Human-in-the-Loop Challenges for Entity Matching:
A Midterm Report

AnHai Doan, Adel Ardalan, Jeffrey Ballard, Sanjib Das, Yash Govind, Pradap Konda
Han Li, Sidharth Mudgal, Erik Paulson, Paul Suganthan G.C., Haojun Zhang

University of Wisconsin-Madison

ABSTRACT

Entity matching (EM) has been a long-standing challenge
in data management. In the past few years we have started
two major projects on EM (Magellan and Corleone/Falcon).
These projects have raised many human-in-the-loop (HIL)
challenges. In this paper we discuss these challenges. In
particular, we show how these challenges forced us to re-
vise our solution architecture, from a typical RDBMS-style
architecture to a very human-centric one, in which human
users are first-class objects driving the EM process, using
tools at pain-point places. We discuss how such solution ar-
chitectures can be viewed as combining “tools in the loop”
with “human in the loop”. Finally, we discuss lessons learned
which can potentially be applied to other problem settings.
We also hope that more researchers will investigate EM, as
it can be a rich “playground” for HIL research.

1. INTRODUCTION

Entity matching (EM) finds data instances that refer to
the same real-world entity, such as tuples a1 and b; in Fig-
ure 1. This problem has been an important challenge in data
management [4, 6], and will become even more so in the age
of Big Data and data science.

In the past few years, we have started two major projects
on EM. The first project, Magellan, seeks to build an EM
management system that helps users with all aspects of the
EM process [14]. The second project, Corleone/Falcon, seeks
to build a cloud-based EM service that crowdsources the en-
tire EM process, requiring no developer in the loop [8, 5].
These projects have produced software that has been used
extensively in data science classes and at several organiza-
tions, e.g., Marshfield Clinic [16], Johnson Controls, Recruit
Holdings, WalmartLabs, a non-profit organization, and in
several projects in social sciences at UW-Madison.

These projects have raised many human-in-the-loop (HIL)

challenges (in addition to many algorithmic and system ones).

Many of these challenges are interesting, difficult, and have
significantly changed our perceptions of what HIL means
and how it should be addressed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HILDA’17, May 14, 2017, Chicago, IL, USA

© 2017 ACM. ISBN 978-1-4503-5029-7/17/05. .. $15.00

DOL: http://dx.doi.org/10.1145/3077257.3077268

Table A Table B
Name City State Name City State Matches
a;| Dave Smith | Madison WI b,| David D. Smith Madison WI (a, b))

o

a,[Joe Wilson San Jose CA 2| Daniel W. Smith | Middleton | WI (a3 b,)

a,| Dan Smith | Middleton | WI

Figure 1: An example of matching two tables.

The papers [14, 8, 5] describe the above projects in detail,
but focus on the motivations and the algorithmic/system
challenges. In this paper, we discuss the HIL challenges.
We begin with the Magellan project. We show how HIL chal-
lenges forced us to keep revising our solution architecture,
from a typical RDBMS-style one (Figure 2) to a very human-
centric one (Figure 6), in which human users are first-class
objects driving the EM process, using tools at pain-point
places. We discuss how such solution architectures can be
viewed as combining “tools in the loop” with “human in the
loop”. We also discuss other surprising findings. For exam-
ple, certain tasks that we thought trivial, such as labeling
a data set and sampling, turn out to be quite difficult. As
another example, it turns out that in many cases, at the
start of the EM process, the user knows little about the
problem (e.g., what it means to be a match), the data, and
the tools’ capabilities. This significantly complicates the so-
lution architecture and changes our thinking about how to
“shepherd” the user through the EM process.

Next, we discuss HIL challenges in the Corleone/Falcon
project. These include the need to solve collaborative EM,
to enable effective communications among the participants
(to share knowledge about the problem/data/tools), and to
develop more expressive Uls.

Finally, we discuss lessons learned regarding HIL chal-
lenges, which can potentially be applied to other problem
settings. We also hope that the challenges described here
will encourage more researchers to investigate EM, as it can
be a rich “playground” for HIL research.

2. OUR EXPERIENCE

We now discuss HIL challenges raised by our recent EM
projects. We focus on Magellan [14], which has raised most
of such challenges. But we will also briefly discuss HIL chal-
lenges in the Corleone/Falcon project.

