
Magellan: Toward Building Entity Matching
Management Systems over Data Science Stacks

Pradap Konda1, Sanjib Das1, Paul Suganthan G.C.1, AnHai Doan1,
Adel Ardalan1, Jeffrey R. Ballard1, Han Li1, Fatemah Panahi1, Haojun Zhang1,

Jeff Naughton1, Shishir Prasad2, Ganesh Krishnan2, Rohit Deep2, Vijay Raghavendra2

1University of Wisconsin-Madison, 2@WalmartLabs

ABSTRACT
Entity matching (EM) has been a long-standing challenge in
data management. Most current EM works, however, focus
only on developing matching algorithms. We argue that far
more efforts should be devoted to building EM systems. We
discuss the limitations of current EM systems, then present
Magellan, a new kind of EM systems that addresses these
limitations. Magellan is novel in four important aspects. (1)
It provides a how-to guide that tells users what to do in
each EM scenario, step by step. (2) It provides tools to
help users do these steps; the tools seek to cover the entire
EM pipeline, not just matching and blocking as current EM
systems do. (3) Tools are built on top of the data science
stacks in Python, allowing Magellan to borrow a rich set
of capabilities in data cleaning, IE, visualization, learning,
etc. (4) Magellan provide a powerful scripting environment
to facilitate interactive experimentation and allow users to
quickly write code to “patch” the system. We have exten-
sively evaluated Magellan with 44 students and users at var-
ious organizations. In this paper we propose demonstration
scenarios that show the promise of the Magellan approach.

1. INTRODUCTION
Entity matching (EM) identifies data instances that re-

fer to the same real-world entity (e.g., [David Smith, UW-
Madison] and [D. M. Smith, UWM]). This problem has long
been an important challenge in data management [2, 4].
Much of the current EM work however has focused only
on developing matching algorithms [2, 4]. Relatively little
work has examined building EM systems (that employ these
algorithms).

Going forward, we believe that building EM systems is
truly critical for advancing the field. EM is engineering
by nature. We cannot just keep developing matching al-
gorithms in a vacuum. This is akin to continuing to develop
join algorithms without having the rest of the RDBMSs. At
some point we must build end-to-end systems to evaluate

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 10
Copyright 2016 VLDB Endowment 2150-8097/16/06.

matching algorithms, to integrate research and development
efforts, and to make practical impacts.

In this aspect, EM can take inspiration from RDBMSs
and Big Data systems. Pioneering systems such as System
R, Ingres, and Hadoop have really helped drive these fields
forward, by helping to evaluate research ideas, providing an
architectural blueprint for the entire community to focus on,
facilitating more advanced systems, and making widespread
practical impacts.

The question then is what kinds of EM systems we should
build, and how? As of early 2016 we counted 18 major non-
commercial systems (e.g., D-Dupe, DuDe, Febrl, TAILOR,
Dedoop, Nadeef) and 15 commercial ones (e.g., Tamr, Data
Ladder, IBM InfoSphere BigMatch) [2]. Examining these
systems reveals four major problems that we believe prevent
them from being used widely in practice.

First, when performing EM users often must execute many
steps, e.g., blocking, matching, exploration, cleaning, ex-
traction (IE), debugging, sampling, labeling, estimating EM
accuracy, etc. Current systems provide support for only a
few steps in this pipeline (mostly blocking and matching),
while ignoring less well-known yet equally critical steps (e.g.,
debugging, sampling).

Second, it is very difficult to add sufficient capabilities for
wide-ranging EM needs to current EM systems. Practical
EM often requires a wide range of techniques, e.g., learning,
mining, visualization, data cleaning, IE, crowdsourcing, etc.
Incorporating all such techniques into a single EM system is
extremely difficult. EM is often an iterative process. So the
alternate solution of moving data repeatedly among an EM
system, a data cleaning system, an IE system, etc. does not
work either, as it is tedious and time consuming. A major
problem here is that most current EM systems are stand-
alone monoliths that are not designed from the scratch to
“play well” with other systems.

Third, users often have to write code to “patch” the sys-
tem: either to implement a lacking functionality (e.g., to
extract product weights) or to combine system components.
Ideally such coding should be done using a script language
in an interactive environment, to enable rapid prototyping
and iteration. Most current EM systems however do not
provide such facilities.

Finally, in many EM scenarios users often do not know
what steps to take. For example, suppose a user wants to
perform EM with at least 90% precision and as high recall
as possible. How should the user start? Should he or she use

learning-based matchers first? If so, which matcher? Cur-
rent EM systems provide no guides for such EM scenarios.

The Magellan Solution: To address the above four
limitations, we have developed Magellan1, a new kind of EM
systems. Magellan is described in depth in [7]. So in this
paper we will describe it only briefly, focusing instead on
the demonstration scenarios. Magellan is novel in several
important aspects.

