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ABSTRACT

Recent approaches to crowdsourcing entity matching (EM)
are limited in that they crowdsource only parts of the EM
workflow, requiring a developer to execute the remaining
parts. Consequently, these approaches do not scale to the
growing EM need at enterprises and crowdsourcing startups,
and cannot handle scenarios where ordinary users (i.e., the
masses) want to leverage crowdsourcing to match entities. In
response, we propose the notion of hands-off crowdsourcing
(HOC), which crowdsources the entire workflow of a task,
thus requiring no developers. We show how HOC can repre-
sent a next logical direction for crowdsourcing research, scale
up EM at enterprises and crowdsourcing startups, and open
up crowdsourcing for the masses. We describe Corleone, a
HOC solution for EM, which uses the crowd in all major
steps of the EM process. Finally, we discuss the implica-
tions of our work to executing crowdsourced RDBMS joins,
cleaning learning models, and soliciting complex information
types from crowd workers.

1. INTRODUCTION

Entity matching (EM) finds data records that refer to the
same real-world entity, such as (David Smith, JHU) and (D.
Smith, John Hopkins). This problem has received significant
attention (e.g., [8, 2, 5, 13]). In particular, in the past few
years crowdsourcing has been increasingly applied to EM.
In crowdsourcing, certain parts of a problem are “farmed
out” to a crowd of workers to solve. As such, crowdsourcing
is well suited for EM, and indeed several crowdsourced EM
solutions have been proposed (e.g., [27, 28, 6, 30, 31]).

These pioneering solutions demonstrate the promise of
crowdsourced EM, but suffer from a major limitation: they
crowdsource only parts of the EM workflow, requiring a de-
veloper who knows how to code and match to execute the
remaining parts. For example, several recent solutions re-
quire a developer to write heuristic rules to reduce the num-
ber of candidate pairs to be matched, then train and apply
a matcher to the remaining pairs to predict matches (see
Section 2). They use the crowd only at the end, to verify
the predicted matches. The developer must know how to
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code (e.g., to write heuristic rules in Perl) and match enti-
ties (e.g., to select learning models and features).

As described, current solutions do not scale to the growing
EM need at enterprises and crowdsourcing startups. Many
enterprises (e.g., eBay, Microsoft, Amazon, Walmart) rou-
tinely need to solve tens to hundreds of EM tasks, and this
need is growing rapidly. It is not possible to crowdsource all
these tasks if crowdsourcing each requires the involvement
of a developer (even when sharing developers across tasks).
To address this problem, enterprises often ask crowdsourc-
ing startups (e.g., CrowdFlower) to solve the tasks on their
behalf. But again, if each task requires a developer, then
it is difficult for a startup, with a limited staff, to handle
hundreds of EM tasks coming in from multiple enterprises.
This is a bottleneck that we have experienced firsthand in
our crowdsourcing work at two e-commerce enterprises and
two crowdsourcing startups, and this was a major motiva-
tion for the work in this paper.

Furthermore, current solutions cannot help ordinary users
(i.e., the “masses”) leverage crowdsourcing to match enti-
ties. For example, suppose a journalist wants to match two
long lists of political donors, and can pay up to a modest
amount, say $500, to the crowd on Amazon’s Mechanical
Turk (AMT). He or she typically does not know how to
code, thus cannot act as a developer and use current solu-
tions. He or she cannot ask a crowdsourcing startup to help
either. The startup would need to engage a developer, and
$500 is not enough to offset the developer’s cost. The same
problem would arise for domain scientists, small business
workers, end users, and other “data enthusiasts”.

To address these problems, in this paper we introduce
the notion of hands-off crowdsourcing (HOC). HOC crowd-
sources the entire workflow of a task, thus requiring no de-
velopers. HOC can be a next logical direction for EM and
crowdsourcing research, moving from no-, to partial-, to
complete crowdsourcing for EM. By requiring no develop-
ers, HOC can scale up EM at enterprises and crowdsourcing
startups.

HOC can also open up crowdsourcing for the masses. Re-
turning to our example, the journalist wanting to match two
lists of donors can just upload the lists to a HOC Web site,
and specify how much he or she is willing to pay. The Web
site will use the crowd to execute a HOC-based EM work-
flow, then return the matches. Developing crowdsourcing
solutions for the masses (rather than for enterprises) has
received rather little attention, despite its potential to mag-
nify many times the impact of crowdsourcing. HOC can
significantly advance this direction.



We then describe Corleone, a HOC solution for EM (named
after Don Corleone, the Godfather figure who managed the
mob in a hands-off fashion). Corleone uses the crowd (no de-
velopers) in all four major steps of the EM matching process:

e Virtually any large-scale EM problem requires blocking, a
step that uses heuristic rules to reduce the number of tuple
pairs to be matched (e.g., “if the prices of two products
differ by at least $20, then they do not match”). Current
solutions require a developer to write such rules. We show
how to use the crowd instead. As far as we know, ours
is the first solution that uses the crowd, thus removing
developers from this important step.

e We develop a solution that uses crowdsourcing to train
a learning-based matcher. We show how to use active
learning to minimize crowdsourcing costs.

e Users often want to estimate the matching accuracy, e.g.,
as precision and recall. Surprisingly, very little work has
addressed this problem, and we show that this work breaks
down when the data is highly skewed by having very few
matches (a common situation). We show how to use the
crowd to estimate accuracy in a principled fashion. As
far as we know, this is the first in-depth solution to this
important problem.

e In practice developers often do EM iteratively, with each
iteration focusing on the tuple pairs that earlier iterations
have failed to match correctly. So far this has been done in
an ad-hoc fashion. We show how to address this problem
in a rigorous way, using crowdsourcing.

