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ABSTRACT
Entity matching (EM) has been a long-standing challenge
in data management. Most current EM works focus only on
developing matching algorithms. We argue that far more
efforts should be devoted to building EM systems. We dis-
cuss the limitations of current EM systems, then present as
a solution Magellan, a new kind of EM systems. Magellan
is novel in four important aspects. (1) It provides how-to
guides that tell users what to do in each EM scenario, step
by step. (2) It provides tools to help users do these steps; the
tools seek to cover the entire EM pipeline, not just match-
ing and blocking as current EM systems do. (3) Tools are
built on top of the data analysis and Big Data stacks in
Python, allowing Magellan to borrow a rich set of capabil-
ities in data cleaning, IE, visualization, learning, etc. (4)
Magellan provides a powerful scripting environment to fa-
cilitate interactive experimentation and quick “patching” of
the system. We describe research challenges raised by Mag-
ellan, then present extensive experiments with 44 students
and users at several organizations that show the promise of
the Magellan approach.

1. INTRODUCTION
Entity matching (EM) identifies data instances that refer

to the same real-world entity, such as (David Smith, UW-
Madison) and (D. M. Smith, UWM). This problem has been a
long-standing challenge in data management [11, 16]. Most
current EM works however has focused only on developing
matching algorithms [11, 16].

Going forward, we believe that building EM systems is
truly critical for advancing the field. EM is engineering
by nature. We cannot just keep developing matching al-
gorithms in a vacuum. This is akin to continuing to develop
join algorithms without having the rest of the RDBMSs. At
some point we must build end-to-end systems to evaluate
matching algorithms, to integrate research and development
efforts, and to make practical impacts.
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In this aspect, EM can take inspiration from RDBMSs
and Big Data systems. Pioneering systems such as System
R, Ingres, and Hadoop have really helped push these fields
forward, by helping to evaluate research ideas, providing an
architectural blueprint for the entire community to focus on,
facilitating more advanced systems, and making widespread
real-world impacts.

The question then is what kinds of EM systems we should
build, and how? In this paper we begin by showing that
current EM systems suffer from four limitations that prevent
them from being used extensively in practice.

First, when performing EM users often must execute many
steps, e.g., blocking, matching, exploring, cleaning, debug-
ging, sampling, labeling, estimating accuracy, etc. Current
systems however do not cover the entire EM pipeline, pro-
viding support for only a few steps (e.g., blocking, match-
ing), while ignoring less well-known yet equally critical steps
(e.g., debugging, sampling).

Second, EM steps often exploit many techniques, e.g.,
learning, mining, visualization, outlier detection, informa-
tion extraction (IE), crowdsourcing, etc. Today however it
is very difficult to exploit a wide range of such techniques.
Incorporating all such techniques into a single EM system is
extremely difficult. EM is often an iterative process. So the
alternate solution of moving data repeatedly among an EM
system, a data cleaning system, an IE system, etc. does not
work either, as it is tedious and time consuming. A major
problem here is that most current EM systems are stand-
alone monoliths that are not designed from the scratch to
“play well” with other systems.

Third, users often have to write code to “patch” the sys-
tem, either to implement a lacking functionality (e.g., ex-
tracting product weights) or to glue together system com-
ponents. Ideally such coding should be done using a script
language in an interactive environment, to enable rapid pro-
totyping and iteration. Most current EM systems however
do not provide such facilities.

Finally, in many EM scenarios users often do not know
what steps to take. Suppose a user wants to perform EM
with at least 95% precision and 80% recall. Should he or she
use a learning-based EM approach, a rule-based approach,
or both? If learning-based, then which technique to select
among the many existing ones (e.g., decision tree, SVM,
etc.)? How to debug the selected technique? What to do if
after many tries the user still cannot reach 80% recall with
a learning-based approach? Current EM systems provide no
answers to such questions.



The Magellan Solution: To address these limitations,
we describe Magellan, a new kind of EM systems currently
being developed at UW-Madison, in collaboration with Wal-
martLabs. Magellan (named after Ferdinand Magellan, the
first end-to-end explorer of the globe) is novel in several im-
portant aspects.

First, Magellan provides how-to guides that tell users what
to do in each EM scenario, step by step. Second, Magellan
provides tools that help users do these steps. These tools
seek to cover the entire EM pipeline (e.g., debugging, sam-
pling), not just the matching and blocking steps.

Third, the tools are being built on top of the Python data
analysis and Big Data stacks. Specifically, we propose that
users solve an EM scenario in two stages. In the develop-
ment stage users find an accurate EM workflow using data
samples. Then in the production stage users execute this
workflow on the entirety of data. We observe that the de-
velopment stage basically performs data analysis. So we de-
velop tools for this stage on top of the well-known Python
data analysis stack, which provide a rich set of tools such as
pandas, scikit-learn, matplotlib, etc. Similarly, we develop
tools for the production stage on top of the Python Big Data
stack (e.g., Pydoop, mrjob, PySpark, etc.).

Thus, Magellan is well integrated with the Python data
eco-system, allowing users to easily exploit a wide range of
techniques in learning, mining, visualization, IE, etc.

Finally, an added benefit of integration with Python is
that Magellan is situated in a powerful interactive scripting
environment that users can use to prototype code to “patch”
the system.

Challenges: Realizing the above novelties raises major
challenges. First, it turns out that developing effective how-
to guides, even for very simple EM scenarios such as apply-
ing supervised learning to match, is already quite difficult
and complex, as we will show in Section 4.

Second, developing tools to support these guides is equally
difficult. In particular, current EM work may have dismissed
many steps in the EM pipeline as engineering. But here we
show that many such steps (e.g., loading the data, sampling
and labeling, debugging, etc.) do raise difficult research
challenges.

Finally, while most current EM systems are stand-alone
monoliths, Magellan is designed to be placed within an “eco-
system” and is expected to “play well” with others (e.g.,
other Python packages). We distinguish this by saying that
current EM systems are “closed-world systems” whereas Mag-
ellan is an “open-world system”, because it relies on many
other systems in the eco-system in order to provide the
fullest amount of support to the user doing EM. It turns
out that building open-world systems raises non-trivial chal-
lenges, such as designing the right data structures and man-
aging metadata, as we discuss in Section 5.

In this paper we have taken the first steps in addressing
the above challenges. We have also built and evaluated Mag-
ellan 0.1 in several real-world settings (e.g., at WalmartLabs,
Johnson Control Inc., Marshfield Clinic) and in data science
classes at UW-Madison. In summary, we make the following
contributions:

• We argue that far more efforts should be devoted to
building EM systems, to significantly advance the field.

• We discuss four limitations that prevent current EM
systems from being used extensively in practice.

• We describe the Magellan system, which is novel in
several important aspects: how-to guides, tools to sup-
port all steps of the EM pipeline, tight integration with
the Python data eco-system, easy access to an interac-
tive scripting environment, and open world vs. closed
world systems.

• We describe significant challenges in realizing Magel-
lan, including the novel challenge of designing open-
world systems (that operate in an eco-system).

• We describe extensive experiments with 44 students
and real users at various organizations that show the
utility of Magellan, including improving the accuracy
of an EM system in production.

This paper describes the most important aspects of Mag-
ellan, deferring details to [22]. Magellan will be released at
sites.google.com/site/anhaidgroup/projects/magellan in Sum-
mer 2016, to serve research, development, and practical uses.
Finally, the ideas underlying Magellan can potentially be ap-
plied to other types of DI problems (e.g., IE, schema match-
ing, data cleaning, etc.), and an effort has been started to
explore this direction and to foster an eco-system of open-
source DI tools (see Magellan’s website).

