is good
enough.

Knowing When to Stop Modifying the Blockers: How do we
know when to stop tuning a blocker L? Suppose applying L
to A" and B’ produces the set of tuple pairs block(L, A’, B).
The conventional wisdom is to stop when block(L, A’, B) fits
into memory or is already small enough so that the matching
step can process it efficiently.

In practice, however, this often does not work. For exam-
ple, since we work with A" and B’, samples from the original
tables, monitoring |block(L, A’, B')| does not make sense.
Instead, we want to monitor |block(L, A, B)|. But applying
L to the large tables A and B can be very time consuming,
making the iterative process of tuning L impractical.

As a result, users often want blockers that have (1) high
pruning power, i.e., maximizing 1 — |block(L, A’, B")|/]A" x
B’|, and (2) high recall, i.e., maximizing the ratio of the
number of matches in block(L, A’, B") divided by the number
of matches in A’ x B’. Users can measure the pruning power,
but so far they have had no way to estimate recall. This
is where our debugger comes in. In our experiments (see
Section 4) users reported they had used our debugger to
find matches that the blocker L had removed, and when
they found no or only a few matches, they concluded that
L had achieved high recall and stopped tuning the blocker.

Sampling and Labeling Tuple Pairs: Let L be the
blocker we have created. Suppose applying L to tables A’
and B’ produces a set of tuple pairs C. In the next step,
user U should take a sample S from C', then label the pairs
in S as matched / no-matched, to be used later for training
matchers, among others.

At a first glance, this step seems simple: why not just take
arandom sample and label it? Unfortunately in practice this
is far more complicated. For example, suppose C contains
relatively few matches (either because there are few matches
between A’ and B’, or because blocking was too liberal,
resulting in a large C'). Then a random sample S from C
may contain no or few matches. But the user U often does
not recognize this until U has labeled most of the pairs in
S. This is a waste of U’s time and can be quite serious in
cases where labeling is time consuming or requires expensive
domain experts (e.g., labeling drug pairs when we worked
with Marshfield Clinic). We have developed a solution to
address this problem, building on the work in [26] (see [30]).

Selecting a Matcher: Once user U has labeled a sample
S, U uses S to select a good initial learning-based matcher.
Our guide provides a tool to address this problem. The tool

first automatically generates a set of features, uses them to
convert each pair in S into a feature vector, then performs
cross validation over a subset of the feature vectors to se-
lect the matcher with the highest estimated accuracy from
among those supplied by Magellan.

Debugging a Matcher: Let the selected matcher be
X. Next, user U debugs X to improve its accuracy. Such
debugging is critical in practice, yet has received little atten-
tion. Our guide suggests that user U debug in three steps:
(1) identify and understand the matching mistakes made by
X, (2) categorize these mistakes, and (3) take actions to fix
common categories of mistakes.

Identifying and Understanding Matching Mistakes: Given a
labeled set I for debugging purpose, U should split I into
two sets P and @, train X on P then apply it to @ to identify
the matching mistakes made by X in @ (this process can be
repeated many times, using different P and Q). These are
false positives (non-matching pairs predicted matching) and
false negatives (matching pairs predicted not). Addressing
them helps improve precision and recall, respectively.

Next U should try to understand why X makes each mis-
take, using a match debugger where available. There are
four major categories of mistakes. (1) The data can be dirty,
e.g., the price value is incorrect. (2) The label can be wrong,
e.g., a pair should have been labeled “not matched”. (3) The
feature set is problematic. A feature is misleading, or a new
feature is desired, e.g., we need a new feature that extracts
and compares the publishers. (4) The learning algorithm
employed by X is problematic, e.g., a parameter such as
“maximal depth to be searched” is set to be too small. Cur-
rently Magellan has debuggers for a set of learning-based
matchers, e.g., decision tree, random forest. We are work-
ing on improving these debuggers and developing debuggers
for more learning algorithms.

Categorizing Matching Mistakes: After U has examined all
or a large number of matching mistakes, he or she can cat-
egorize them, based on problems with data, label, feature,
and the learning algorithm. Examining all or most mistakes
is very time consuming. Thus a consistent feedback we have
received from real-world users is that they would love a tool
that can automatically examine and give a preliminary cat-
egorization of the types of the matching mistakes. As far as
we can tell, no such tool exists today.