We present extensive experiments over three real-world data
sets, showing that Corleone achieves comparable or signifi-
cantly better accuracy (by as much as 19.8% F1) than tradi-
tional solutions and published results, at a reasonable crowd-
sourcing cost. Finally, we discuss the implications of our
work to crowdsourced RDBMSs, learning, and soliciting com-
plex information types from the crowd. For example, recent
work has proposed crowdsourced RDBMSs (e.g., [9, 20, 18]).
Crowdsourced joins lie at the heart of such RDBMSs, and
many such joins in essence do EM. Today executing such
a join on a large amount of data requires developers, thus
making such RDBMSs impractical. Our work can help build
hands-off no-developer crowdsourced join solutions.

2. BACKGROUND & RELATED WORK

Entity matching has received extensive attention (see [§]
for a recent survey). A common setting finds all tuple pairs
(a € A,b € B) from two relational tables A and B that refer
to the same real-world entity. In this paper we will consider
this setting (leaving other EM settings as ongoing work).

Recently, crowdsourced EM has received increasing at-
tention in academia (e.g., [27, 28, 6, 30, 31, 24]) and in-
dustry (e.g., (e.g., CrowdFlower, CrowdComputing, Sama-
Source, etc.). Current works use the crowd to verify pre-
dicted matches [27, 28, 6], finds the best questions to ask
the crowd [30], and finds the best UI to pose such questions
[31]. These works still crowdsource only parts of the EM
workflow, requiring a developer to execute the remaining
parts. In contrast, Corleone tries to crowdsource the entire
EM workflow, thus requiring no developers.

Specifically, virtually any large-scale EM workflow starts
with blocking, a step that uses heuristic rules to reduce the

number of pairs to be matched. This is because the Carte-
sian product A x B is often very large, e.g., 10 billion tuple
pairs if |A| = |B| = 100,000. Matching so many pairs is
very expensive or highly impractical. Hence many blocking
solutions have been proposed (e.g., [8, 5]). These solutions
however do not employ crowdsourcing, and still require a de-
veloper (e.g., to write and apply rules, create training data,
build indexes, etc.). In contrast, Corleone completely crowd-
sources this step.

After blocking, the next step builds and applies a matcher
(e.g., using hand-crafted rules or learning) to match the sur-
viving pairs [8]. Here the works closest to ours are those that
use active learning [21, 2, 3, 19]. These works however ei-
ther do not use crowdsourcing (requiring a developer to label
training data) (e.g., [21, 2, 3]), or use crowdsourcing [19] but
do not consider how to effectively handle noisy crowd input
and to terminate the active learning process. In contrast,
Corleone considers both of these problems, and uses only
crowdsourcing, with no developer in the loop.

The next step, estimating the matching accuracy (e.g., as
precision and recall), is vital in real-world EM (e.g., so that
the user can decide whether to continue the EM process),
but surprisingly has received very little attention in EM re-
search. Here the most relevant work is [12, 22]. [12] uses a
continuously refined stratified sampling strategy to estimate
the accuracy of a classifier. However, it can not be used to
estimate recall which is often necessary for EM. [22] con-
siders the problem of constructing the optimal labeled set
for evaluating a given classifier given the size of the sample.
In contrast, we consider the different problem of construct-
ing a minimal labeled set, given a maximum allowable error
bound.

Subsequent steps in the EM process involve “zooming in”
on difficult-to-match pairs, revising the matcher, then match-
ing again. While very common in industrial EM, these steps
have received little or no attention in EM research. Corleone
shows how they can be executed rigorously, using only the
crowd.

Finally, crowdsourcing in general has received significant
recent attention [7]. In the database community, the work
[9, 20, 18] build crowdsourced RDBMSs. Many other works
crowdsource joins [17], find the maximal value [10], collect
data [25], match schemas [33], and perform data mining [1]
and analytics [16].

3. PROPOSED SOLUTION

We now discuss hands-off crowdsourcing and our proposed
Corleone solution.

Hands-Off Crowdsourcing (HOC): Given a problem P
supplied by a user U, we say a crowdsourced solution to P is
hands-off if it uses no developers, only a crowd of ordinary
workers (such as those on AMT). It can ask user U to do a
little initial setup work, but this should require no special
skills (e.g., coding) and should be doable by any ordinary
workers. For example, Corleone only requires a user U to

supply
1. two tables A and B to be matched,

2. a short textual instruction to the crowd on what it means
for two tuples to match (e.g., “these records describe
products sold in a department store, they should match
if they represent the same product”), and
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Figure 1: The Corleone architecture.

3. four examples, two positive and two negative (i.e., pairs
that match and do not match, respectively), to illustrate
the instruction. EM tasks posted on AMT commonly
come with such instruction and examples.

Corleone then uses the crowd to match A and B (sending
them information in (2) and (3) to explain what user U
means by a match), then returns the matches. As such,
Corleone is a hands-off solution. The following real-world
example illustrates Corleone and contrasts it with current
EM solutions.

ExaMPLE 3.1. Consider a retailer that must match tens
of millions of products between the online division and the
brick-and-mortar division (these divisions often obtain prod-
ucts from different sets of suppliers). The products fall into
500+ categories: toy, electronics, homes, etc. To obtain
high matching accuracy, the retailer must consider matching
products in each category separately, thus effectively having
500 EM problems, one per category.