2. THE CASE FOR ENTITY MATCHING
MANAGEMENT SYSTEMS

2.1 Entity Matching
This problem, also known as record linkage, data match-

ing, etc., has received much attention in the past few decades
[11, 16]. A common EM scenario finds all tuple pairs (a, b)
that match, i.e., refer to the same real-world entity, between
two tables A and B (see Figure 1). Other EM scenarios in-
clude matching tuples within a single table, matching into
a knowledge base, matching XML data, etc. [11].

Most EM works have developed matching algorithms, ex-
ploiting rules, learning, clustering, crowdsourcing, among
others [11, 16]. The focus is on improving the matching ac-
curacy and reducing costs (e.g., run time). Trying to match
all pairs in A×B often takes very long. So users often em-
ploy heuristics to remove obviously non-matched pairs (e.g.,
products with different colors), in a step called blocking, be-
fore matching the remaining pairs. Several works have stud-
ied this step, focusing on scaling it up to large amounts of
data (see Section 7).

2.2 Current Entity Matching Systems
In contrast to the extensive effort on matching algorithms

(e.g., 96 papers were published on this topic in 2009-2014
alone, in SIGMOD, VLDB, ICDE, KDD, and WWW), there
has been relatively little work on building EM systems. As
of 2016 we counted 18 major non-commercial systems (e.g.,
D-Dupe, DuDe, Febrl, Dedoop, Nadeef), and 15 major com-
mercial ones (e.g., Tamr, Data Ladder, IBM InfoSphere)
[11]. Our examination of these systems (see [22]) reveals the
following four major problems:

1. Systems Do Not Cover the Entire EM Pipeline:
When performing EM users often must execute many steps,
e.g., blocking, matching, exploration, cleaning, extraction
(IE), debugging, sampling, labeling, etc. Current systems
provide support for only a few steps in this pipeline, while
ignoring less well-known yet equally critical steps.



Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1 

a2 

a3  

b1

b2

Matches

(a1, b1)  

(a3, b2)  

Table A Table B

Figure 1: An example of matching two tables.

For example, all 33 systems that we have examined pro-
vide support for blocking and matching. Twenty systems
provide limited support for data exploration and cleaning.
There is no meaningful support for any other steps (e.g.,
debugging, sampling, etc.). Even for blocking the systems
merely provide a set of blockers that users can call; there
is no support for selecting and debugging blockers, and for
combining multiple blockers.

2. Difficult to Exploit a Wide Range of Techniques:
Practical EM often requires a wide range of techniques,
e.g., learning, mining, visualization, data cleaning, IE, SQL
querying, crowdsourcing, keyword search, etc. For example,
to improve matching accuracy, a user may want to clean
the values of attribute “Publisher” in a table, or extract
brand names from “Product Title”, or build a histogram for
“Price”. The user may also want to build a matcher that
uses learning, crowdsourcing, or some statistical techniques.

Current EM systems do not provide enough support for
these techniques, and there is no easy way to do so. Incorpo-
rating all such techniques into a single system is extremely
difficult. But the alternate solution of just moving data
among a current EM system and systems that do cleaning,
IE, visualization, etc. is also difficult and time consuming.
A fundamental reason is that most current EM systems are
stand-alone monoliths that are not designed from the scratch
to “play well” with other systems. For example, many cur-
rent EM systems were written in C, C++, C#, and Java,
using proprietary data structures. Since EM is often iter-
ative, we need to repeatedly move data among these EM
systems and cleaning/IE/etc systems. But this requires re-
peated reading/writing of data to disk followed by compli-
cated data conversion.

3. Difficult to Write Code to “Patch” the System:
In practice users often have to write code, either to im-
plement a lacking functionality (e.g., to extract product
weights, or to clean the dates), or to tie together system
components. It is difficult to write such code correctly in
“one shot”. Thus ideally such coding should be done using
an interactive scripting environment, to enable rapid proto-
typing and iteration. This code often needs access to the
rest of the system, so ideally the system should be in such
an environment too. Unfortunately only 5 out of 33 systems
provide such settings (using Python and R).

4. Little Guidance for Users on How to Match: In
our experience this is by far the most serious problem with
using current EM systems in practice. In many EM scenar-
ios users simply do not know what to do: how to start, what
to do next? Interestingly, even the simple task of taking a
sample and labeling it (to train a learning-based matcher)
can be quite complicated in practice, as we show in Section
4.3. Thus, it is not enough to just build a system consisting
of a set of tools. It is also critical to provide step-by-step
guidance to users on how to use the tools to handle a par-
ticular EM scenario. No EM system that we have examined
provides such guidance.

2.3 Entity Matching Management Systems
To address the above limitations, we propose to build a

new kind of EM systems. In contrast to current EM sys-
tems, which mostly provide a set of implemented match-
ers/blockers, these new systems are far more advanced.

First and foremost, they seek to handle a wide variety
of EM scenarios. These scenarios can use very different EM
workflows. So it is difficult to build a single system to handle
all EM scenarios. Instead, we should build a set of systems,
each handling a well-defined set of similar EM scenarios.
Each system should target the following goals:

1. How-to Guide: Users will have to be “in the loop”.
So it is critical that the system provides a how-to guide
that tells users what to do and how to do it.

2. User Burden: The system should minimize the user
burden. It should provide a rich set of tools to help
users easily do each EM step, and do so for all steps
of the EM pipeline, not just matching and blocking.
Special attention should be paid to debugging, which
is critical in practice.

3. Runtime: The system should minimize tool runtimes
and scale tools up to large amounts of data.

4. Expandability: It should be easy to extend the sys-
tem with any existing or future techniques that can
be useful for EM (e.g., cleaning, IE, learning, crowd-
sourcing). Users should be able to easily “patch” the
system using an interactive scripting environment.

Of these goals, “expandability” deserves more discussion. If
we can build a single “super-system” for EM, do we need
expandability? We believe it is very difficult to build such a
system. First, it would be immensely complex to build just
an initial system that incorporates all of the techniques men-
tioned in Goal 4. Indeed, despite decades of development,
today no EM system comes close to achieving this.

Second, it would be very time consuming to maintain and
keep this initial system up-to-date, especially with the latest
advances (e.g., crowdsourcing, deep learning).

Third, and most importantly, a generic EM system is un-
likely to perform equally well for multiple domains (e.g.,
biomedicine, social media, payroll). Hence we often need
to extend and customize it to a particular target domain,
e.g., adding a data cleaning package specifically designed
for biomedical data (written by biomedical researchers). For
the above three reasons, we believe that EM systems should
be fundamentally expandable.

Clearly, systems that target the above goals seek to man-
age all aspects of the end-to-end EM process. So we refer to
this kind of systems as entity matching management systems
(EMMSs). Building EMMSs is difficult, long-term, and will
require a new kind of architecture compared to current EM
systems. In the rest of this paper we describe Magellan, an
attempt to build such an EMMS.

3. THE MAGELLAN APPROACH
Figure 2 shows the Magellan architecture. The system tar-

gets a set of EM scenarios. For each EM scenario it provides
a how-to guide. The guide proposes that the user solve the
scenario in two stages: development and production.

In the development stage, the user seeks to develop a good
EM workflow (e.g., one with high matching accuracy). The



Data Analysis Stack 

pandas,  scikit-learn, matplotlib, 
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Figure 2: The Magellan architecture.

guide tells the user what to do, step by step. For each step
the user can use a set of supporting tools, each of which is in
turn a set of Python commands. This stage is typically done
using data samples. In the production stage, the guide tells
the user how to implement and execute the EM workflow on
the entirety of data, again using a set of supporting tools.

Both stages have access to the Python script language and
interactive environment (e.g., iPython). Further, tools for
these stages are built on top of the Python data analysis
stack and the Python Big Data stack, respectively. Thus,
Magellan is an “open-world” system, as it often has to bor-
row functionalities (e.g., cleaning, extraction, visualization)
from other Python packages on these stacks.