First, Magellan provides how-to guides that tell users what
to do in each EM scenario, step by step. Second, it provides
tools that help users do these steps. These tools seek to
cover the entire EM pipeline (e.g., debugging), not just the
matching and blocking steps.

Third, Magellan is built on top of the Python data science
stacks, i.e., the data analysis and Big Data stacks for data
science tasks. Specifically, we propose that users solve an
EM scenario in two stages. In the development stage users
find an accurate EM workflow using data samples. Then
in the production stage users execute this workflow on the
entirety of data. We observe that the development stage
basically performs data analysis. So we propose to develop
tools for this stage on top of the well-known Python data
analysis stack, which provide a rich set of tools such as pan-
das, scikit-learn, matplotlib, etc. Similarly, we propose to
develop tools for the production stage on top of the Python
Big Data stack (e.g., Pydoop, mrjob, PySpark, etc.).

Finally, an added benefit of integration with Python is
that Magellan has access to a well-known script language and
an interactive environment that users can use to prototype
code to “patch” the system.

The above novelties significantly advance the state of the
art in developing EM systems. Realizing them however
raises significant challenges, as we discuss in depth in [7].
First, it turns out that developing effective how-to guide,
even for very simple well-known EM scenarios such as ap-
plying supervised learning to match, is already quite difficult
and complex.

Second, developing tools to support these guides is equally
difficult. In particular, current EM work may have dismissed
many steps in the EM pipeline as trivial or engineering.
But we have found that many such steps (e.g., loading the
data, sampling and labeling, etc.) do raise difficult research
challenges.

Finally, while most current EM systems are stand-alone
monoliths, Magellan is designed to be placed within an “eco-
system” and is expected to “play well” with others (e.g.,
Python packages). We distinguish this by saying that cur-
rent EM systems are “closed-world systems” whereas Mag-
ellan is designed to be an “open-world system”, because it
needs many other systems in the eco-system in order to pro-
vide the fullest amount of support to the user doing EM. It
turns out that building open-world systems raises non-trivial
challenges, such as designing the right data structures and
managing metadata [7].

We have taken the first steps in addressing the above chal-
lenges, and developed the first version of Magellan. We have
deployed Magellan in several real-world applications (e.g., at
WalmartLabs, Johnson Control Inc, Marshfield Clinic, and
in biomedicine), as well as in data science classes at UW-
Madison, for extensive evaluation (see [7]). We plan to open

1The system is named after Ferdinand Magellan, who led
the first end-to-end exploration of the globe.

Data Analysis Stack

pandas, scikit-learn, matplotlib,
…

Python Interactive Environment
 Script Language

Development Stage

Supporting tools

(as Python commands)

Data samples

EM
Workflow

Production Stage

Supporting tools

(as Python commands)

Original data

Big Data Stack

PySpark, mrjob, Pydoop,
 …

Facilities for Lay Users

GUIs, wizards, …

EM
Scenarios

How-to
Guides

Power Users

Figure 1: The Magellan architecture.

source and release Magellan 0.1 by June 2016, to serve re-
search, development, and practical uses.

Related Work: Some works have discussed desirable
properties for EM systems, e.g., being extensible and easy-
to-deploy [3], being flexible and open source [1], and the
ability to construct complex EM workflow consisting of dis-
tinct phases, each requiring a specific technique depending
on the given application and data requirements [5]. These
works however do not discuss the need for covering the entire
EM pipeline, how-to guides, building on top of data analysis
and Big Data stacks, and open-world systems, as we do in
Magellan. The notion of “open world” has been discussed in
[6], but in the context of crowd workers being able to manip-
ulate data inside an RDBMS. Here we discuss a related but
different notion of open-world systems, which refer to sys-
tems that often interact with and manipulate each other’s
data.

2. THE MAGELLAN ARCHITECTURE
Figure 1 shows the Magellan architecture. We build Mag-

ellan to handle a few common EM scenarios, and then extend
it to more scenarios over time. The current Magellan con-
siders the three scenarios that match two given relational
tables A and B using (1) supervised learning, (2) rules, and
(3) learning plus rules, respectively.

For each EM scenario Magellan provides a how-to guide.
The guide proposes that the user solve the scenario in two
stages: development and production.

In the development stage, the user seeks to develop a good
EM workflow (e.g., one with high matching accuracy), using
data samples. We observe that what users try to do in this
stage is very similar in nature to data analysis tasks, which
analyze data to discover insights. For example, creating
EM rules can be viewed as analyzing the data to discover
accurate EM rules. As a result, if we are to develop tools
for this stage in isolation, within a stand-alone system, as
current work has done, we would need to somehow provide a
powerful data analysis environment, in order for these tools
to be effective. This is clearly very difficult to do.