2.1 HIL Challenges in the Magellan Project

We started Magellan in 2015 to study data integration
(DI). In contrast to most existing DI works, which develop
DI algorithms, we decided to study how to develop DI sys-
tems, as we believe such systems are necessary for signifi-

]
GUI frontend Actions rl' Lay user
|

System backend l
EM operators —> EM plan

Tables _|
A, B

Figure 2: The RDBMS-style system architecture
initially adopted by the Magellan project.

Executor

cantly advancing the field. Several efforts to develop DI sys-
tems already exist (e.g., [22]), but focus on supporting DI
pipelines of multiple tasks (e.g., schema matching, schema
integration, EM, etc.). We decided to focus on just one
task, EM, so that we can study it as deeply as possible.
Within EM, we further limited our attention to the scenario
of matching two tables A and B, as illustrated in Figure 1.

Building an Initial EM System: At the start, we
worked with WalmartLabs to build an EM system for their
analysts. The analysts wanted to use the system to quickly
create and execute EM workflows. They prefer to do so us-
ing a GUI, because many of them are lay users with little
CS knowledge. We started out building this EM system in
an RDBMS fashion, in a way that is very similar to many
existing prototype EM systems (e.g., see those listed in [14]).

Figure 2 shows the system architecture. To explain, note
that when matching two tables, users often execute a block-
ing step followed by a matching step. In the blocking step,
the user employs heuristics to quickly remove obviously non-
matched tuple pairs (e.g., persons residing in different states,
see Figure 1). In the matching step, the user applies a
matcher to the remaining pairs to predict matches [14].

As a result, we consider EM workflows consisting of the
above two steps, and define actions that the user can per-
form on the GUI to create such a workflow (e.g., selecting
a built-in blocker, writing a rule-based blocker, selecting a
built-in matcher, etc.). In the system backend, such actions
are translated into an EM plan composed of operators (e.g.,
to execute a rule-based blocker, such a plan executes an op-
erator that converts tuple pairs into feature vectors, then
another operator that applies the blocking rules to these
feature vectors, etc.). The EM plan is then optimized and
executed, to produce the matches (see Figure 2).

Limitations: We soon realized two major problems with
this system architecture. First, users rarely create an EM
workflow in “one shot”. Instead, they often want to explore,
debug, try “what-if” scenarios, then modify the workflow, in
an iterative fashion. Just figuring out how to support these
actions at the “operational” level (e.g., what does it even
mean to support a power user in debugging?) is already
quite difficult. Trying to figure out how to support them at
the GUI level for lay users adds another level of complexity.

The second problem is that our current EM system archi-
tecture (Figure 2) is not adequate. In this architecture, we
assume user actions on the GUI will be translated into an
underlying EM plan, which is optimized and executed. But
many actions, such as exploration, debugging, trying “what-
if” scenarios, do not fit this assumption, i.e., they can not be
modeled as a part of an EM plan. Exploration for instance
is to help the user understand the data better; it cannot be
modeled as an operator in an EM plan.

To address these, we made the following two decisions,

°
M Power user

Development
stage | Tables _, CLI —» EM workflow
J AB commands
7] EM workflow (procedural)
v
. A,B 7y
Production

stage Optimizer

+
EM plans «<— EM operators

+
EM workflow (declarative)

Figure 3: The revised system architecture consisting
of a development stage and a production stage.

which led to the revised system architecture in Figure 3.

(a) Distinguish the Development € Production Stages: We
assume the user will work in two stages: development and
production (Figure 3). In the development stage the user
develops a good EM workflow, i.e., one with high match-
ing accuracy. This is typically done using data samples.
The user can perform whichever actions he/she deems use-
ful (e.g., exploration, debugging, cleaning, etc.), in order to
obtain a good EM workflow. These actions are shown as
CLI (i.e., command-line interface) commands in Figure 3.

In the production stage the user applies the EM work-
flow to the entirety of data, i.e., Tables A and B, to find
matches. Since this data is often large, a major concern is
scaling. Other concerns include quality monitoring, logging,
crash recovery, etc. The default is that the EM workflow will
be encoded procedurally. Alternatively, as shown in the red
box in Figure 3, the user may specify this workflow declara-
tively. The system translates it into an EM plan composed
of operators, then optimizes and executes the plan.