Finally, the current Magellan is geared toward power users
(who can program). We envision that in the future facili-
ties for lay users (e.g., GUIs, wizards) can be laid on top
(see Figure 2), and lay user actions can be translated into
sequences of commands in the underlying Magellan.

In the rest of this section, we describe EM scenarios, work-
flows, and the development and production stages. Section
4 describes the how-to guides, and Section 5 describes the
challenges of designing Magellan as an open-world system.

3.1 EM Scenarios and Workflows
We classify EM scenarios along four dimensions:

• Problems: Matching two tables; matching within a
table; matching a table into a knowledge base; etc.

• Solutions: Using learning; using learning and rules;
performing data cleaning, blocking, then matching;
performing IE, then cleaning, blocking, and matching;
etc.

• Domains: Matching two tables of biomedical data;
matching e-commerce products given a large product
taxonomy as background knowledge; etc.

• Performance: Precision must be at least 92%, while
maximizing recall as much as possible; both precision
and recall must be at least 80%, and run time under
four hours; etc.

An EM scenario can constrain multiple dimensions, e.g.,
matching two tables of e-commerce products using a rule-
based approach with desired precision of at least 95%.

Clearly there is a wide variety of EM scenarios. So we will
build Magellan to handle a few common scenarios, and then
extend it to more similar scenarios over time. Specifically,
for now we will consider the three scenarios that match two
given relational tables A and B using (1) supervised learn-
ing, (2) rules, and (3) learning plus rules, respectively. These
scenarios are very common. In practice, users often try Sce-
nario 1 or 2, and if neither works, then a combination of
them (Scenario 3).

EM Workflows: As discussed earlier, to handle an EM
scenario, a user often has to execute many steps, such as
cleaning, IE, blocking, matching, etc. The combination of
these steps form an EM workflow. Figure 5 shows a sample
workflow (which we explain in detail in Section 4.6).

3.2 Development Stage vs. Production Stage
From our experience with real-world users’ doing EM, we

propose that the how-to guide tell the user to solve the EM
scenario in two stages: development and production. In the
development stage the user tries to find a good EM workflow,
e.g., one with high matching accuracy. This is typically done
using data samples. In the production stage the user applies
the workflow to the entirety of data. Since this data is often
large, a major concern here is to scale up the workflow.
Other concerns include quality monitoring, logging, crash
recovery, etc. The following example illustrates these two
stages.

Example 1. Consider matching two tables A and B each
having 1M tuples. Working with such large tables will be very
time consuming in the development stage, especially given
the iterative nature of this stage. Thus, in the development
stage the user U starts by sampling two smaller tables A′ and
B′ from A and B, respectively. Next, U performs blocking
on A′ and B′. The goal is to remove as many obviously non-
matched tuple pairs as possible, while minimizing the number
of matching pairs accidentally removed. U may need to try
various blocking strategies to come up with what he or she
judges to be the best.

The blocking step can be viewed as removing tuple pairs
from A′×B′. Let C be the set of remaining tuple pairs. Next,
U may take a sample S from C, examine S, and manually
write matching rules, e.g., “If titles match and the numbers
of pages match then the two books match”. U may need
to try out these rules on S and adjust them as necessary.
The goal is to develop matching rules that are as accurate
as possible.

Once U has been satisfied with the accuracy of the match-
ing rules, the production stage begins. In this stage, U exe-
cutes the EM workflow that consists of the developed blocking
strategy and matching rules on the original tables A and B.
To scale, U may need to rewrite the code for blocking and
matching to use Hadoop or Spark. 2

As described, these two stages are very different in nature:
one goes for accuracy and the other goes for scaling (among
others). Consequently, they will require very different sets
of tools. We now discuss developing tools for these stages.

Development Stage on a Data Analysis Stack: We
observe that what users try to do in the development stage
is very similar in nature to data analysis tasks, which an-
alyze data to discover insights. Indeed, creating EM rules
can be viewed as analyzing (or mining) the data to discover



accurate EM rules. Conversely, to create EM rules, users
also often have to perform many data analysis tasks, e.g.,
cleaning, visualizing, finding outliers, IE, etc.

As a result, if we are to develop tools for the development
stage in isolation, within a stand-alone monolithic system, as
current work has done, we would need to somehow provide a
powerful data analysis environment, in order for these tools
to be effective. This is clearly very difficult to do.

So instead, we propose that tools for the development
stage be developed on top of an open-source data analysis
stack, so that they can take full advantage of all the data
analysis tools already (or will be) available in that stack.
In particular, two major data analysis stacks have recently
been developed, based on R and Python (new stacks such as
the Berkeley Data Analysis Stack are also being proposed).
The Python stack for example includes the general-purpose
Python language, numpy and scipy packages for numeri-
cal/array computing, pandas for relational data manage-
ment, scikit-learn for machine learning, among others. More
tools are being added all the time, in the form of Python
packages. By Oct 2015, there were 490 packages available in
the popular Anaconda distribution. There is a vibrant com-
munity of contributors to continuously improve this stack.

For Magellan, since our initial target audience is the IT
community, where we believe Python is more familiar, we
have been developing tools for the development stage on the
Python data analysis stack.

Production Stage on a Big Data Stack: In a sim-
ilar vein, we propose that tools for the production stage,
where scaling is a major focus, be developed on top of a
Big Data stack. Magellan uses the Python Big Data stack,
which consists of many software packages to run MapReduce
(e.g., Pydoop, mrjob), Spark (e.g., PySpark), and parallel
and distributed computing in general (e.g., pp, dispy).

In the rest of this paper we will focus on the development
stage, leaving the production stage for subsequent papers.

4. HOW-TO GUIDES AND TOOLS
We now discuss developing how-to guides as well as tools

to support these guides. Our goal is twofold:

• First, we show that even for relatively simple EM sce-
narios (e.g., matching using supervised learning), a
good guide can already be quite complex. Thus de-
veloping how-to guides is a major challenge, but such
guides are absolutely critical in order to successfully
guide the user through the EM process.

• Second, we show that each step of the guide, including
those that prior work may have viewed as trivial or
engineering (e.g., sampling, labeling), can raise many
interesting research challenges. We provide prelimi-
nary solutions to several such challenges in this paper.
But much more remains to be done.

Recall that Magellan currently targets three EM scenarios:
matching two tables A and B using (1) supervised learning,
(2) rules, and (3) both learning and rules. For space reasons,
we will focus on Scenario 1, briefly discussing Scenarios 2-
3 in Section 4.7. For Scenario 1, we further focus on the
development stage.

The Current Guide for Learning-Based EM: Figure
3 shows the current guide for Scenario 1: matching using

1. Load tables A and B into Magellan. Downsample if necessary.

2. Perform blocking on the tables to obtain a set of
candidate tuple pairs C.

3. Take a random sample S from C and label pairs in S as
matched / non-matched. 

4. Create a set of features then convert S into a set of feature vectors H.
Split H into a development set I and an evaluation set J.

5. Repeat until out of debugging ideas or out of time:

(a) Perform cross validation on I to select the best matcher.
Let this matcher be X.

(b) Debug X using I. This may change the matcher X, the data, labels,
and the set of features, thus changing I and J.

6. Let Y be the best matcher obtained in Step 5. Train Y on I,
then apply to J and report the matching accuracy on J.

Figure 3: The top-level steps of the guide for the
EM scenario of matching using supervised learning.

supervised learning. The figure lists only the top six steps.
While each step may sound like fairly informal advice (e.g.,
“create a set of features”), the full guide itself (available
with Magellan 0.1) is considerably more complex and actu-
ally spells out in detail what to do (e.g., run a Magellan com-
mand to automatically create the features). We developed
this guide based on observing how real-world users (e.g., at
WalmartLabs and Johnson Control) as well as students in
several UW-Madison classes handled this scenario.