Today, solving each of these EM problems (with or without
crowdsourcing) requires extensive developer’s involvement,
e.g., to write blocking rules, to create training data for a
learning-based matcher, to estimate the matching accuracy,
and to revise the matcher, among others. Thus current so-
lutions are not hands-off. One may argue that once created
and trained, a solution to an EM problem, say for toys, is
hands-off in that it can be automatically applied to match
future toy products, without using a developer. But this ig-
nores the initial non-negligible developer effort put into cre-
ating and training the solution (thus violating our defini-
tion). Furthermore, this solution cannot be transferred to
other categories (e.g., electronics). As a result, extensive
developer effort is still required for all 500+ categories, a
highly impractical approach.

In contrast, using Corleone, per category the user only has
to provide Items 1-3, as described above (i.e., the two tables
to be matched; the matching instruction which is the same
across categories; and the four illustrating examples which
virtually any crowdsourcing solutions would have to provide
for the crowd). Corleone then uses the crowd to execute all
steps of the EM workflow. As such, it is hands-off in that
it does not use any developer when solving an EM problem,
thus potentially scaling to all 500+ categories. O

We believe HOC is a general notion that can apply to many
problem types, such as entity matching, schema matching,
information extraction, etc. In this paper we will focus on
entity matching. Realizing HOC poses serious challenges, in
large part because it has been quite hard to figure out how
to make the crowd do certain things. For example, how can

the crowd write blocking rules (e.g., “if prices differ by at
least $20, then two products do not match”)? We need rules
in machine-readable format (so that we can apply them).
However, most ordinary crowd workers cannot write such
rules, and if they write in English, we cannot reliably con-
vert them into machine-readable ones. Finally, if we ask
them to select among a set of rules, we often can only work
with relatively simple rules and it is hard to construct so-
phisticated ones. Corleone addresses such challenges, and
provides a HOC solution for entity matching.

The Corleone Solution: Figure 1 shows the Corleone ar-
chitecture, which consists of four main modules: Blocker,
Matcher, Accuracy Estimator, and Difficult Pairs’ Locator.
The Blocker generates and applies blocking rules to A x B
to remove obviously non-matched pairs. The Matcher uses
active learning to train a random forest [4], then applies it
to the surviving pairs to predict matches. The Accuracy
Estimator computes the accuracy of the Matcher. The Dif-
ficult Pairs’ Locator finds pairs that the current Matcher
has matched incorrectly. The Matcher then learns a better
random forest to match these pairs, and so on, until the
estimated matching accuracy no longer improves.

As described, Corleone is distinguished in three important
ways. (1) All four modules do not use any developers, but
heavily use crowdsourcing. (2) In a sense, the modules use
crowdsourcing not just to label the data, as existing work has
done, but also to “create” complex rules (blocking rules for
the Blocker, negative rules for the Estimator, and reduction
rules for the Locator, see Sections 4-7). And (3) Corleone
can be run in many different ways. The default is to run
multiple iterations until the estimated accuracy no longer
improves. But the user may also decide to just run until a
budget (e.g., $300) has been exhausted, or to run just one
iteration, or just the Blocker and Matcher, etc.

In the rest of the paper we describe Corleone in detail.
Sections 4-7 describe the Blocker, Matcher, Estimator, and
Locator, respectively. We defer all discussions on how Cor-
leone engages the crowd to Section 8.

4. BLOCKING TO REDUCE SET OF PAIRS

We now describe the Blocker, which generates and applies
blocking rules. As discussed earlier, this is critical for large-
scale EM. Prior work requires a developer to execute this
step. Our goal however is to completely crowdsource it. To
do so, we must address the challenge of using the crowd to
generate machine-readable blocking rules.

To solve this challenge, Blocker takes a relatively small
sample S from A x Bj; applies crowdsourced active learning,
in which the crowd labels a small set of informative pairs
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Figure 2: (a)-(b) A toy random forest consisting of two deci-
sion trees, and (b) negative rules extracted from the forest.

in S, to learn a random forest matcher; extracts potential
blocking rules from the matcher; uses the crowd again to
evaluate the quality of these rules; then retain only the best
ones. We now describe these steps (see Algorithm 1 for the
pseudo code).

4.1 Generating Candidate Blocking Rules

1. Decide Whether to Do Blocking: Let A and B be
the two tables to be matched. Intuitively, we want to do
blocking only if A x B is too large to be processed efficiently
by subsequent steps. Currently we deem this is the case if
A X B exceeds a threshold tg, set to be the largest number
such that if after blocking we have tp tuple pairs, then we
can fit the feature vectors of all these pairs in memory (we
discuss feature vectors below), thus minimizing I/O costs for
subsequent steps. The goal of blocking is then to generate
and apply blocking rules to remove as many obviously non-
matched pairs from A X B as possible.

Before we go on, a brief remark on minimizing I/O costs.
One may wonder if the consideration of reducing 1/O costs
makes sense, given that Corleone already uses crowdsourcing,
which can take a long time. We believe it is still important
to minimize system time (including I/O time) for three rea-
sons. First, we use active learning, so the sooner the system
finishes an iteration, the faster it can go back to the crowd,
thereby minimizing total time. Second, depending on the
situation, the crowd time may or may not dominate the sys-
tem time. For example, if we pay 1 penny for a relatively
complex question, it may take hours or days before we get 3
workers to answer the question. But if we pay 8 pennies (a
rate that many crowdsourcing companies pay), it may take
just a few minutes, in which case the crowd time may just
be a fraction of the system time. Finally, when working at
the scale of millions of tuples per table, system time can be
quite significant, taking hours or days (on par or more than
crowd time).