Handling Common Categories of Mistakes: Next U should
try to fix common categories of mistakes by modifying the
data, labels, set of features, and the learning algorithm. This
part often involves data cleaning and extraction (IE), e.g.,
normalizing all values of attribute “affiliation”, or extracting
publishers from attribute “desc” then creating a new feature
comparing the publishers.

This part is often also very time consuming. Real-world
users have consistently indicated needing support in at least
two areas. First, they want to know exactly what kinds
of data cleaning and IE operations they need to do to fix
the mistakes. Naturally they want to do as minimally as
possible. Second, re-executing the entire EM process after
each tiny change to see if it “fixes” the mistakes is very time
consuming. Hence, users want an “what-if” tool that can
quickly show the effect of a hypothetical change.

The Resulting EM Workflow: After executing the
above steps, user U has in effect created an EM workflow,

clean
A
extract, transform
clean,
_ >
extract, transform

Figure 4: The EM workflow for the learning-based
matching scenario.

Candidate
block— SetCc — match

as shown in Figure 4. Since this workflow will be used in
the production stage, it takes as input the two original ta-
bles A and B. Next, it performs a set of data cleaning, IE,
and transformation operations on these tables. These op-
erations are derived from the debugging step discussed in
Section 3.3. Next, the workflow applies the blockers cre-
ated in Section 3.3 to obtain a set of candidate tuple pairs
C. Finally, the workflow applies the learning-based matcher
created in Section 3.3 to the pairs in C.

Note that the steps of sampling and labeling a sample S
do not appear in this workflow, because we need them only
in the development stage, in order to create, debug, and
train matchers. Once we have found a good learning-based
matcher (and have trained it using S), we do not have to
execute those steps again in the production stage.

4. EMPIRICAL EVALUATION

As of March 2018, Magellan [3] consists of 6 Python pack-
ages, 37K lines of code, and 231 commands. It has been
developed over 3 years by 13 developers. We now describe
using Magellan in data science classes, with domain scientists
at UW-Madison, and at companies.

4.1 Using Magellan in Data Science Classes

So far 400+ students (including 90+ undergraduates) have
used Magellan in 5 data science classes at UW-Madison.
These students can be considered the equivalents of power
users at organizations. They know Python but are not ex-
perts in EM. We asked them to form team of 2-3 students,
then asked each team to find two data-rich Web sites, ex-
tract and convert data from them into two relational tables,
then apply Magellan to match tuples across the tables [16].
We typically asked each team to do the EM scenario of su-
pervised learning followed by rules, and aim for precision of
at least 90% with recall as high as possible (a very common
scenario in practice).

We now describe in more details our experience with a
Fall 2015 class, which consisted of 44 students divided into
24 teams (see [30] for details). These teams extracted tables
in 12 domains (e.g., Vehicles, Movies, Restaurants, Music,
etc.). The tables have 7,313 tuples on average, with 5-17
attributes. On these tables, the best learning-based matcher
(after cross validation) achieved accuracy P = 56-100%, R
= 37.5-100%, F1 = 56-99.5%, suggesting that many of these
tables are not easy to match. Using Magellan, however, the
teams were able to significantly improve these accuracies,
achieving P = 91.3-100%, R = 64.7-100%, F1 = 78.6-100%.
All 24 teams achieved precision exceeding 90%, and 20 teams
also achieved recall exceeding 90%. (Four teams had recall
below 90% because their data were quite dirty, with many
missing values.) All teams reported being able to follow the
how-to guide. Together with qualitative feedback from the
teams, this suggests that users can follow Magellan’s how-
to guide to achieve high matching accuracy on diverse data
sets.

All teams used 1-5 blockers (e.g., attribute equivalence,
overlap, rule-based), for an average of 3. On average 3 dif-
ferent types of blockers were used per team. This suggests
that it is relatively easy to create a blocking pipeline with
diverse blocker types. All teams debugged their blockers,
in 1-10 iterations, for an average of 5. 18 out of 24 teams
used our debugger [34], and reported that it helped in four
ways: cleaning data, finding the correct blocker types and
attributes, tuning blocker parameters, and knowing when
to stop (see [30]). Teams reported spending 4-32 hours on
blocking (including reading documentations). Overall, 21
out of 24 teams were able to prune away more than 95% of
|A x B|, with an average reduction of 97.3%, suggesting that
they were able to construct blocking with high pruning rate.