The guide states that to match two tables A and B, the
user should load the tables into Magellan (Step 1), do block-
ing (Step 2), label a sample of tuple pairs (Step 3), use
the sample to iteratively find and debug a learning-based
matcher (Steps 4-5), then return this matcher and its esti-
mated matching accuracy (Step 6).

We now discuss these steps, possible tools to support
them, and tools that we have actually developed. Our goal
is to automate each step as much as possible, and where it is
not possible, then to provide detailed guidance to the user.
We focus on discussing problems with current solutions, the
design alternatives, and opportunities for automation (re-
ferring the reader to [22] for the technical details). For ease
of exposition, we will assume that tables A and B share the
same schema.

4.1 Loading and Downsampling Tables
Downsampling Tables: We begin by loading the two
tables A and B into memory. If these tables are large (e.g.,
each having 100K+ tuples), we should sample smaller tables
A′ and B′ from A and B respectively, then do the develop-
ment stage with these smaller tables. Since this stage is
iterative by nature, working with large tables can be very
time consuming and frustrating to the user.

Random sampling however does not work, because tables
A′ and B′ may end up sharing very few matches, i.e., match-
ing tuples (especially if the number of matches between A
and B is small to begin with). Thus we need a tool that
samples more intelligently, to ensure a reasonable number
of matches between A′ and B′.

We have developed such a tool, shown as the Magellan
command c1 in Figure 4. This command first randomly
selects B size tuples from table B to be table B′. For each
tuple x ∈ B′, it finds a set P of k/2 tuples from A that may
match x (using the heuristic that if a tuple in A shares many



c1: down_sample_tables (A, B, B_size, k)
c2: debug_blocker (A, B, C, output_size = 200)
c3: get_features_for_matching (A, B)
c4: select_matcher (matchers, table, exclude_attrs, target_attr, k = 5)
c5: vis_debug_dt (matcher, train, test, exclude_attrs, target_attr)

Figure 4: Sample commands discussed in Section 4.
Magellan has 53 such commands.

tokens with x, then it is more likely to match x), and a set
Q of k/2 tuples randomly selected from A\P . Table A′ will
consist of all tuples in such P s and Qs. The idea is for A′

and B′ to share some matches yet be as representative of A
and B as possible.

More Sophisticated Downsampling Solutions: The
above command was fast and quite effective in our exper-
iments. However it has a limitation: it may not get all
important matching categories into A′ and B′. If so, the
EM workflow created using A′ and B′ may not work well on
the original tables A and B.

For example, consider matching companies. Tables A and
B may contain two matching categories: (1) tuples with sim-
ilar company names and addresses match because they refer
to the same company, and (2) tuples with similar company
names but different addresses may still match because they
refer to different branches of the same company. Using the
above command, tables A′ and B′ may contain many tuple
pairs of Case 1, but no or very few pairs of Case 2.

To address this problem, we are working on a better “down-
sampler”. Our idea is to use clustering to create groups of
matching tuples, then analyze these groups to infer match-
ing categories, then sample from the categories. Major chal-
lenges here include how to effectively cluster tuples from the
large tables A and B, and how to define and infer matching
categories accurately.

4.2 Blocking to Create Candidate Tuple Pairs
In the next step, we apply blocking to the two tables A′

and B′ to remove obviously non-matched tuple pairs. Ide-
ally, this step should be automated (as much as possible).
Toward this goal, we distinguish three cases.

(1) We already know which matcher we want to use. Then
it may be possible to analyze the matcher to infer a blocker,
thereby completely automating the blocking step. For ex-
ample, when matching two sets of strings (a special case of
EM [11]), often we already know the matcher we want to use
(e.g., jaccard(x, y) > 0.8, i.e., predicting two strings x and y
matched if their Jaccard score exceeds 0.8). Prior work [11]
has analyzed such matchers to infer efficient blockers that
do not remove true matches. Thus, debugging the blocker
is also not necessary.

(2) We do not know yet which matcher we want to use, but
we have a set T of tuple pairs labeled matched / no-matched.
Then it may be possible to partially automate the blocking
step. Specifically, the system can use T to learn a blocker
and propose it to the user (e.g., training a random forest
then extracting the negative rules of the forest as blocker
candidates [20]). The user still has to debug the blocker to
check that it does not accidentally remove too many true
matches.

(3) We do not know yet which matcher we want to use,
and we have no labeled data. This is the case considered in
this paper, since all we have so far are the two tables A′ and
B′. In this case the user often faces three problems (which

have not been addressed by current work): (a) how to select
the best blocker, (b) how to debug a given blocker, and (c)
how to know when to stop? Among these, the first problem
is open to partial automation.

Selecting the Best Blocker: A straightforward solu-
tion is to label a set of tuple pairs (e.g., selected using ac-
tive learning [20]), then use it to automatically propose a
blocker, as in Case 2. To propose good blockers, however,
this solution may require labeling hundreds of tuple pairs
[20], incurring a sizable burden on the user.

This solution may also be unnecessarily complex. In prac-
tice, a user often can use domain knowledge to quickly pro-
pose good blockers, e.g., “matching books must share the
same ISBN”, in a matter of minutes. Hence, our how-
to guide tries to help the user identify these “low-hanging
fruits” first.

Specifically, many blocking solutions have been developed,
e.g., overlap, attribute equivalence (AE), sorted neighbor-
hood (SNB), hash-based, rule-based, etc. [11]. From our ex-
perience, we recommend that the user try successively more
complex blockers, and stop when the number of the tuple
pairs surviving blocking is already sufficiently small. Specif-
ically, the user can try overlap blocking first (e.g., “matching
tuples must share at least k tokens in an attribute x”), then
AE (e.g., “matching tuples must share the same value for
an attribute y”). These blockers are very fast, and can sig-
nificantly cut down on the number of candidate tuple pairs.
Next, the user can try other well-known blocking methods
(e.g., SNB, hash) if appropriate. This means the user can
use multiple blockers and combine them in a flexible fashion
(e.g., applying AE to the output of overlap blocking).

Finally, if the user still wants to reduce the number of
candidate tuple pairs further, then he or she can try rule-
based blocking. It is difficult to manually come up with good
blocking rules. So we will develop a tool to automatically
propose rules, as in Case 2, using the technique in [20], which
uses active learning to select tuple pairs for the user to label.

Debugging Blockers: Given a blocker L, how do we
know if it does not remove too many matches? We have de-
veloped a debugger to answer this question, shown as com-
mand c2 in Figure 4. Suppose applying L to A′ and B′

produces a set C of tuple pairs (a ∈ A′, b ∈ B′). Then
D = A′ ×B′ \ C is the set of all tuple pairs removed by L.

The debugger examines D to return a list of k tuple pairs
in D that are most likely to match (k = 200 is the default).
The user U examines this list. If U finds many matches in
the list, then that means blocker L has removed too many
matches. U would need to modify L to be less “aggressive”,
then apply the debugger again. Eventually if U finds no
or very few matches in the list, U can assume that L has
removed no or very few matches, and thus is good enough.
See [22] for a detailed description of how we developed this
debugger, including solving two challenges: how can the de-
bugger judge that a tuple pair is likely to match, and how
can it quickly search D to find such pairs?

Knowing When to Stop Modifying the Blockers: How
do we know when to stop tuning a blocker L? Suppose
applying L to A′ and B′ produces the set of tuple pairs
block(L,A′, B′). The conventional wisdom is to stop when
block(L,A′, B′) fits into memory or is already small enough
so that the matching step can process it efficiently.



In practice, however, this often does not work. For exam-
ple, since we work with A′ and B′, samples from the original
tables, monitoring |block(L,A′, B′)| does not make sense.
Instead, we want to monitor |block(L,A,B)|. But applying
L to the large tables A and B can be very time consum-
ing, making the iterative process of tuning L impractical.
Further, in many practical scenarios (e.g., e-commerce), the
data to be matched can arrive in batches, over weeks, ren-
dering moot the question of estimating |block(L,A,B)|.