So instead, we propose that tools for the development
stage be developed on top of an open-source data analysis
stack, so that they can take full advantage of all the data
analysis tools already (or will be) available in that stack.
In particular, two major data analysis stacks have recently

Figure 2: Magellan console in interactive IPython.

been developed, based on R and Python (new stacks such as
the Berkeley Data Analysis Stack are also being proposed).
The Python stack for example includes the general-purpose
Python language, numpy and scipy packages for numeri-
cal/array computing, pandas for relational data manage-
ment, scikit-learn for machine learning, among others. More
tools are being added all the time, in the form of Python
packages. Magellan currently targets the Python data anal-
ysis stack.

In the production stage the user applies the workflow cre-
ated in the development stage to the entirety of data. Since
this data is often large, a major concern here is to scale up
the workflow. So we propose that tools for the production
stage be developed on top of a Big Data stack. Magellan
currently targets the Python Big Data stack, which consists
of many software packages to run MapReduce (e.g., Pydoop,
mrjob), Spark (e.g., PySpark), and parallel and distributed
computing in general (e.g., pp, dispy).

The how-to guide tells the user what to do, step by step, in
each stage. For each step the user can use a set of supporting
tools, each of which is in turn a set of Python commands.
Both stages have access to the Python script language and
interactive environment (e.g., iPython). As described, Mag-
ellan is an “open-world” system, as it often has to borrow
functionalities (e.g., cleaning, extraction, visualization) from
other Python packages on these stacks.

Finally, the current Magellan is geared toward power users
(who can program). We envision that in the future facili-
ties for lay users (e.g., GUIs, wizards) can be laid on top
(see Figure 1), and lay user actions can be translated into
sequences of commands in the underlying Magellan.

3. DEMONSTRATION OVERVIEW
We now describe the proposed demonstration. We use

real-world data sets to show the following features of Mag-
ellan: (1) how users can use the how-to guide to develop an

Figure 3: The GUI of the blocking debugger.

end-to-end EM workflow in an interactive fashion, (2) how
users can seamlessly use other data analysis packages in the
Python eco-system in developing the workflow, and (3) how
users can easily extend Magellan with code to incorporate
additional functionalities. We will focus on the EM scenario
of matching two relational tables using supervised learning
and rules.

In practice, developing an end-to-end EM workflow often
takes hours or days. So a large part of our demonstration
(e.g., labeling a few hundred tuple pairs) will be “canned”
scenarios. But we will provide opportunities for the audience
to interact “live” with the system, and to take the demo “off
the rails”.

3.1 Using the Guide to Develop a Workflow
Here we show that a user can use Magellan to interactively

develop an end-to-end EM workflow, using the IPython con-
sole shown in Figure 2. Specifically, the user will perform
the following steps.

Loading and Downsampling the Tables: First, the
user will load the two tables into memory using Magellan.
These tables are large, so the user will downsample the ta-
bles to a reasonable size, then use the smaller tables for the
rest of the EM workflow development.

Exploring and Cleaning the Tables: Next, the user
will explore the tables, plot statistics, identify outliers, im-
pute missing values, and clean the attribute values. The user
will use visualization and data analysis packages in Python
such as matplotlib, plotly, and pandas.

Blocking to Create Candidate Tuple Pairs: Next,
the user will iteratively create a blocking pipeline and reduce
the number of tuple pairs considered for matching. This in-
volves three steps: (1) selecting the best blocker, (2) debug-
ging blockers, and (3) knowing when to stop modifying the
blockers. To select the best blocker, the user will try over-
lap blocking first, then attribute equivalence blocking, then
other well-known blocking methods (e.g., hash, canopy clus-
tering) if appropriate. Finally, the user can try rule-based
blocking. Note that this means the user can use multiple
blockers and combine them in a flexible fashion.

Next, the user will use the blocking debugger to check
whether the current sequence of blockers is removing too
many matches. The debugger console is shown in Figure 3,
which displays a list of tuple pairs that are potential matches
but missed by the current blocker pipeline. The user will
use the debugging output to decide when to stop tuning the
blockers. Let the candidate set of tuple pairs obtained by
blocking in this step be C.

Sampling and Labeling Tuple Pairs: Next, the user
will sample and label from C, for supervised learning pur-
poses. If there are few true matches in C, then random

Figure 4: The GUI of the matching debugger.

sampling does not work, as the sample may end up con-
taining very few matches. To address this problem, Magel-
lan’s how-to guide proposes the following. Suppose the user
wants to sample and label a set S of size n, first the user
will take a random sample S1 of size k from C, where k is
a small number (e.g., 50) and label S1. If there are enough
matches in S1 then the user will conclude that the “density”
of matches is high, and just randomly sample n − k more
pairs from C. Otherwise, the user will re-do the blocking
step, thereby increasing the density of matches in C. After
blocking, the user will take another random sample S2, also
of size k from C and label S2. If there are enough matches in
S2 then the user will conclude that the “density” of matches
is high, and just randomly sample n − 2k more pairs from
C. Otherwise, the user will repeat the process until there
are enough matches in the labeled set.