2. Take a Small Sample S from A x B: We want
to learn a random forest F', then extract candidate block-
ing rules from it. Learning F' directly over A x B however
is impractical because this set is too large. Hence we will
sample a far smaller set S from A x B, then learn F' over
S. Naively, we can randomly sample tuples from A and B,

then take their Cartesian product to be S. Random tuples
from A and B however are unlikely to match. So we may
get no or very few positive pairs in S, rendering learning
ineffective.

To address this problem, we sample as follows. Let A be
the smaller table. We randomly sample ¢ /|A| tuples from
B (assuming that ¢p is much larger than |A|, please see be-
low), then take S to be the Cartesian product between this
set of tuples and A. Note that we also add the four examples
(two positive, two negative) supplied by the user to S. This
way, S has roughly tp pairs, thus having the largest possi-
ble size that still fits in memory, to ensure efficient learning.
Furthermore, if B has a reasonable number of tuples that
have matches in A, and if these tuples are distributed uni-
formly in B, then the above strategy ensures that S has a
reasonable number of positive pairs.

We now discuss the assumption that ¢p is much larger
than |A|. We make this assumption because we consider the
current targets of Corleone to be matching tables of up to 1
million tuples each, frequently less (e.g., in the range of 50K-
300K tuples per table). The vast majority of EM problems
that we have seen in industry fall into this range, and we
are not aware of any current publication or software that
successfully matches tables of 1 million tuples each, even
with using Hadoop (unless they do very aggressive blocking).
For this target range, tg, set to be 3M to 5M, is much larger
than |A|, the smaller table of the two.

That said, our eventual goal is to scale Corleone to tables of
millions of tuples. Hence, we are exploring better sampling
strategies. In Section 10.2.1 we report some preliminary
results in this direction.

Our experiments show that the current naive sampling
method works well on the current data sets (i.e., we success-
fully learned good blocking rules from the samples). Briefly,
they worked because there are often many good negative
rules (i.e., rules that find non-matched pairs) with good cov-
erage (i.e., can remove many pairs). Even a naive sampling
strategy can give the blocker enough data to find some of
these good negative rules, and the blocker just needs to find
some in order to do a good job at blocking.

3. Apply Crowdsourced Active Learning to S: In the
next step, we convert each tuple pair in S into a feature vec-
tor, using features taken from a pre-supplied feature library.
Example features include edit distance, Jaccard measure,
Jaro-Winkler, TF/IDF, Monge-Elkan, etc. [8]. Then we
apply crowdsourced active learning to S to learn a random
forest F'. Briefly, we use the two positive and two negative
examples supplied by the user to build an initial forest F,
use I to find informative examples in S, ask the crowd to
label them, then use the labeled examples to improve F', and
so on. A random forest is a set of decision trees [21]. We
use decision trees because blocking rules can be naturally ex-
tracted from them, as we will see, and we use active learning
to minimize the number of examples that the crowd must
label. We defer describing this learning process in detail to
Section 5.

4. Extract Candidate Blocking Rules from F: The
active learning process outputs a random forest F', which is
a set of decision trees, as mentioned earlier. Figures 2.a-b
show a toy forest with just two trees (in our experiments
each forest has 10 trees, and the trees have 8-655 leaves).
Here, the first tree states that two books match only if the



ISBNs match and the numbers of pages match. Observe that
the leftmost branch of this tree forms a decision rule, shown
as the first rule in Figure 2.c. This rule states that if the
ISBNs do not match, then the two books do not match. It is
therefore a negative rule, and can clearly serve as a blocking
rule because it identifies book pairs that do not match. In
general, given a forest F', we can extract all tree branches
that lead from a root to a “no” leaf to form negative rules.
Figure 2.c show all five negative rules extracted from the
forest in Figures 2.a-b. We return all negative rules as the
set of candidate blocking rules.

Algorithm 1 Pseudo-code for the Blocker

Input: Tables A and B (|A| < |BJ) , Set of user-provided labeled
pairs L
Output: Candidate tuple pairs C
/* 1. Decide whether to do blocking */
: if |[A x B| <tp then
return A X B // no need to block
end if
/* 2. Take sample S from A x B */
B, < Uniform sample of tg/|A| records from B
S+ (Ax Bs)UL
. /* 3. Apply crowdsourced active learning to S */
: T < L, M < Train initial random forest on T'
: repeat
E < Select g unlabeled examples from S
Label all the pairs in E using the crowd
T + TUE, M < Train a random forest on T'
: until M has stopped improving
. /* 4. Select top k blocking rules */
: X_ < Generate all the negative rules from M
: for all R € X_ do
Compute |cov(R, S)|, Py, = |cov(R,S) — T|/|cov(R, S)]|
: end for
: Sort the rules in X_ in decreasing order of Py, |cov(R,S)|
: V= Top k rules in X_
: /* 5. Jointly evaluate the rules in V*/
: Vo« V,VREV,X(R)=10
: while A # 0 do
Cov + Ugey, cov(R,S)
Q < Sample b pairs from Cov (without replacement)
Label @ using the crowd
for all p € Q do
VR € Vg, if p € cov(R, S), then X(R) = X(R) U {p}
end for
for all R € V, do
Estimate precision P and error ¢
if P> Ppin and € < €4, then
Va + V, — {R}
else if (P+¢) < Ppin or (€ < €mar and P < Py,;,) then
Vo Vo —{R}, V+V —{R}
end if
end for
: end while
: /* 6. Selecting the blocking rules J */
s J 0,8+ |S, Y« V
: while Y # 0 and |S| > (tg/|A X B|) - s do
Sort the rules in Y in decreasing order of v (v = < prec(R, S),
|cov(R, S)|, cost(R) >)
44: Pick the topmost rule R and remove it from Y
45: Y=Y U{R}, S+ S—cov(R,S)
46: end while
a7: /* 7. Applying the blocking rules J */
a8: C + 0
49: for all (a,b) € A X B do
50: while (R « getNext(Y)) # null do
51: if (a, b) satisfies R, continue to the next pair.
52: end while
53: C + CU{(a,b)} // if (a,b) survives all the rules in Y’
54: end for
55: return C
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4.2 Evaluating Rules using the Crowd