As a result, in many practical settings users want block-
ers that have (1) high pruning power, i.e., maximizing 1 −
|block(L,A′, B′)|/|A′ × B′|, and (2) high recall, i.e., maxi-
mizing the ratio of the number of matches in block(L,A′, B′)
divided by the number of matches in A′ ×B′.

Users can measure the pruning power, but so far they
have had no way to estimate recall. This is where our de-
bugger comes in. In our experiments (see Section 6) users
reported they had used our debugger to find matches that
the blocker L had removed, and when they found no or only
a few matches, they concluded that L had achieved high
recall and stopped tuning the blocker.

4.3 Sampling and Labeling Tuple Pairs
Let L be the blocker we have created. Suppose applying

L to tables A′ and B′ produces a set of tuple pairs C. In
the next step, user U should take a sample S from C, then
label the pairs in S as matched / no-matched, to be used
later for training matchers, among others.

At a first glance, this step seems very simple: why not
just take a random sample and label it? Unfortunately in
practice this is far more complicated.

For example, suppose C contains relatively few matches
(either because there are few matches between A′ and B′,
or because blocking was too liberal, resulting in a large C).
Then a random sample S from C may contain no or few
matches. But the user U often does not recognize this until
U has labeled most of the pairs in S. This is a waste of
U ’s time and can be quite serious in cases where labeling is
time consuming or requires expensive domain experts (e.g.,
labeling drug pairs when we worked with Marshfield Clinic).
Taking another random sample does not solve the problem
because it is likely to also contain no or few matches.

To address this problem, our guide builds on [20] to pro-
pose that user U sample and label in iterations. Specifically,
suppose U wants a sample S of size n. In the first iteration,
U takes and labels a random sample S1 of size k from C,
where k is a small number. If there are enough matches in
S1, then U can conclude that the “density” of matches in C
is high, and just randomly sample n− k more pairs from C.

Otherwise, the “density” of matches in C is low. So U
must re-do the blocking step, perhaps by creating new block-
ing rules that remove more non-matching tuple pairs in C,
thereby increasing the density of matches in C. After block-
ing, U can take another random sample S2 also of size k
from C, then label S2. If there are enough matches in S2,
then U can conclude that the density of matches in C has
become high, and just randomly sample n − 2k more pairs
from C, and so on.

4.4 Selecting a Matcher
Once user U has labeled a sample S, U uses S to se-

lect a good initial learning-based matcher. Today most EM
systems supply the user with a set of such matchers, e.g.,

decision tree, Naive Bayes, SVM, etc., but do not tell the
user how to select a good one.

Our guide addresses this problem. Specifically, user U
first calls the command c3 in Figure 4 to create a set of fea-
tures F = {f1, . . . , fm}, where each feature fi is a function
that maps a tuple pair (a, b) into a value. This command
creates all possible features between the attributes of tables
A′ and B′, using a set of heuristics. For example, if at-
tribute name is textual, then the command creates feature
name 3gram jac that returns the Jaccard score between the
3-gram sets of the two names (of tuples a and b) [22].

Next, U converts each tuple pair in the labeled set S into
a feature vector (using features in F ), thus converting S
into a set H of feature vectors. Next, U splits H into a
development set I and an evaluation set J .

Let M be the set of all learning-based matchers supplied
by the EM system. Next, U uses command c4 in Figure 4
to perform cross validation on I for all matchers in M , then
examines the results to select a good matcher. Command c4
highlights the matcher with the highest accuracy. However,
if a matcher achieves just slightly lower accuracy (than the
best one) but produces results that are easier to explain and
debug (e.g., a decision tree), then c4 highlights that matcher
as well, for the user’s consideration.

Thus, the entire process of selecting a matcher can be
automated (if the user does not want to be involved), and
in fact Magellan does provide a single command to execute
the entire process.

4.5 Debugging a Matcher
Let the selected matcher be X. In the next step user

U debugs X to improve its accuracy. Such debugging is
critical in practice, yet has received very little attention in
the research community.

Our guide suggests that user U debug in three steps: (1)
identify and understand the matching mistakes made by X,
(2) categorize these mistakes, and (3) take actions to fix
common categories of mistakes.

Identifying and Understanding Matching Mistakes:
U should split the development set I into two sets P and Q,
train X on P then apply it to Q. Since U knows the labels of
the pairs in Q, he or she knows the matching mistakes made
by X in Q. These are false positives (non-matching pairs
predicted matching) and false negatives (matching pairs pre-
dicted not). Addressing them helps improve precision and
recall, respectively.

Next U should try to understand why X makes each
mistake. For example, let (a, b) ∈ Q be a pair labeled
“matched” for which X has predicted “not matched”. To
understand why, U can start by using a debugger that ex-
plains how X comes to that prediction. For example, if X is
a decision tree then the debugger (invoked using command
c5 in Figure 4) can show the path from the root of the tree
to the leaf that (a, b) has traversed. Examining this path, as
well as the pair (a, b) and its label, can reveal where things
go wrong. In general things can go wrong in four ways:

• The data can be dirty, e.g., the price value is incorrect.

• The label can be wrong, e.g., (a, b) should have been
labeled “not matched”.

• The feature set is problematic. A feature is misleading,
or a new feature is desired, e.g., we need a new feature
that extracts and compares the publishers.



• The learning algorithm employed by X is problem-
atic, e.g., a parameter such as “maximal depth to be
searched” is set to be too small.

Currently Magellan has debuggers for a set of learning-based
matchers, e.g., decision tree, random forest. We are working
on improving these debuggers and developing debuggers for
more learning algorithms.

Categorizing Matching Mistakes: After U has exam-
ined all or a large number of matching mistakes, he or she
can categorize them, based on problems with data, label,
feature, and the learning algorithm.

Examining all or most mistakes is very time consuming.
Thus a consistent feedback we have received from real-world
users is that they would love a tool that can automatically
examine and give a preliminary categorization of the types
of the matching mistakes. As far as we can tell, no such tool
exists today.

Handling Common Categories of Mistakes: Next U
should try to fix common categories of mistakes by modify-
ing the data, labels, set of features, and the learning algo-
rithm. This part often involves data cleaning and extraction
(IE), e.g., normalizing all values of attribute “affiliation”, or
extracting publishers from attribute “desc” then creating a
new feature comparing the publishers.

This part is often also very time consuming. Real-world
users have consistently indicated needing support in at least
two areas. First, they want to know exactly what kinds
of data cleaning and IE operations they need to do to fix
the mistakes. Naturally they want to do as minimally as
possible. Second, re-executing the entire EM process after
each tiny change to see if it “fixes” the mistakes is very time
consuming. Hence, users want an “what-if” tool that can
quickly show the effect of a hypothetical change.

Proxy Debugging: Suppose we need to debug a matcher
X but there is no debugger for X, or the debugger exists
but is not very informative. In this case X is effectively a
“blackbox”. To address this problem, in Magellan we have
introduced a novel debugging method. In particular, we
propose to train another matcher X ′ for which there is a
debugger, then use that debugger to debug X ′, instead of X.
This “proxy debugging” process cannot fix problems with
the learning algorithm of X, but it can reveal problems with
the data, labels, features, and fixing them can potentially
improve the accuracy of X itself. Section 6.2 shows cases of
proxy debugging working quite well in practice.

Selecting a Matcher Again: So far we have discussed
selecting a good initial learning-based matcher X, then de-
bugging X using the development set I. To debug, user U
splits I into training set P and testing set Q, then identifies
and fixes mistakes in Q. Note that this splitting of I into P
and Q can be done multiple times. Subsequently, since the
data, labels, and features may have changed, U would want
to do cross validation again to select a new “best matcher”,
and so on (see Step 5 in Figure 3).