While this looks obvious in retrospect, we note that the
vast majority of work on DI systems do not distinguish these
two stages, even though they are very different by nature and
require different solutions. (In fact, sometimes it is not even
clear which stage a particular work is targeting.) Further,
most works have addressed only the production stage. Very
few works (e.g., Potter Wheel, Trifacta [20, 11]) address the
development stage. Addressing this stage however is critical,
because the user must start in this stage to come up with an
EM workflow, before he/she can execute it. As a result, in
this paper, we will focus on the development stage (but note
that there are also many HIL challenges in the production
stage).

(b) Start with Power Users in Command-Line Settings: Wal-
martLabs wanted an EM system for lay users. But as dis-
cussed earlier, we do not yet even know how to build such
a system for power users: those who may not be DI experts
but know how to program (e.g., data scientists). For exam-
ple, we do not yet know how best to support exploration,
debugging, etc.

As a result, we decided to start by building a system for
power users, in a command-line (CLI) setting. This frees
us from the distractions of having to deal with various lim-
itations (e.g., the limited set of actions a lay user can do,
the limitation of a GUI), to allow us to focus completely on
figuring out how to support actions such as debugging at
the “operational” level. As we gain a better understanding
of what it means to help power users, we will build on that
to consider more complex settings, such as lay users on a

EM requirements

-to (M Powel -
How-to 'l" ower (accuracy, runtime, etc.)

guide user

I}
[|
Development l
stage Tables 4" Step 1 ‘4" Step 2 ‘4' '—’| Step n |4' F](Mﬂ
Pain polnt worktiow

Peel |

Figure 4: A revised version of the development stage
of the EM system architecture in Figure 3.

GUI, collaboration, crowdsourcing, etc. This is analogous
to developing assembly languages, then building on them to
develop higher-level CS languages.

Using the revised system architecture in Figure 3, the
Magellan project was able to move along at a faster pace.
But it raised many new interesting HIL challenges (which in
turn helped us refine the above architecture).

Need a Step-by-Step & End-to-End How-To Guide:
One of the early HIL challenges we ran into is how to best
help a user reach a matching goal. For example, what if a
user wants to match two tables with 90% precision and 80%
recall? Such EM scenarios are very common, and yet, sur-
prisingly, there is no guidance today on what a user should
do. How should he/she start? Should the user consider
a learning-based EM approach first? Or rule-based? Or
a combination of both? What happens if after extensive
efforts with learning/rule-based approaches, the user still
cannot reach the desired accuracy?

To address this problem, we propose to develop a detailed
how-to guide, which tells the user how to perform EM, step
by step, end to end (e.g., telling him/her how to go from the
two input tables to matches satisfying the required accu-
racy). Note that such a guide does not assume the existence
of any tool yet. It should be such that if the user is a power
user and is willing to program, the user can easily follow the
guide to perform EM end to end.

Develop Tools for “Pain Points” in the Guide: Given
a how-to guide, we should carefully examine it to find “pain
points”; i.e., steps that are mundane, repetitive, or consume
a lot of user time. Examples include sampling smaller ta-
bles from Tables A and B, profiling the tables, debugging
a blocker, etc. We should develop (algorithms captured as)
tools for these pain points. Some tools can be completely
automatic (e.g., sampling), while others (e.g., debugging)
are likely to engage humans.

Combine Tools in the Loop with Human in the Loop:
The above decisions led to a revised architecture for the
development stage as shown in Figure 4 (recall that we only
focus on the development stage for now). In this revision,
a how-to guide tells a power user U how to create an EM
workflow that satisfies the EM requirements (e.g., regarding
accuracy, runtime, etc.). The guide specifies a step-by-step
procedure for the user to execute (e.g., Steps 1-n in Figure
4). The user executes “pain point” steps (e.g., Step 2) using
tools, and the rest of the steps (e.g., Step 1, Step n, etc.) by
hand. Thus, these tools can be viewed as “tools in a loop
driven by a human user”. Some tools engage user U, in an
iterative fashion (e.g., Step 2). Thus, user U can be viewed
as “a human in a loop driven by a tool”.