1. Select k& Blocking Rules: The extracted blocking
rules can vary widely in precision. So we must evaluate and
discard the imprecise ones. Ideally, we want to evaluate all
rules, using the crowd. This however can be very expen-
sive money-wise (we have to pay the crowd), given the large
number of rules (e.g., up to 8943 in our experiments). So
we pick only k rules to be evaluated by the crowd (current
k = 20).

Specifically, for each rule R, we compute the coverage of
R over sample S, cov(R, S), to be the set of examples in S
for which R predicts “no”. We define the precision of R over
S, prec(R,S), to be the number of examples in cov(R,S)
that are indeed negative divided by |cov(R, S)|. As Figure 3
shows, prec(R, S) = |cov(R, S) — G|/|cov(R, S)|. Of course,
we cannot compute prec(R, S) because we do not know the
true labels of examples in cov(R, S), and hence, we do not
know the set G. However, we can compute an upper bound
on prec(R,S). Let T be the set of examples in S that (a)
were selected during the active learning process in Step 3,
Section 4.1, and (b) have been labeled by the crowd as posi-
tive. Then clearly prec(R, S) < |cov(R, S) — T|/|cov(R, S)|,
since T' C G as can be seen in Figure 3. We then select the
rules in decreasing order of the upper bound on prec(R,S),
breaking tie using cov(R,S), until we have selected k rules,
or have run out of rules. Intuitively, we prefer rules with
higher precision and coverage, all else being equal.

2. Evaluate the Selected Rules Using the Crowd:
Let V be the set of selected rules. We now use the crowd to
estimate the precision of rules in V', then keep only highly
precise rules. Specifically, for each rule R € V, we execute
the following loop:

1. We randomly select b examples in cov(R,S), use the
crowd to label each example as matched / not matched,
then add the labeled examples to a set X (initially set to
empty).

2. Let |cov(R,S)| = m, |X| = n, and n_ be the num-
ber of examples in X that are labeled negative (i.e., not
matched) by the crowd. Then we can estimate the preci-
sion of rule R over S as P = n_/n, with an error margin

€= Zl_(;/g\/(W) (%) [29]. This means that the

true precision of R over S is in the range [P — €, P + ¢
with a ¢ confidence (currently set to 0.95).

3. If P > Ppin and € < €mqq (which are pre-specified thresh-
olds), then we stop and add R to the set of precise rules.
If (a) (P +€) < Pmin, or (b) € < €mae and P < Ppyin,
then we stop and drop R (note that in case (b) with con-
tinued evaluation P may still exceed Py,in, but we judge
the continued evaluation to be costly, and hence drop R).
Otherwise return to Step 1.

This incremental sampling in batches of size b eventually
stops. At this point we either have determined that R is a
precise rule, or we have dropped R as it may not be good
enough. Currently we set b = 20, Prin = 0.95, €42 = 0.05.
Asking the crowd to label an example is rather involved, and
will be discussed in Section 8.

It is important to emphasize that in the above evaluation
we do not take just a sample of size b. Instead, we go through
multiple iterations, in each we take a sample of size b. Put
other ways, we start with b pairs. If we find that these pairs
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« Initially: Cov = cov(R,,S) U cov(R,,S) U cov(R;,S) , #labeled = 0.
X, =X,=X;={},R={R, Ry, Ry}
Sample 20 pairs at a time from Cov, and label using the crowd.
* At #labeled = 60: IX,| = 35, IX,| = 40, IX,| = 40
P, +¢,>P;,, = Keep R}, update Cov = cov(R,.S) U cov(R;,S)
* At #labeled = 80: IX,| = 50, IX,| = 55
P +¢ <P, —> R={R},R;}, Cov=cov(R;,S)
« At #labeled = 100: IX;| =75,
Py +¢;> P, = Stop, return R = {R;, R;} (precise rules)

Figure 4: Example illustrating joint evaluation of rules.

do not allow us to compute rule precisions with sufficient
accuracy, then we take another b pairs, and add those to the
previous ones, and so on.

The above procedure evaluates each rule in V in isola-
tion. We can do better by evaluating all rules in V' jointly,
to reuse examples across rules. Specifically, let Ri,..., Ry
be the rules in V. Then we start by randomly selecting b
examples from the union of the coverages of R1,..., Ry, use
the crowd to label them, then add them to Xi,..., X, the
set of labeled examples that we maintain for the Ry, ..., Ry,
respectively. (For example, if a selected example is in the
coverage of only Ry and Ra, then we add it to X7 and X».)
Next, we use Xi,..., X, to estimate the precision of the
rules, as detailed in Step 2, and then to keep or drop rules,
as detailed in Step 3. If we keep or drop a rule, we re-
move it from the union, and sample only from the union of
the remaining rules. Lines 22 - 39 in Algorithm 1 show the
pseudocode for joint evaluation of rules.

ExamMprLE 4.1. To illustrate this joint evaluation algorithm,
suppose that we have a set of three rules V = Ri, Ra, R3 that
need to be evaluated. Figure 4 shows how the joint evalua-
tion algorithm proceeds. Initially, all the rules are “active”,
i.e., need to be evaluated, and thus, the set that we sample
from, Cov, is set to the union of coverages of all the three
rules, i.e., cov(R1,S) U cov(Rz,S) U cov(Rs,S).