4.6 The Resulting EM Workflow
After executing the above steps, user U has in effect cre-

ated an EM workflow, as shown in Figure 5. Since this
workflow will be used in the production stage, it takes as
input the two original tables A and B. Next, it performs a

A 

B 

clean, 
extract, transform 

block 
clean, 

extract, transform 

Candidate 
Set C match 

Figure 5: The EM workflow for the learning-based
matching scenario.

set of data cleaning, IE, and transformation operations on
these tables. These operations are derived from the debug-
ging step discussed in Section 4.5.

Next, the workflow applies the blockers created in Sec-
tion 4.2 to obtain a set of candidate tuple pairs C. Finally,
the workflow applies the learning-based matcher created in
Section 4.5 to the pairs in C.

Note that the steps of sampling and labeling a sample S
do not appear in this workflow, because we need them only
in the development stage, in order to create, debug, and
train matchers. Once we have found a good learning-based
matcher (and have trained it using S), we do not have to
execute those steps again in the production stage.

4.7 How-to Guides for Scenarios with Rules
Recall that Magellan currently targets three EM scenar-

ios. So far we have discussed a how-to guide and tools for
Scenario 1: matching using supervised learning. We now
briefly discuss Scenarios 2 and 3.

Scenario 2 uses only rules to match. This is desirable in
practice for various reasons (e.g., when matching medicine
it is often important that we can explain the matching deci-
sion). For this scenario, we have developed guides and tools
to help users (a) create matching rules manually, (b) create
rules using a set of labeled tuple pairs, or (c) create rules
using active learning.

Scenario 3 uses both supervised learning and rules. Users
often want this when using neither learning nor rules alone
gives them the desired accuracy. For this scenario, we have
also developed a guide and tools to help users. Our guide
suggests that users do learning-based EM first, as described
earlier for Scenario 1, then add matching rules “on top” of
the learning-based matcher, to improve matching accuracy.
We omit further details for space reasons.

5. DESIGNING FOR AN OPEN WORLD
So far we have discussed how-to guides and tools to sup-

port the guides. We now turn to the challenge of designing
these tools as commands in Python.

This challenge turned out to be highly non-trivial, as we
will see. It raises a fundamental question: what do we mean
by “building on top of a data analysis stack”? To answer,
we introduce the notion of closed-world vs. open-world sys-
tems for EM contexts. We show that Magellan should be
built as an open-world system, but building such systems
raises difficult problems such as designing appropriate data
structures and managing metadata. Finally, we discuss how
Magellan addresses these problems.

5.1 Closed-World vs. Open-World Systems
A closed-world system controls its own data. This data

can only be manipulated by its own commands. For this
system, its own world is the only world. There is nothing
else out there and thus it does not have a notion of hav-
ing to “play well” with other systems. It is often said that



RDBMSs are such closed-world systems. Virtually all cur-
rent EM systems can also be viewed as closed-world systems.

In contrast, an open-world system K is aware that there
is a whole world “out there”, teeming with other systems,
and that it will have to interact with them. The system
therefore possesses the following characteristics:

• K expects other systems to be able to manipulate K’s
own data.

• K may also be called upon by other systems to ma-
nipulate their own data.

• K is designed in a way that facilitates such interaction.

Thus, by building Magellan on the Python data analysis
stack we mean building an open-world system as described
above (where “other systems” are current and future Python
packages in the stack). This is necessary because, as dis-
cussed earlier, in order to do successful EM, Magellan will
need to rely on a wide range of external systems to sup-
ply tools in learning, mining, visualization, cleaning, IE,
etc. Building an open-world system however raises diffi-
cult problems. In what follows we discuss problems with
data structures and metadata. (We have also encountered
several other problems, such as missing values, data type
mismatch, package version incompatabilities, etc., but will
not discuss them in this paper.)

5.2 Designing Data Structures
At the heart of Magellan is a set of tables. The tuples to

be matched are stored in two tables A and B. The interme-
diate and final results can also be stored in tables. Thus, an
important question is how to implement the tables.

A popular Python package called pandas has been de-
veloped to store and process tables, using a data structure
called “data frame”. Thus, the simplest solution is to im-
plement Magellan’s tables as data frames. A problem is that
data frames cannot store metadata, e.g., a constraint that
an attribute is a key of a table.

A second choice is to define a new Python class called
MTable, say, where each MTable object has multiple fields,
one field points to a data frame holding the tuples, another
field points to the key attributes, and so on.

Yet a third choice is to subclass the data frame class to
define a new Python class called MDataFrame, say, which
have fields such as “keys”, “creation-date”, etc. besides the
inherited data frame holding the tuples.

From the perspective of building open-world systems, as
discussed in Section 5.1, the last two choices are bad because
they make it difficult for external systems to operate on Mag-
ellan’s data. Specifically, MTable is a completely unfamiliar
class to existing Python packages. So commands in these
packages cannot operate on MTable objects directly. We
would need to redefine these commands, a time-consuming
and brittle process.

MDataFrame is somewhat better. Since it is a subclass
of data frame, any existing command (external to Magel-
lan) that knows data frames can operate on MDataFrame
objects. Unfortunately the commands may return inappro-
priate types of objects. For example, a command deleting
a row in an MDataFrame object would return a data frame
object, because being an external command it is not aware
of the MDataFrame class. This can be quite confusing to

users, who want external commands to work smoothly on
Magellan’s objects.

For these reasons, we take the first choice: storing Mag-
ellan’s tables as data frames. Since virtually any existing
Python package that manipulates tables can manipulate data
frames, this maximizes the chance that commands from these
packages can work seamlessly on Magellan’s tables.

In general, we propose that an open-world system K use
the data structures that are most common to other systems
to store its data. This brings two important benefits: it is
easier for other systems to operate on K’s data, and there
will be far more tools available to help K manipulate its own
data. If it is not possible to use common data structures,
K should provide procedures that convert between its own
data structures and the ones commonly used by other open-
world systems.

5.3 Managing Metadata
We have discussed storing Magellan’s tables as data frames.

Data frames however cannot hold metadata (e.g., key and
foreign key constraints, date last modified, ownership). Thus
we will store such metadata in a central catalog.

Regardless of where we store the metadata, however, let-
ting external commands directly manipulate Magellan’s data
leads to a problem: the metadata can become inconsistent.
For example, suppose we have created a table A and stored
in the central catalog that “sid” is a key for A. There is
nothing to prevent a user U from invoking an external com-
mand (of a non-Magellan package) on A to remove “sid”.
This command however is not aware of the central catalog
(which is internal to Magellan). So after its execution, the
catalog still claims that “sid” is a key for A, even though
A no longer contains “sid”. As another example, an exter-
nal command may delete a tuple from a table participating
in a key-foreign key relationship, rendering this relationship
invalid, while the catalog still claims that it is valid.

In principle we can rewrite the external commands to be
metadata aware. But given the large number of external
commands that Magellan users may want to use, and the
rapid changes for these commands, rewriting all or most of
them in one shot is impractical. In particular, if a user U
discovers a new package that he or she wants to use, we do
not want to force U to wait until Magellan’s developers have
had a chance to rewrite the commands in the package to
be metadata aware. But allowing U to use the commands
immediately, “as is”, can lead to inconsistent metadata, as
discussed above.

To address this problem, we design each Magellan’s com-
mand c from the scratch to be metadata aware. Specifically,
we write c such that at the start, it checks for all constraints
that it requires to be true, in order for it to function prop-
erly. For example, c may know that in order to operate on
table A, it needs a key attribute. So it looks up the central
catalog to obtain the constraint that “sid” is a key for A.
Command c then checks this constraint to the extent possi-
ble. If it finds this constraint invalid, then it alerts the user
and asks him or her to fix this constraint.