As described, the above revised EM architecture combines
“tools in the loop” with “human in the loop”. Both kinds
of loop are necessary. The outer loop (driven by the user

no

§ \ blolcker

down — ::
sample ./

blocker—c

/

_, quality yes
check

F

cross-validate

matcher U
0.89F,

el
G
+

blocker - p
Y 0.93F,

J L

Select the best blocker: X, Y

W ®

cross-validate)
matcher V > /

Select the best matcher: U, V

Figure 5: The main steps of a sample how-to guide
for EM using supervised learning.

using a how-to guide) is needed because we cannot (yet)
fully automate the end-to-end EM process. The inner loops
(where tools engage the user) are needed because tools often
need input from the user to maximize its accuracy, among
others.

Develop a How-To Guide for a Concrete Scenario:
After revising the development stage, as described above, we
tried to “instantiate” it for the common EM scenario where
the user wants to use supervised learning to match. We
began by sketching out the main steps of the how-to guide.
To do so, we observed how real users perform EM, observed
how students in our classes did EM (e.g., what issues they
struggled with), and did EM ourselves.

Figure 5 shows these steps. Suppose user U wants to
match two tables A and B, each having 1 million tuples.
Trying to find an accurate workflow using these two tables
would be too time consuming, because they are too big.
Hence, U will first “down sample” the two tables to obtain
two smaller tables A" and B’, each having 100K tuples, say
(see the figure).

Next, suppose the EM system provides two blockers X
and Y. Then U experiments with these blockers (e.g., exe-
cuting both on Tables A’ and B’ and examining their out-
put) to select the blocker judged the best (according to some
criterion). Suppose U selects blocker X. Then next, U ex-
ecutes X on Tables A’ and B’ to obtain a set of candidate
tuple pairs C.

Next, U takes a sample S from C, and labels the pairs
in S as “match”/“no-match” (see the figure). Let the la-
beled set be G, and suppose the EM system provides two
learning-based matchers U and V' (e.g., decision trees, logis-
tic regression). Then U uses the labeled set G to perform
cross validation for U and V. Suppose V produces higher
matching accuracy (such as Fy score of 0.93, see the figure).
Then U selects V' as the matcher, and applies V' to the set
C to predict “match”/“no-match”, shown as “+” or “-” in the
figure. Finally, U may perform quality check (by examining
a sample of the predictions), then go back and debug and
modify the previous steps as appropriate. This continues
until U is satisfied with the accuracy of the EM workflow.

The above how-to guide is relatively straightforward, but
does not provide enough details for the user. So next we
tried to refine this guide and develop tools for the pain
points. Surprisingly, these have turned out to be quite diffi-
cult, as we elaborate below.

Need Tools for Debugging and Explaining: We will
first discuss the challenges in developing tools, then build

on those to discuss refining the how-to guide. As expected,
when a user follows the above how-to guide, a major pain
point is debugging, e.g., debugging blockers and matchers,
debugging the labels, etc. These steps are difficult and te-
dious, and users badly need debugging tools. We have devel-
oped a tool to debug blockers and a tool to debug the labeled
tuple pairs, and are developing tools to debug matchers. For
example, suppose that the user has created a blocker @, and
that when applied to Tables A" and B’, Q produces the set
of tuple pairs C. Then D = A’ x B’ \ C is the set of all
tuple pairs “killed off” by (. Our debugging tool finds true
matches in D, so that the user can inspect these matches to
understand whether @ kills off too many matches and how
to modify @ to prevent that. To find matches in D, the tool
uses multiple inexpensive “detectors” to quickly find candi-
date matches in D, then uses a more expensive “evaluator”
(which performs active learning with the user in the loop)
to evaluate this set of candidates, to find true matches. The
tool then explains to the user why these matches are killed
off by blocker @, so that the user can improve Q.

As another example, we have recently developed a deep
learning-based matcher for EM. While highly accurate in
certain cases, this matcher has turned out to be very difficult
to debug and explain, as expected. Yet, we cannot use it
effectively until we have such tools (e.g., so that we can
tune it to trade off between precision and recall).