Recall from Section 3.3 that after cross validation to se-
lect the best learning-based matcher X, user U iteratively
debugged X to improve its accuracy. Teams performed 1-5
debugging iterations, for an average of 3. They added and
deleted features, cleaned data based on the debugging result,
and tuned the parameters of the learning algorithm. These
actions helped improve accuracies from 56-100% to 73.3-
100% precision, and 37.5-100% to 61-100% recall. Adding
rules further improves accuracy: precision from 73.3-100%
t0 91.3-100% and recall from 61-100% to 64.7-100%.

4.2 Domain Sciences and Companies

So far Magellan has been applied to five projects in three
domain sciences at UW-Madison. First, a team of applied
economists used Magellan to match two tables of 1,832 and
1,916 grant descriptions, respectively [32]. Magellan achieved
significantly better accuracy, improving recall by 23% while
achieving comparable precision, compared to a rule-based
EM solution deployed at [32]. The same team also used
Magellan to match two tables of 1,851 and 13.5M organiza-
tion descriptions, respectively.

A team in biomedicine used Magellan to match two tables
of 453K and 451K of drug descriptions, achieving 99.1% pre-
cision and 95.2% recall [33, 37]. Another team in biomedicine
used Magellan to match attribute names within a commu-
nity data repository [9]. Finally, a team in environmental
sciences also used Magellan to match attribute names within
a community data repository. These last two examples show
how Magellan can also be used to match schema elements,
not just data instances.

Magellan has also been used for EM at several companies,
including WalmartLabs, Johnson Control, Marshfield Clinic,
and Recruit Holdings. At WalmartLabs, Magellan was able
to help improve the recall of a deployed EM solution by 34%
while reducing precision slightly by 0.65%. Johnson Control
has used Magellan to match addresses (between tables of size
90K vs. 231K) and vendors (within a single table of size
50K). Marshfield Clinic was involved in the drug matching
project described earlier [33, 37]. Recruit Holdings used
Magellan to match stores, companies, and properties (e.g.,
de-duplicating 10K store names with 98.9% accuracy) [1].

4.3 Discussion

Our experience with Magellan suggest that users can suc-
cessfully follow the how-to guide to achieve high EM accu-
racy on diverse data sets. In fact, we consider the how-to
guide to be the single most important component of the
system. Without it, users are lost: they do not even know
where to start, when to use what tools, and how.

Our experience further suggests that the various tools de-

veloped for Magellan (e.g., debuggers) can be highly effective
in helping the users. It also clearly shows that practical EM
requires a wide range of capabilities, e.g., cleaning, extrac-
tion, visualization, underscoring the importance of placing
Magellan in an ecosystem that provides such capabilities.
(In fact, Magellan currently uses 11 packages in the Python
ecosystem to provide such capabilities.)

At the same time, our experience also raises many inter-
esting challenges. First, it turns out that at the start of
an EM project, users often do not know what it means to
match, i.e., there are often many alternative match defini-
tions, and users often are not even aware of these, let alone
selecting the right one [19, 32]. This can significantly com-
plicate the EM process. Thus, it is highly desirable to have
a step in the how-to guide (together with some tools) to
help users explore and finalize the match definition. Sec-
ond, some users want to play around with multiple match
definitions, just to see how sensitive to these definitions the
inferences based on the matches are. Third, a portion of the
data may turn out to be so dirty for EM that it should be
removed before continuing with the EM process, but how
can we detect such portions? Fourth, an EM team is of-
ten geographically distributed. How can they use Magellan
in such settings. Finally, Magellan is an “open-world sys-
tem”, in that it relies on many other packages in the Python
ecosystem in order to provide the fullest amount of support
to the user doing EM. It turns out that building open-world
systems raises non-trivial challenges, such as designing the
right data structures and managing metadata [30]. There
are many other challenges (e.g., how to debug and serve
learning models, how to visualize the matches, etc.). In re-
cent papers we have tried to summarize some of these case
studies, lessons learned, and challenges [32, 19, 29, 27, 35].
We have also started to address some of these challenges [34,
35, 36, 19]. But much more remains to be done.

5. RELATED WORK

Numerous EM algorithms have been proposed [13, 22].
But far fewer EM systems have been developed. We dis-
cussed these systems in Section 2 (see also [13]). For match-
ing using supervised learning (Section 3.3), some of these
systems provide only a set of matchers. None provides sup-
port for sampling, labeling, selecting and debugging blockers
and matchers, as Magellan does.