Selecting the Best Matcher: Next, the user will se-
lect the best matcher in two steps: (a) selecting the best
learning-based matcher X, and (b) adding rules on top of
X. The user will first split the labeled data set into a devel-
opment set I and an evaluation set J . The user will use I to
select the best matcher and finally estimate the matcher’s
accuracy using J .

(a) Selecting the Best Learning-Based Matcher: First,
the user will automatically create a set F of all possible fea-
tures between the sampled input tables. Next, the user uses
F to convert the development set I into a set of feature
vectors H. The user then uses H to cross-validate all the
learning-based matchers available in Magellan. The user will
examine the results to select the matcher X with the highest
accuracy.

Next the user will debug X in three steps: (1) identify and
understand the mistakes made by X, (2) categorize these
mistakes, and (3) take actions to fix common categories of
mistakes. To identify and understand the mistakes made
by X, the user will first split the development set H into
two sets P and Q. The user will use the matching debugger
to debug X, using P and Q (internally the debugger will
use P to train X and apply it over Q). The user will see a
debugging GUI, as shown in Figure 4. He or she will examine
the false positives and false negatives, and categorize the
errors into four types: (1) errors in the attribute values,
(2) labeling errors, (3) issues with the feature set, and (4)
issues with the parameters of X. The user will then fix these
problems using Magellan and select the best learning-based
matcher again, until he or she is out of ideas on what else
to do to improve the matcher.

(b) Adding Rules to the Learning-Based Matcher: Next,
the user adds rules to “patch” X. He or she will use the
matching debugger to understand the mistakes made by X,
and use Magellan to write a set of positive and negative rules
to handle these mistakes. Now the new matcher Y will be
the learning-based matcher followed by an ordered set of
rules. The user will evaluate the accuracy of Y using cross-
validation and will iterate on modifying the rules, until he
or she is out of time or ideas to improve Y .

Estimating the Accuracy of the Best Matcher: Fi-
nally, the user will use the evaluation set to compute and re-
turn an estimation of the matching accuracy of the learning-
based matcher augmented with rules.

3.2 “Playing Well” with Other Systems
In this part of the demo, we will show that Magellan can

readily interoperate with other data analysis packages in
Python. Specifically, we will demonstrate that Magellan can
use scientific, visualization, and string matching packages in
Python to build an EM workflow. The user will use popu-
lar visualization packages such as plotly and matplotlib in
Python to explore the data set, and use string matching
packages such as fuzzywuzzy to create custom features to
train and select learning-based matchers.

3.3 “Patching” the System with Code
In this part of the demo, we will show that Magellan can

be extended easily to incorporate additional functionalities.
Specifically, we will show that the user will be able to easily
add a new blocker such as sorted-neighborhood blocker (for
which the user has written the code) and add it seamlessly
to the blocking pipeline.

4. CONCLUSIONS
We argue that far more efforts should be devoted to build-

ing EM systems, to significantly advance the field. Toward
this goal, in this demonstration we will present Magellan, a
new kind of EM systems, which is novel in several impor-
tant aspects: how-to guides, tools to support the entire EM
pipeline, tight integration with the PyData eco-system, open
world vs. closed world systems, and easy access to an in-
teractive script environment. We focus on showing (1) how
users can use the how-to guide to develop an end-to-end EM
workflow, (2) how Magellan can seamlessly use other data
analysis packages in the Python eco-system, and (3) how
users can easily extend Magellan with code to incorporate
additional functionalities.

5. REFERENCES
[1] P. Christen. Febrl: A freely available record linkage system with

a graphical user interface. HDKM, 2008.

[2] P. Christen. Data Matching. Springer, 2012.

[3] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F.
Ilyas, M. Ouzzani, and N. Tang. Nadeef: A commodity data
cleaning system. SIGMOD, 2013.

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. Data Eng.,
19(1):1–16, 2007.

[5] M. Fortini, M. Scannapieco, L. Tosco, and T. Tuoto. Towards an
open source toolkit for building record linkage workflows. In In
Proc. of the SIGMOD Workshop on Information Quality in
Information Systems, 2006.

[6] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. Crowddb: answering queries with crowdsourcing. In
SIGMOD, 2011.

[7] P. Konda et al. Magellan: Toward building entity matching
management systems. In UW-Madison Technical Report, 2016.