At this point, we have not sampled any pairs thus, the
sample X; for each rule is empty and the number of labeled
pairs (#labeled) = 0. Now we start sampling 20 pairs at a
time from Cov, get labels for these pairs, and update X;, as
well as the estimated P; and €; for each rule R;. Suppose
that after sampling and labeling a total of 60 pairs, we have
35 pairs in X1 (the sample for R1), 40 of the pairs in Xo,
and 40 pairs in Xs. At this point, suppose that Ry salisifes
the condition for a “precise” rule (line 33 from Algorithm 1).
Clearly, we do not need to sample to evaluate R1 anymore.
Thus, we update the set Cov to only include coverages of Ro
and R3, i.e., Cov = cov(R2,S) U cov(Rs,S).

We now continue sampling from this updated set Cov.
Suppose that after sampling and labeling 20 more pairs (thus,
#labeled = 80) we have 50 pairs in X2 and 55 pairs in Xs.
At this point, suppose that we find that Rz is a “bad” rule
(i.e., satisfies the condition in line 35 from Algorithm 1). In
that case, we drop Rz, and only continue the evaluation of
Rs. Thus, we have V.= {R1, Rs}, and Cov = cov(Rs, S).
Now on sampling 20 more pairs from Cov, we will have 75

pairs in X3. At this point suppose Rs satisfies the condition
for a “precise” rule. Clearly we are done evaluating, and we
return {R1, Rs} as the set of precise rules. O

4.3 Applying Blocking Rules

Let Y be the set of rules in V' that have survived crowd-
based evaluation. We now consider which subset of rules R
in Y should be applied as blocking rules to A x B.

This is highly non-trivial. Let Z(R) be the set of pairs
obtained after applying the subset of rules R to A x B. If
|Z(R)| falls below threshold ¢p (recall that our goal is to
try to reduce A X B to tp pairs, if possible), then among all
subsets of rules that satisfy this condition, we will want to
select the one whose set Z(R) is the largest. This is because
we want to reduce the number of pairs to be matched to tg
(at which point we can fit all the pairs into main memory),
but do not want to go too much below that, because then we
run the risk of eliminating many true positive pairs. On the
other hand, if no subset of rules from Y can reduce A x B
to below tp, then we will want to select the subset that
does the most reduction, because we want to minimize the
number of pairs to be matched.

One may wonder why we do not want to apply all block-
ing rules. For example, if a rule can reduces the Cartesian
product by 80%, why not applying it? The answer is that
blocking rules are often not perfect. That is, they often
remove not just negative pairs, but some positive pairs too.
Unfortunately, a priori there is no good way to evaluate how
good a blocking rule is (our precision calculations give only
estimates of the true precisions, of course). So if one’s goal
is to keep as many positive pairs as one can (because recall
is important), then one may choose not to apply a blocking
rule even though it can filter out a large number of negative
pairs.

For the above reason, we have found that in practice peo-
ple typically initiate the blocking process only if the original
number of pairs is too large to be processed in a reasonable
amount of time, and then they do blocking only to the extent
that the resulting data set can now be processed practically.
They do not apply all blocking rules that they can write, for
fear of accidentally removing too many positive pairs.

Returning to our current setting, we cannot execute all
subsets of Y on A x B, in order to select the optimal subset.
So we use a greedy solution. First, we rank all rules in Y
based on the precision prec(R,S), coverage cov(R,S), and
the tuple cost. The tuple cost is the cost of applying rule
R to a tuple, primarily the cost of computing the features
mentioned in R. We can compute this because we know the
cost of computing each feature in Step 3, Section 4.1. Next,
we select the first rule, apply it to reduce S to S’, re-estimate
the precision, coverage, and tuple cost of all remaining rules
on §’, re-rank them, select the second rule, and so on. We
repeat until the set of selected rules when applied to S has
reduced it to a set of size no more than |S|*(tg/|A x B|), or
we have selected all rules. We then apply the set of selected
rules to A X B (using a Hadoop cluster), to obtain a smaller
set of tuple pairs to be matched. This set is passed to the
Matcher, which we describe next.

S. TRAINING & APPLYING A MATCHER

Let C be the set of tuple pairs output by the Blocker.
We now describe Matcher M, which applies crowdsourcing
to learn to match tuple pairs in C. We want to maximize
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the matching accuracy, while minimizing the crowdsourcing
cost. To do this, we use active learning. Figure 5 shows the
overall workflow for learning the matcher. Specifically, we
train an initial matcher M, use it to select a small set of
informative examples from C, ask the crowd to label the ex-
amples, use them to improve M, and so on. A key challenge
is deciding when to stop training M. Excessive training
wastes money, and yet surprisingly can actually decrease,
rather than increase the matcher’s accuracy. We now de-
scribe matcher M and our solution to the above challenge.

5.1 Training the Initial Matcher

We begin by converting all examples (i.e., tuple pairs) in
C into feature vectors, for learning purposes. This is done at
the end of the blocking step: any surviving example is im-
mediately converted into a feature vector, using all features
that are appropriate (e.g., no TF/IDF features for numeric
attributes) and available in our feature library. Figure 6
shows an illustrative example from the books domain. Note
that in the rest of the paper, we use the terms example,
pair, and feature vector interchangeably, when there is no
ambiguity.