Overall, we have found that (a) developing tools for de-
bugging and explaining is critical, (b) virtually all such tools
need “human in the loop”, and (c) how to engage such hu-
mans effectively is still a difficult challenge.

Even Simple Steps Turned Out to Be Difficult: We
found that several steps (in the how-to guide) thought triv-
ial turned out to be anything but. Consider for example
the step of labeling the tuple pairs in set S (see Figure 5).
Suppose these tuples describe restaurants. A user U may
start out labeling only tuple pairs describing restaurants at
the same location as “match”, e.g., (Saigon Noodle, 321 Main
St, Madison, WI) and (SG Noodle, 321 Main, Madison, WI).
Suppose while labeling the first few hundred pairs, user U
saw many restaurants that are at different locations, but of
the same chain, e.g., (Chipotle, 426 Farewell, Madison, WT)
and (Chipotle, 34 Main St, Madison, WI). U discussed this
with the business owner, who decided that such restaurants
should also match. The problem however is that up until
then U had labeled all such restaurants as “no-match”. So
now U would need to re-examine all tuple pairs that had
been labeled, to find and fix such cases, a tedious process.
This problem becomes much worse if two users label the set
S, each labeling one half, say. Both users start with the same
match definition, but may revise them differently during the
labeling process, and the inconsistency is detected only at
the end, when they try to merge the two labeled halves.
Fundamentally, this problem arises because trying to de-
fine a priori what should be a match turns out to be quite
difficult in many cases. Often users start with an initial
match definition, then revise it along the way, as they un-
derstand the problem and the data better (see more below).
As another example, the step of taking a sample S (so that
the user can label it) also turned out to be difficult. Recall
that C is the set of all tuple pairs surviving the blocker
(see Figure 5). If C is large, the fraction of C' that is true
matches may be small. As a result, if we take S to be a

random sample from C, S may contain very few matches,
rendering learning on S ineffective. To address this problem,
we are currently exploring a solution that requires user U to
repeatedly sample, label, then perform additional blocking
if necessary, along the line of the solution in [§].

Understanding Problem/Data/Tools Is a Process:
We found that very often at the start, the user has very little
knowledge about the problem, the data, and the capabilities
of the tools, and that he/she gradually gains more knowledge
about these during the EM process, by going through mul-
tiple iterations. This finding is somewhat surprising. For
example, the vast majority of EM work implicitly assume
that the user knows the match definition. Our experience
suggests that this is often not the case (as we discussed ear-
lier). That is, the user often thinks that he/she knows the
match definition. But as the user works more with the data,
he/she uncovers cases that force him/her to rethink and re-
vise the match definition.

As another example, the user often starts with very little
knowledge about the data in Tables A and B. Then during
the EM process he/she gradually learns more about whether
the data is dirty, how pervasive are missing values, are there
any regions of the data that are simply incorrect, etc. This in
turn helps him/her revise the EM workflow. As yet another
example, the user often starts with no idea on whether a
particular tool will work well on a particular dataset. Only
after experimenting in multiple iterations that he/she gain
a much better understanding, which may lead the user to
make decisions such as replacing the tool, or augmenting it
with some other tools, etc.

Must Output Knowledge about Problem/Data/Tools:
As discussed earlier, at the start of the development stage,
the user often knows very little about the problem definition,
the data profile, and the tools’ capabilities. He/she often
gains far more knowledge about these along the way. We
found that at the end of the development process, it is often
highly desirable for the user to output not just a good EM
workflow, but also knowledge about the problem/data/tools.

For example, besides a good EM workflow, the user U can
produce a report listing possible match definitions, the se-
lected definition, and the reasons for selecting it. U can pro-
duce another report listing various problems with the data,
how they can affect EM, actions that should be avoided,
as well as actions that can be taken to fix the problems.
For example, this document can say that there are many
missing and dirty values in column “state”, hence do not do
blocking using “state” (e.g., drop all tuple pairs whose tu-
ples disagree on “state”). Finally, the user can produce a
report discussing the capabilities of the tools on the current
tables and actions taken based on those (e.g., learning-based
matchers do not appear to work well here for such and such
reasons, and hence rule-based matching is added, to reach
the desired EM accuracy).