Some recent works have discussed desirable properties for
EM systems, e.g., being extensible and easy-to-deploy [15],
being flexible and open source [12], and the ability to con-
struct complex EM workflow consisting of distinct phases,
each requiring a specific technique depending on the given
application and data requirements [23]. The IBM Midas
project has also proposed a language for helping users tackle
the different stages of the EM pipeline [28, 38]. These works
however do not discuss covering the entire EM pipeline, how-
to guides, building on top of data analysis and Big Data
stacks, and open-world systems, as we do in this paper.

Several works have addressed scaling up blocking, learning
blockers, and using crowdsourcing for blocking (see [14] for
a survey). As far as we know, there has been no work on
debugging blocking, as we do in Magellan (see [34]).

On sampling and labeling, several works have studied ac-
tive sampling [39, 6, 8]. These methods however are not
directly applicable in our context, where we need a repre-
sentative sample in order to estimate the matching accuracy

(see Step 6 in Figure 3). For this purpose our work is closest
to [26], which uses crowdsourcing to sample and label.

Debugging learning models has received relatively little
attention, even though it is critical in practice, as this paper
has demonstrated. Prior works help users build, inspect and
visualize specific ML models (e.g., decision trees [5], Naive
Bayes [7], SVM [11], ensemble model [40]). But they do not
allow users to examine errors and inspect raw data. In this
aspect, the work closest to ours is [4], which addresses iter-
ative building and debugging of supervised learning models.
The system proposed in [4] can potentially be implemented
as a Magellan’s tool for debugging learning-based matchers.

Finally, the notion of “open world” has been discussed in
[24], but in the context of crowd workers’ manipulating data
inside an RDBMS. Here we discuss a related but different
notion of open-world systems that often interact with and
manipulate each other’s data. In this vein, the work [10] is
related in that it discusses the API design of the scikit-learn
package and its design choices to seamlessly tie in with other
packages in Python.

6. CONCLUSIONS & ONGOING WORK

We have argued that significantly more attention should
be paid to building EM systems. We described Magellan,
a new kind of EM systems, which is novel in several im-
portant aspects: how-to guides, tools to support the entire
EM pipeline, tight integration with the PyData ecosystem,
open world vs. closed world systems, and easy access to an
interactive script environment.

We are conducting more real-world evaluation of Mag-
ellan, further examining the research challenges raised in
this paper, and extending Magellan with more capabilities
(e.g., crowdsourcing). Building on Magellan, we have also
been working on two other projects. CloudMatcher is a
cloud/crowd EM service for lay users [27, 17, 26]. The how-
to guide of Magellan helps us determine which capabilities
to add to CloudMatcher, to make it useful in performing
EM end to end [27]. BigGorilla is a joint effort led by UW-
Madison and Recruit Institute of Technology to encourage a
community around an open-source ecosystem of data prepa-
ration and integration tools [41]. Currently, BigGorilla cu-
rates tools for schema matching, information extraction, and
entity matching (including Magellan), among others.

Acknowledgment: We thank the SIGMOD Record’s associate edi-
tors for shepherding this paper. This work is generously supported by
WalmartLabs, Google, Johnson Control, American Family Insurance,
UW-Madison UW2020 grant, NIH BD2K grant U54 AI117924, and
NSF Medium grant IIS-1564282.

7 REFERENCES

[1] BigGorilla: An Open-source Data Integration and Data
Preparation Ecosystem: https://recruit-holdings.com/news_
data/release/2017/0630_7890.html.

[2] CS 838: Data Science: Principles, Algorithms, and Applications
https://sites.google.com/site/anhaidgroup/courses/
cs-838-spring-2017/project-description/stage-3.

[3] Magellan home page
https://sites.google.com/site/anhaidgroup/projects/magellan.

[4] S. Amershi et al. Modeltracker: Redesigning performance
analysis tools for machine learning. CHI, 2015.

[5] M. Ankerst et al. Visual classification: An interactive approach
to decision tree construction. KDD, 1999.

[6] A. Arasu, M. Gotz, and R. Kaushik. On active learning of
record matching packages. SIGMOD, 2010.

[7] B. Becker, R. Kohavi, and D. Sommerfield. Visualizing the
simple Bayesian classifier. In Information Visualization in

8]
19l

(10]

(11]

(12]

(13]
(14]

(15]
(16]
(17]

(18]
(19]

(20]

[21]

(22]

(23]

[24]
[25]
[26]
[27]
[28]
[29]

(30]

(31]

(32]

(33]
(34]
(35]
(36]

(37]

(38]
[39]
[40]

[41]

Data Mining and Knowledge Discovery, 2002.