EXAMPLE 5.1. Suppose we have two tables A and B to be
matched, each containing book tuples. Fach tuple contains 6
attributes: id, isbn, title, publisher, year, and #pages (num-
ber of pages). Suppose that blocking is triggered in this case.
Figure 6.b shows the canddiate set C output by the blocking
step. C contains a small number of potential matching pairs
of tuples from A and B. Suppose that Corleone selects 5 fea-
tures to compute for each pair: isbn_match, title_match, pub-
lisher_match, year_match, and #pages_match. FEach of these
features are binary, i.e., if the two values exactly match the
feature evaluates to 1, if not then 0.1 Next, Corleone com-
putes all the 5 features for each pair in C, to get the feature
vectors, as shown in Figure 6.c. This table of feature vectors
is now used in the learning step.

'In practice, our feature library contains a variety of exact as
well as fuzzy matching features, we only use simple features
here to illustrate.

Next, we use all labeled examples available at that point
(supplied by the user or labeled by the crowd) to train an ini-
tial classifier that when given an example (z,y) will predict
if x matches y. Currently we use an ensemble-of-decision-
trees approach called random forest [4]. In this approach,
we train k decision trees independently, each on a random
portion (typically set at 60%) of the original training data.
When training a tree, at each tree node we randomly select
m features from the full set of features fi,..., fn, then use
the best feature among the m selected to split the remain-
ing training examples. The values k and m are currently
set to be the default 10 and log(n) + 1, respectively. Once
trained, applying a random forest classifier means applying
the k decision trees, then taking the majority vote.

To illustrate, going back to the book examples (Example
5.1), Figure 2 shows a sample random forest that could be
learned from this dataset.

5.2 Consuming the Next Batch of Examples

Once matcher M has trained a classifier, M evaluates the
classifier to decide whether further training is necessary (see
Section 5.3). Suppose M has decided yes, then it must select
new examples for labeling.

In the simplest case, M can select just a single example
(as current active learning approaches often do). A crowd
however often refuses to label just one example, judging it
to be too much overhead for little money. Consequently,
M selects g examples (currently set to 20) for the crowd
to label. Intuitively, M wants these examples to be “most
informative”. A common way to measure the “informative-
ness” of an example e is to measure the disagreement of the
component classifiers using entropy [23]:

entropy(e) = — [Py (e) - In(Py (€)) + P—(e) - In(P_(e))], (1)

where P (e) and P_(e) are the fractions of the decision trees
in the random forest that label example e positive and neg-
ative, respectively. The higher the entropy, the stronger the
disagreement, and the more informative the example is.

Thus, M selects the p examples (currently set to 100) with
the highest entropy from set C (excluding those that have
been selected in the previous iterations). Next, M selects ¢
examples from these p examples, using weighted sampling,
with the entropy values being the weights. This sampling
step is necessary because M wants the g selected examples
to be not just informative, but also diverse. The following
example illustrates the weighted sampling step.

EXAMPLE 5.2. To keep the example simple, suppose that
p =5 and q = 2. Suppose the top 5 pairs with the highest
entropy are as follows: p1 (0.6), p2 (0.6), p3 (0.4), pa (0.4),
ps (0.4), where the number in parentheses shows the entropy
for the pair. Now we randomly draw a total of 2 pairs, draw-
ing one pair at a time from these 5 pairs. However, each pair
does not have an equal chance of getting picked. The proba-
bility of picking a pair is proportional to its entropy. Thus,
when drawing the first pair, the probability for picking p1 will
be 0.6/(0.6 + 0.6 + 0.4 + 0.4 + 0.4) = 1/4. Similarly, the
probability of picking p2 will be 1/4. However, for ps, pa,
and ps the probability of being picked will be 1/6 each.

In the next step, M sends the ¢ selected examples to the
crowd to label (described in Section 8), adds the labeled
examples to the current training data, then re-trains the
classifier.
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At this point one may wonder how expensive entropy com-
putation is. We note that this computation requires just a
linear scan over the pairs in the candidate set (i.e., those
pairs surviving the blocking step). As such, its time (per
iteration) grows proportional to the candidate set size, and
has stayed in the range of seconds in our experiments. For
example, on the Product data set, on average the candidate
set’s size is 200K, entropy computation time is about 2.4 sec-
onds per iteration, and total entropy computation time is 2
minutes (for 50 iterations, see the experiment section). Of
course, on large data sets (and thus larger candidate sets),
this time will grow. Fortunately, this step is trivially paral-
lelizable.

5.3 Deciding When to Stop

Recall that matcher M trains in iteration, in each of which
it pays the crowd to label ¢ training examples. We must de-
cide then when to stop the training. Interestingly, more it-
erations of training not only cost more, as expected, but
can actually decrease rather than increase M’s accuracy.
This happens because after M has reached peak accuracy,
more training, even with perfectly labeled examples, does
not supply any more informative examples, and can mislead
M instead. This problem became especially acute in crowd-
sourcing, where crowd-supplied labels can often be incorrect,
thereby misleading the matcher even more.

To address this problem, we develop a solution that tells
M when to stop training. Our solution defines the “confi-
dence” of M as the degree to which the component decision
trees agree with one another when labeling. We then moni-
tor M and stop it when its confidence has peaked, indicating
that there are no or few informative examples left to learn
from.

Specifically, let con f(e) = 1—entropy(e), where entropy(e)
is computed as in Equation 1, be the confidence of M over
an example e. The smaller the entropy, the more decision
trees of M agree with one another when labeling e, and so
the more confident M is that it has correctly labeled e.