Command c will not proceed until all required constraints
have been verified. During its execution, it will try to man-
age metadata properly. In addition, if it encounters an in-
valid constraint it will alert the user, but will continue its
execution, as this constraint is not critical for its correct ex-
ecution (those constraints have been checked at the start of



the command). For example, if it finds a dangling tuple due
to a violation of a foreign key constraint, it may just alert
the user, ignore the tuple, and then continue.

6. EMPIRICAL EVALUATION
We now empirically evaluate Magellan. It is difficult to

evaluate such a system in large-scale experiments with real-
world data and users. To address this challenge, we evalu-
ated Magellan in two ways. First, we asked 44 UW-Madison
students to apply Magellan to many real-world EM scenarios
on the Web. Second, we provided Magellan to real users at
several organizations (WalmartLabs, Johnson Control, and
Marshield Clinic) and reported on their experience. We now
elaborate on these two sets of experiments.

6.1 Large-Scale Experiments on Web Data
Our largest experiment was with 24 teams of CS students

(a total of 44 students) at UW-Madison in a Fall 2015 data
science class. These students can be considered the equiv-
alents of power users at organizations. They know Python
but are not experts in EM.

We asked each team to find two data-rich Web sites, ex-
tract and convert data from them into two relational tables,
then apply Magellan to match tuples across the tables. The
first four columns of Table 1 show the teams, domains, and
the sizes of the two tables, respectively. Note that two teams
may cover the same domain, e.g., “Movies”, but extract from
different sites. Overall, there are 12 domains, and the tables
have 7,313 tuples on average, with 5-17 attributes.

We asked each team to do the EM scenario of supervised
learning followed by rules, and aim for precision of at least
90% with recall as high as possible. This is a very common
scenario in practice.

The Baseline Performance: The columns under “Ini-
tial Learning-Based Matcher (A)” show the matching accu-
racies achieved by the best learning-based matcher (after
cross validation, see Section 4.4): P = 56 − 100%, R =
37.5 − 100%, F1 = 56 − 99.5%. These results show that
many of these tables are not easy to match, as the best
learning-based matcher selected after cross validation does
not achieve high accuracy. In what follows we will see how
Magellan was able to significantly improve these accuracies.

Using the How-to Guide: The columns under “Final
Learning+Rule Matcher (D)” show the final matching ac-
curacies that the teams obtained: P = 91.3 − 100%, R =
64.7 − 100%, F1 = 78.6 − 100%. All 24 teams achieved
precision exceeding 90%, and 20 teams also achieved re-
call exceeding 90%. (Four teams had recall below 90% be-
cause their data were quite dirty, with many missing val-
ues.) All teams reported being able to follow the how-to
guide. Together with qualitative feedback from the teams,
this suggests that users can follow Magellan’s how-to guide
to achieve high matching accuracy on diverse data sets. We
elaborate on these results below, broken down by blocking
and matching.

Blocking and Debugging Blockers: All teams used 1-
5 blockers (e.g., attribute equivalence, overlap, rule-based),
for an average of 3. On average 3 different types of blockers
were used per team. This suggests that it is relatively easy
to create a blocking pipeline with diverse blocker types.

All teams debugged their blockers, in 1-10 iterations, for
an average of 5. 18 out of 24 teams used our debugger (see
Section 4.2), and reported that it helped in four ways.

(a) Cleaning data: By examining tuple pairs (returned
by the debugger) that are matches accidentally removed by
blocking, 12 teams discovered data that should be cleaned.
For example, one team removed the edition information from
book titles, and another team normalized the date formats
in the input tables.

(b) Finding the correct blocker types and attributes:
12 teams were able to use the debugger for these purposes.
For example, one team found that using attribute equiva-
lence (AE) blocker over “phone” removed many matches,
because the phone numbers were not updated. So they de-
cided to use “zipcode” instead. Another team started with
AE over “name” then realized that the blocker did not work
well because many names were misspelled. So they decided
to use a rule-based blocker instead.

(c) Tuning blocker parameters: 18 teams used the de-
bugger for this purpose, e.g., to change the overlap size for
“address” in an overlap blocker, or to use a different thresh-
old for a Jaccard measure in a rule-based blocker.

(d) Knowing when to stop: 12 teams explicitly mentioned
in their reports that when the debugger returned no or very
few matches, they concluded that the blocking pipeline had
done well, and stopped tuning this pipeline.

Teams reported spending 4-32 hours on blocking (includ-
ing reading documentations). Overall, 21 out of 24 teams
were able to prune away more than 95% of |A×B|, with an
average reduction of 97.3%, suggesting that they were able
to construct blocking with high pruning rate.

Feedback-wise, teams reported liking (a) the ability to cre-
ate rich and flexible blocking sequences with different types
of blockers, (b) the diverse range of blocker types provided
by Magellan, and (c) the debugger. They complained that
certain types of blockers (e.g., rule-based ones) were still
slow (an issue that we are currently addressing).

Matching and Debugging Matchers: Recall from Sec-
tion 4.5 that after cross validation on labeled data to select
the best learning-based matcher X, user U iteratively de-
bugged X to improve its accuracy. Teams performed 1-5
debugging iterations, for an average of 3 (see Column “Num
of Iterations (C)” in Table 1). The actions they took were:

(a) Feature selection: 21 teams added and deleted fea-
tures, e.g., adding more phone related features, removing
style related features.

(b) Data cleaning: 12 teams cleaned data based on the
debugging result, e.g., normalizing colors using a dictionary,
detecting that the tables have different date formats. 16
teams found and fixed incorrect labels during debugging.

(c) Parameter tuning: 3 teams tuned the parameters of
the learning algorithm, e.g., modifying the maximum depth
of decision tree based on debugging results.

These debugging actions helped improve accuracies signif-
icantly, from 56-100% to 73.3-100% precision, and 37.5-100%
to 61-100% recall (compare columns under “A” with those
under “B” in Table 1).

Adding rules further improves accuracy. 19 teams added
1-5 rules, found in 1-5 iterations (see column “E”). This
improved precision from 73.3-100% to 91.3-100% and re-
call from 61-100% to 64.7-100% (compare columns under
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Table A 

Size of 
Table B 

Cand.
Set 

 Size 

Initial Learning-Based 
Matcher (A) 

Final Learning-Based 
Matcher (B) Num. of  

Iterations 
 (C)  

Final Learning + 
Rules  Matcher (D) Num. of  

Iterations 
 (E) 

Diff. in F1 
between 

(D) and (A) 
in % P R F1 P R F1 P R F1 

1 Vehicles 4786 9003 8009 71.2 71.2 71.2 91.43 94.12 92.75 4 100 100 100 2 30.27 
2 Movies 7391 6408 78079 99.28 95.13 97.04 98.21 100 99.1 2 100 100 100 1 2.12 