Having such reports is tremendously useful because, as
mentioned multiple times, EM is often an iterative rather
than “one-shot” process. Even after an EM workflow has
been pushed into production, problems often occur, which
necessitates working in the development stage again to re-
pair/fine tune the EM workflow. Having access to such re-
ports makes this process much easier (especially in the case
the user has moved on and a new data scientist is now de-
bugging the EM process).

- Proble;n Ve Data\\ /" Tool
()

;\‘\jeﬂnj(iory \\proﬂle// \\pmﬁle//‘

N

How-to (g Power

EM requirements
(accuracy, runtime, etc.)

Development d user
stage ~ suide I\ l
[)
Tables . . | ’ | *‘/ EM
A B | Step 1 | [Step 2 | —»| Stepn ‘tworkﬂow/,‘
Pain point N

Y
J 15

Figure 6: A revised version of the development stage
of the EM system architecture in Figure 4.

A Revised Development Stage: The above findings led
to the revised development stage in Figure 6. Here, the goal
is not just to output a good EM workflow, but also to gain
as much knowledge as possible about the problem definition,
data profile, and tool profile, and output those as well (the
red circles in the figure indicate the outputs). Of course, the
knowledge about problem/data/tools is also used along the
way to help find a good EM workflow.

We are currently working on realizing this architecture.
It turns out to be quite difficult, because we have to revise
the how-to guide and it is still unclear how to do that. For
example, presumably at the start of the development stage,
the user should be able to explore alternative matching def-
initions, and select one, as quickly as possible, because hav-
ing the precise matching definition helps subsequent steps.
However, it still remains unclear how best to help the user
explore alternative matching definitions. This raises both
HIL and algorithmic challenges.

2.2 HIL Challenges in Corleone/Falcon

We now discuss HIL challenges in the Corleone/Falcon
project. For space reasons we can only briefly discuss these
challenges, deferring more details to a later paper.

Our three most important HIL findings in this project are
as follows. First, we found that in many EM settings there
is actually a team of people wanting to work on the prob-
lem. So how to collaboratively solve an EM problem (e.g.,
collaboratively label a data set, debug, clean the data, etc.)
is important, and yet this has received very little attention
in the EM literature. Note that collaborative EM is differ-
ent from crowdsourced EM. In the former the team may be
small but each team member is assumed to be quite capable
of many (complex) actions. In the latter, each crowd worker
is assumed to do only a few restricted actions, e.g., labeling
a tuple pair.

Second, if multiple persons work on an EM problem, we do
not yet know how to coordinate so that they can efficiently
communicate their findings about the problem/data/tools,
and can converge at the end (e.g., to a single match defini-
tion). This problem arises in the crowdsourced EM context
as well. A user may start with an initial match definition.
Crowd workers may be confused and want clarification, etc.
Currently there is also no good way to facilitate such com-
munications between the user and crowd workers.

Finally, the feedback we have received from many users is
that the current Uls are too limited. More expressive Uls
are highly desirable. For example, when we perform crowd-
sourced EM with in-house experts, they are still limited to
just labeling tuple pairs (as the vast majority of current
crowdsourced EM works also do). They find this frustrat-
ing. For example, if they see dirty tuples, they may want

to clean those on the flight, but today they cannot. As an-
other example, some indicated that an Ul that shows them
a cluster of tuples (that are supposed to match) may help
them “label” data faster than showing one tuple pair at a
time. Thus, an interesting HIL challenge is to explore bet-
ter Uls for in-house experts. Another challenge is to exam-
ine whether the current UI (of labeling tuple pairs) is also
too limited for crowd workers. Perhaps more expressive Uls
would make crowd workers more efficient as well.

3. LESSONS LEARNED

The main lessons we have learned so far are as follows.
First, we believe it is important to focus on a core problem
(e.g., EM, schema matching, information extraction, manag-
ing missing values), so that we can examine it in depth. As
we gain more knowledge about solving each individual prob-
lem, we can build on that to solve these problems jointly.

Second, it may be a good idea to focus on power users.
Again, as we gain more knowledge about how to solve the
problem for power users, we can build on that to solve the
problem for lay users, collaborative settings, crowdsourcing
settings, etc. As our current EM work suggests, we still
have very limited understanding of how to effectively solve
a single core problem (such as EM), even for power users.