K. Bellare, S. Iyengar, A. G. Parameswaran, and V. Rastogi.
Active sampling for entity matching. KDD, 2012.

M. Bernstein et al. MetaSRA: normalized human
sample-specific metadata for the sequence read archive.
Bioinformatics, 33(18):2914-2923, 2017.

L. Buitinck et al. API design for machine learning software:
experiences from the scikit-learn project. arXiv preprint
arXiv:1309.0238, 2013.

D. Caragea, D. Cook, and V. Honavar. Gaining insights into
support vector machine pattern classifiers using
projection-based tour methods. KDD, 2001.

P. Christen. Febrl: A freely available record linkage system
with a graphical user interface. HDKM, 2008.

P. Christen. Data Matching. Springer, 2012.

P. Christen. A survey of indexing techniques for scalable record
linkage and deduplication. TKDE, 24(9):1537-1555, 2012.

M. Dallachiesa et al. Nadeef: A commodity data cleaning
system. SIGMOD, 2013.

S. Das et al. The Magellan data repository.
https://sites.google.com/site/anhaidgroup/projects/data.

S. Das et al. Falcon: Scaling up hands-off crowdsourced entity
matching to build cloud services. In SIGMOD, 2017.

A. Doan. What is our agenda for data science? In CIDR, 2017.
A. Doan et al. Human-in-the-loop challenges for entity
matching: A midterm report. In HILDA, 2017.

A. Doan et al. Toward a system building agenda for data
integration and cleaning. In IEEE Data Engineering Bulletin,
Special Issue on Data Integration (to appear), 2018.

M. Ebraheem et al. DeepER—-deep entity resolution. arXiv
preprint arXiv:1710.00597, 2017.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE TKDE,
19(1):1-16, 2007.

M. Fortini et al. Towards an open source toolkit for building
record linkage workflows. In In SIGMOD Workshop on
Information Quality in Information Systems, 2006.

M. J. Franklin et al. CrowdDB: answering queries with
crowdsourcing. SIGMOD, 2011.

C. Ge et al. Private exploration primitives for data cleaning.
arXiv preprint arXiv:1712.10266, 2017.

C. Gokhale et al. Corleone: Hands-off crowdsourcing for entity
matching. SIGMOD, 2014.

Y. Govind et al. Cloudmatcher: A cloud/crowd service for
entity matching. In BIGDAS, 2017.

M. A. Hernéndez et al. HIL: a high-level scripting language for
entity integration. In EDBT, 2013.

P. Konda et al. Magellan: Toward building entity matching
management systems. PVLDB, 9(12):1197-1208, 2016.

P. Konda et al. Magellan: Toward building entity matching
management systems. 2016. Technical Report,
http://www.cs.wisc.edu/ anhai/papers/magellan-tr.pdf.

P. Konda et al. Magellan: Toward building entity matching
management systems over data science stacks. PVLDB,
9(13):1581-1584, 2016.

P. Konda et al. Performing entity matching end to end: A case
study. 2016. Technical Report,

http://www.cs.wisc.edu/ anhai/papers/umetrics-tr.pdf.

E. LaRose et al. Entity matching using Magellan: Mapping
drug reference tables. In AIMA Joint Summit, 2017.

H. Li et al. Matchcatcher: A debugger for blocking in entity
matching. In EDBT, 2018.

S. Mudgal et al. Deep learning for entity matching: A design
space exploration. In SIGMOD, 2018.

F. Panahi et al. Towards interactive debugging of rule-based
entity matching. In EDBT, 2017.

P. Pessig. Entity matching using Magellan - Matching drug
reference tables. In CPCP Retreat 2017. http://cpcp.wisc.edu/
resources/cpcp-2017-retreat-entity-matching.

K. Qian et al. Active learning for large-scale entity resolution.
In CIKM, 2017.

S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. KDD, 2002.

J. Talbot et al. Ensemblematrix: Interactive visualization to
support machine learning with multiple classifiers. CHI, 2009.
W.-C. Tan et al. Big gorilla: an open-source ecosystem for data
preparation and integration. In IEEE Data Engineering
Bulletin, Special Issue on Data Integration (to appear), 2018.