3 Movies 3000 3000 1000000 98.9 99.44 99.5 98.63 98.63 98.63 1 98.63 98.63 98.63 0 -0.87 

4 Movies 3000 3000 36000 68.2 69.16 68.6 98 100 98.99 3 98 100 98.99 1 44.3 

5 Movies 6225 6392 54028 100 95.23 97.44 100 100 100 3 100 100 100 1 2.63 

6 Restaurants 6960 3897 10630 100 37.5 54.55 100 88.89 94.12 3 100 88.89 94.12 1 72.54 

7 Electronic Products 4559 5001 823832 73 51 59 73.3 64.71 68.75 2 100 64.71 78.57 1 33.17 

8 Music 6907 55923 58692 92 79.31 85.19 90.48 82.61 86.36 2 100 92.16 95.92 2 1.37 

9 Restaurants 9947 28787 400000 100 78.5 87.6 94.44 97.14 95.77 4 94.44 97.14 95.77 0 9.33 

10 Cosmetic 11026 6445 36026 56 56 56 96.67 87.88 92.06 3 96.43 87.1 91.53 4 64.39 

11 E-Books 6482 14110 13652 96.67 96.67 96.67 100 95.65 97.78 4 100 98.33 99.13 1 1.15 

12 Beer 4346 3000 4334961 84.5 59.6 65.7 100 60.87 75.68 4 91.3 91.3 91.3 4 15.19 

13 Books 3506 3508 2016 93.46 100 96.67 91.6 100 95.65 2 91.6 100 95.65 0 -1.06 

14 Books 3967 3701 4029 74.17 82.2 82.5 100 84.85 91.8 3 100 84.85 91.8 5 11.27 

15 Anime 4000 4000 138344 95.9 88.9 92.2 100 100 100 2 100 100 100 1 8.46 

16 Books 3021 3098 931 74.2 100 85.2 96.34 84.95 90.29 2 94.51 92.47 93.48 1 5.97 

17 Movies 3556 6913 504 94.2 99.33 96.6 95.04 94.26 94.65 2 95.04 94.26 94.65 1 -2.02 

18 Books 8600 9000 492 91.6 100 84.8 94.8 100 90.2 3 100 92.31 96 1 6.37 

19 Restaurants 11840 5223 5278 98.6 93.8 96.1 95.6 94.02 95.57 2 100 94.12 96.97 1 -0.55 

20 Books 3000 3000 257183 94.24 72.88 81.71 90.91 83.33 86.96 2 92.31 100 96 1 6.43 

21 Literature 3885 3123 1590633 84.4 86.9 85.5 100 95.65 97.83 3 100 95.65 97.83 0 14.42 

22 Restaurants 3014 5883 78190 100 93.59 96.55 100 100 100 5 100 100 100 0 3.57 

23 E-Books 6501 14110 18381 94.6 92.5 93.4 94.6 97.22 95.89 2 100 100 100 1 2.67 

24 Baby Products 10000 5000 11000 78.6 44.8 57.7 96.43 72.97 83.08 5 100 72.97 84.37 2 43.99 

Table 1: Large-scale experiments with Magellan on Web data.

“D” with those under “B”). Overall, Magellan improved the
baseline accuracy in columns “A” significantly, by as much
as 72.5% F1, for an average of 18.8% F1. For 3 teams, how-
ever, accuracy dropped by 0.87-2.02% F1. This is because
the baseline F1s already exceeded 94%, and when teams
tried to add rules to increase F1 further, they overfit the
development set.

Teams reported spending 5-50 hours, for an average of 12
hours (including reading documentation and labeling sam-
ples) on matching. They reported liking debugger support,
ease of creating custom features for matchers, and support
for rules to improve learning-based matching. They would
like to have more debugger support, including better order-
ing and visualization of matching mistakes.

6.2 Experience with Organizational Data
We now describe our experience with Magellan at Wal-

martLabs, Marshfield Clinic, and Johnson Control. These
are newer and still ongoing evaluations.

WalmartLabs deploy multiple EM systems for various pur-
poses. As a first project, the EM team tried to debug a sys-
tem that matches product descriptions. Since it is a compli-
cated “blackbox” in production, they tried proxy debugging
(Section 4.5). Specifically, they debugged a random forest
based matcher and used the debugging result to clean the
data, fix labels, and add new features. This significantly im-
proved the system in production: increasing recall by 34%
while reducing precision slightly by 0.65%. This indicates
the promise of proxy debugging. In fact, 3 teams out of
the 24 teams discussed in the previous subsection also used
proxy debugging.

For Marshfield Clinic, we are currently helping to develop
an EM workflow that uses learning and rules to match drug

descriptions. Here labeling drug descriptions is very expen-
sive, requiring domain experts who have limited time. They
are also concerned about skewed data, i.e., too few matches
in the current data. Taken together, this suggests that the
sampling and labeling solution we discussed in Section 4.3 is
well motivated, and we have been using a variant of that so-
lution to help them label data. Yet another problem is that
the Marshfield team is geographically distributed, so they
would really like to have a cloud-based version of Magellan.

Finally, we are currently also working with Johnson Con-
trol to match data related to heating and cooling in build-
ings. The data that we have seen so far is very dirty. So
the JCI team wants to extend Magellan with many more
cleaning capabilities, in terms of Python packages that can
immediately be made to work with Magellan’s data.

6.3 Summary
Our experiments show that (a) current users can success-

fully follow the how-to guide to achieve high matching accu-
racy on diverse data sets, (b) the various tools developed for
Magellan (e.g., debuggers) can be highly effective in helping
the users, (c) practical EM requires a wide range of capabil-
ities, e.g., cleaning, extraction, visualization, underscoring
the importance of placing Magellan in an eco-system that
provides such capabilities, and (d) there are many more EM
challenges (e.g., cloud services) raised by observing Magellan
“in the wild”.

7. RELATED WORK
Numerous EM algorithms have been proposed [11, 16].

But far fewer EM systems have been developed. We dis-
cussed these systems in Section 2.2 (see also [11]). For



matching using supervised learning (Section 4), some of these
systems provide only a set of matchers. None provides sup-
port for sampling, labeling, selecting and debugging blockers
and matchers, as Magellan does.

Some recent works have discussed desirable properties for
EM systems, e.g., being extensible and easy-to-deploy [14],
being flexible and open source [10], and the ability to con-
struct complex EM workflow consisting of distinct phases,
each requiring a specific technique depending on the given
application and data requirements [17]. These works do
not discuss covering the entire EM pipeline, how-to guides,
building on top of data analysis and Big Data stacks, and
open-world systems, as we do in this paper.

Several works have addressed scaling up blocking (e.g.,
[13, 21, 25, 1]), learning blockers [7, 15], and using crowd-
sourcing for blocking [20] (see [12] for a survey). As far as
we know, there has been no work on debugging blocking, as
we do in Magellan.

On sampling and labeling, several works have studied ac-
tive sampling [23, 4, 6]. These methods however are not
directly applicable in our context, where we need a repre-
sentative sample in order to estimate the matching accuracy
(see Step 6 in Figure 3). For this purpose our work is closest
to [20], which uses crowdsourcing to sample and label.

Debugging learning models has received relatively little
attention, even though it is critical in practice, as this paper
has demonstrated. Prior works help users build, inspect and
visualize specific ML models (e.g., decision trees [3], Naive
Bayes [5], SVM [9], ensemble model [24]). But they do not
allow users to examine errors and inspect raw data. In this
aspect, the work closest to ours is [2], which addresses iter-
ative building and debugging of supervised learning models.
The system proposed in [2] can potentially be implemented
as a Magellan’s tool for debugging learning-based matchers.

Finally, the notion of “open world” has been discussed in
[18], but in the context of crowd workers’ manipulating data
inside an RDBMS. Here we discuss a related but different
notion of open-world systems that often interact with and
manipulate each other’s data. In this vein, the work [8] is
related in that it discusses the API design of the scikit-learn
package and its design choices to seamlessly tie in with other
packages in Python.

8. CONCLUSIONS & FUTURE WORK
In this paper we have argued that significantly more at-

tention should be paid to building EM systems. We then
described Magellan, a new kind of EM systems, which is
novel in several important aspects: how-to guides, tools to
support the entire EM pipeline, tight integration with the
PyData eco-system, open world vs. closed world systems,
and easy access to an interactive script environment.

We plan to conduct more evaluation of Magellan, to fur-
ther examine the research problems raised in this paper, to
extend Magellan with more capabilities (e.g., crowdsourc-
ing), and to deploy it on the cloud as a service. We will
also explore managing more EM scenarios. In particular,
we plan to extend Magellan to handle string matching, which
uses workflows similar to those of matching using supervised
learning. Other interesting EM scenarios include linking a
table into a knowledge base (e.g., [19]) and matching us-
ing iterative blocking [26]. The former can potentially be
incorporated into the current Magellan, but the latter will
likely require a new EM management system (as it uses a

very different kind of EM workflows). See [22] for a detailed
discussion of these EM scenarios.
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