Third, we may want to broaden our focus beyond develop-
ing algorithms, to developing systems as well. We believe the
system “angle” will help us “unearth” problems, evaluate al-
gorithms, make practical impacts, and significantly advance
the field. We certainly have learned a tremendous amount
from our attempts to build EM systems and use them in our
classes and at companies. These attempts have completely
changed our perspectives and thinking about EM and HIL.

Fourth, we cannot build such systems by “stringing to-
gether” a set of algorithms (e.g., several blockers, several
matchers). We really need to change the perspective and
think from a human user point of view. That is, we need to
design the system such that it supports all the things that
a human user may need to do, to solve the problem. To
do so, we need to examine the end-to-end process of how a
human user may solve the problem, distinguish the develop-
ment and production stages, and design a how-to guide for
the user. As our work has shown, designing effective how-to
guides poses serious challenges.

Fifth, given the how-to guide, we can then identify pain
points and build tools to address those. This may really
change what we are doing today. For example, designing
yet another EM algorithm that improves EM accuracy by
a few percentage Fi may not address the true pain points,
but developing tools to help the labeling process may.

There is some evidence to suggest that this “how-to guide
and tools for pain points” approach is effective. Open-source
DI tools such as those in the Python/R ecosystems have been
widely used. This is due partly to the fact that many of such
tools are developed to address some pain points encountered
by the tools’ creator; a future user is likely to encounter the
same pain points, and thus is likely to find such tools useful.

Sixth, developing tools for pain points likely requires en-
gaging the human user, in an iterative fashion. This gives
rise to a solution architecture that combines “tools in the
loop” (of executing the how-to guide) with “human in the
loop” (of the tools), as shown in Figure 6. We suspect that
this architecture can be useful for many other problem set-
tings, not just for EM.

Seventh, there is strong evidence (in our work and else-
where) that at the start, the user often knows very little
about the problem definition/data/tool capabilities, that the
user tries to gain more knowledge about these along the way,
and that it is highly desirable to output this knowledge too
(e.g., in form of reports). This again complicates the solu-
tion architecture (e.g., see Figure 6), but we believe makes
it far more practical. How to help the user gain such knowl-
edge effectively is still very much an open question, and is a
major HIL challenge.

It is worth noting that a solution architecture such as
shown in Figure 6 is very heavily human-centric, with hu-
mans being first-class objects driving the entire EM pro-
cess, using tools at pain-point places. It is strikingly differ-
ent from the familiar algorithm-centric architecture of an
RDBMS (where human users are relegated to peripheral
roles). We believe however that such human-centric solution
architectures are necessary to solve “messy” DI problems.

Finally, our work suggests that considering collaborative
settings and more expressive Uls is important. It also sug-
gests that in such settings (as well as in crowdsourcing) the
problem of effective communications among the participants
to share knowledge about the problem/data/tools and to
converge (e.g., to a problem definition) remains a major HIL
challenge.

4. RELATED WORK

EM has received much attention [4, 6]. Early EM work
develops automatic solutions. Subsequent work increasingly
engages humans. The work Ajax [7] allows users to declara-
tively specify a cleaning program (involving EM) and han-
dle runtime exceptions. Other works (e.g., [21, 2]) engage
users to perform active learning for EM. A recent growing
body of work applies crowdsourcing to EM [23, 24, 3, 18,
17, 19] or studies crowdsourcing [12]. Recent RDBMS-style
data cleaning works that involve EM include BigDansing and
Wisteria [13, 9].

Our work significantly differs from these works in that we
seek to build an EM management system that helps the user
with all aspects of the EM process. This raises many HIL
challenges not discussed in prior work (see Section 2). Ex-
amples include debugging blockers/matchers, how-to guides,
tools for pain points, and the need for helping the user gain
knowledge about the problem/data/tools. In particular, the
solution architecture (for the development stage) in Figure
6 with its heavy human-centric emphasis is very different
from the architectures of prior work.

Our work distinguishes the development and production
stages. The vast majority of current DI work does not make
this distinction, and sometimes it is not clear which stage
a particular work (e.g., Ajax) addresses. Most DI works
appear to have focused on the production stage. Several
works (e.g., Potter Wheel, Trifacta [20, 11]) have considered
the development stage, as we do in our work.

A growing body of EM work has engaged human users,
especially those using crowdsourcing [23, 24, 3, 18, 17, 19].
But they have considered relatively restrictive Uls, such as
those allowing a crowd worker to label a set of tuple pairs at
a time. In contrast, our experience here suggests that more
expressive Uls may help human users be more effective.

Many EM systems have been developed, both in academia
and in industry (see [14] for a detailed discussion). These
systems however often do not address the end-to-end EM

process. They do not study HIL challenges in depth, as we
do, and they do not use human-centric solution architectures
such as the one in Figure 6.

Finally, there is a growing body of HIL work for data
analytics (e.g., [11, 15, 10, 12, 9], see also this workshop
series [1]). As far as we can tell, however, none of the work
has addressed HIL challenges in EM in depth, as we do here.

S. CONCLUSIONS & ONGOING WORK

HIL research is increasingly critical for data analytics. In
this paper we have discussed HIL challenges in several recent
EM projects of ours, and lessons which may be applicable to
other problem settings. We also hope that more researchers
will investigate EM, as it can be a rich playground for HIL
research. We are currently addressing the HIL challenges
outlined in this paper, incorporating the solutions into open-
sourced systems, and evaluating these systems using real-
world users in classes and at organizations.

6 REFERENCES

[1] HILDA http://hilda.io/2016/.

[2] K. Bellare, S. Iyengar, A. G. Parameswaran, and V. Rastogi.
Active sampling for entity matching. In SIGKDD, 2012.

[3] C. Chai et al. Cost-effective crowdsourced entity resolution: A
partial-order approach. In SIGMOD, 2016.

[4] P. Christen. Data Matching. Springer, 2012.

[5] S. Das et al. Falcon: Scaling up hands-off crowdsourced entity
matching to build cloud services. In SIGMOD, 2017.

[6] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.

Duplicate record detection: A survey. IEEE TKDE,

19(1):1-16, 2007.

H. Galhardas et al. Ajax: An extensible data cleaning tool. In

SIGMOD, 2000.

C. Gokhale et al. Corleone: Hands-off crowdsourcing for entity

matching. In SIGMOD, 2014.

[9] D. Haas et al. Wisteria: Nurturing scalable data cleaning
infrastructure. PVLDB, 8(12):2004-2007, 2015.

[10] J. He et al. Interactive and deterministic data cleaning. In
SIGMOD, 2016.

[11] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive interaction
for data transformation. In CIDR, 2015.

[12] A. Jain, A. D. Sarma, A. G. Parameswaran, and J. Widom.
Understanding workers, developing effective tasks, and
enhancing marketplace dynamics: A study of a large
crowdsourcing marketplace. PVLDB, 10(7):829-840, 2017.

[13] Z. Khayyat et al. BigDansing: A system for big data cleansing.
In SIGMOD, 2015.

[14] P. Konda et al. Magellan: Toward building entity matching
management systems. PVLDB, 9(12):1197-1208, 2016.

[15] S. Krishnan, D. Haas, M. J. Franklin, and E. Wu. Towards
reliable interactive data cleaning: A user survey and
recommendations. In HILDA, 2016.

[16] E. LaRose et al. Entity matching using Magellan: Matching
drug reference tables. In AMIA Joint Summsits, 2017.

[17] A. Marcus et al. Human-powered sorts and joins. PVLDB,
5(1):13-24, 2011.

[18] A. Marcus and A. Parameswaran. Crowdsourced data
management: Industry and academic perspectives. Found.
Trends databases, 6(1-2):1-161, 2015.

[19] B. Mozafari et al. Scaling up crowd-sourcing to very large
datasets: A case for active learning. PVLDB, 8(2):125-136,
2014.

[20] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive
data cleaning system. In VLDB, 2001.

[21] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In SIGKDD, 2002.

[22] M. Stonebraker et al. Data curation at scale: The Data Tamer
system. In CIDR, 2013.

[23] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 5(11):1483-1494,
2012.

[24] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question
selection for crowd entity resolution. PVLDB, 6(6):349-360,
2013.

[7

8