Before starting the active learning process, we set aside a
small portion of C' (currently set to be 3%), to be used as a
monitoring set V. We monitor the confidence of M over V,
defined as conf(V) = > .y conf(e)/|V]. We expect that
initially conf(V) is low, reflecting the fact that M has not
been trained sufficiently, so the decision trees still disagree
a lot when labeling examples. As M is trained with more
and more informative examples (see Section 5.2), the trees
become more and more “robust”, and disagree less and less.
So conf(V) will rise, i.e., M is becoming more and more
confident in its labeling. Eventually there are no or few
informative examples left to learn from, so the disagreement
of the trees levels off. This means conf(V) will also level
off. At this point we stop the training of matcher M.

We now describe the precise stopping conditions, which,

as it turned out, was quite tricky to establish. Ideally, once
confidence conf(V) has leveled off, it should stay level. In
practice, additional training examples may lead the matcher
astray, thus reducing or increasing conf(V'). This is exac-
erbated in crowdsourcing, where the crowd-supplied labels
may be wrong, leading the matcher even more astray, thus
causing drastic “peaks” and “valleys” in the confidence line.
This makes it difficult to sift through the “noise” to discern
when the confidence appears to have peaked. We solve this
problem as follows.

First, we run a smoothing window of size w over the confi-
dence values recorded so far (one value per iteration), using
average as the smoothing function. That is, we replace each
value = with the average of the w values: (w — 1)/2 values
on the left of =, (w — 1)/2 values on the right, and z it-
self. (Currently w = 5.) We then stop if we observe any of
the following three patterns over the smoothed confidence
values:

e Converged confidence: In this pattern the confidence
values have stabilized and stayed within a 2¢ interval (i.e.,
for all values v, |v — v*| < € for some v*) over Nconverged
iterations. We use € = 0.01 and nconvergea = 20 in our
experiments (these parameters and those described below
are set using simulated crowds). Figure 7.a illustrates this
case. When this happens, the confidence is likely to have
converged, and unlikely to still go up or down. So we stop
the training.

e Near-absolute confidence: This pattern is a special
case of the first pattern. In this pattern, the confidence is
at least 1 — €, for npgn consecutive iterations (see Figure
7.b). We currently use nn;gn = 3. When this pattern hap-
pens, confidence has reached a very high, near-absolute
value, and has no more room to improve. So we can stop,
not having to wait for the whole 20 iterations as in the
case of the first pattern.

e Degrading confidence: This pattern captures the sce-
narios where the confidence has reached the peak, then
degraded. In this pattern we consider two consecutive
windows of size Nngegrade, and find that the maximal value
in the first window (i.e., the earlier one in time) is higher
than that of the second window by more than € (see Fig-
ure 7.b). We currently use ngegrade = 15. We have exper-
imented with several variations of this pattern. For ex-
ample, we considered comparing the average values of the
two windows, or comparing the first value, average value,
and the last value of a (relatively long) window. We found
however that the above pattern appears to be the best at
accurately detecting degrading confidence after the peak.

Afterward, M selects the last classifier before degrading to
match the tuple pairs in the input set C.

6. ESTIMATING MATCHING ACCURACY

After applying matcher M, Corleone estimates M’s accu-
racy. If this exceeds the best accuracy obtained so far, Cor-
leone continues with another round of matching (see Section
7). Otherwise, it stops, returning the matches together with
the estimated accuracy. This estimated accuracy is espe-
cially useful to the user, as it helps decide how good the
crowdsourced matches are and how best to use them. We
now describe how to estimate the matching accuracy.



6.1 Current Methods and Their Limitations

To motivate our method, we begin by describing current
evaluation methods and their limitations. Suppose we have
applied matcher M to a set of examples C. To estimate
the accuracy of M, a common method is to take a random
sample S from C, manually label S, then compute the pre-
cision P = nep/npp and the recall R = nyp/nap, where (a)
npp is the number of predicted positives: those examples in
S that are labeled positive (i.e., matched) by M; (b) ngp is
the number of actual positives: those examples in S that are
manually labeled as positive; and (c) n¢p is the number of
true positives: those examples in S that are both predicted
positive and actual positive.

Let P* and R* be the precision and recall on the set C
(computed in an analogous fashion, but over C, not over S).
Since S is a random sample of C, we can report that with ¢
confidence, P* € [P — ¢y, P+ ¢,] and R* € [R— €, R+ ],
where the error margins are defined as

P(1—-P nt, —n
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where n;, and n,, are the number of actual positives and
predicted positives on C, respectively, and Z;_s/5 is the (1—
0/2) percentile of the standard normal distribution [29].

As described, the above method has a major limitation:
it often requires a very large sample S to ensure small error
margins, and thus ensuring meaningful estimation ranges for
P* and R*. For example, assuming R* = 0.8, to obtain a
reasonable error margin of, say ¢, = 0.025, using Equation
3 we can show that n.p, > 984 (regardless of the value for
nyp). That is, S should contain at least 984 actual positive
examples.

The example universe for EM however is often quite skewed,
with the number of positive examples being just a small frac-
tion of the total number of examples (e.g., 0.06%, 2.64%, and
0.56% for the three data sets in Section 9, even after block-
ing). A fraction of 2.64% means that S must contain at least
37273 examples, in order to ensure at least 984 actual pos-
itive examples. Labeling 37000+ examples however is often
impractical, regardless of whether we use a developer or the
crowd, thus making the above method inapplicable.

When finding too few positive examples, developers of-
ten apply heuristic rules that eliminate negative examples
from C, thus attempting to “reduce” C into a smaller set
C:1 with a far higher “density” of positives. They then ran-
domly sample from C1, in the hope of boosting n., and nyp,
thereby reducing the margins of error. This approach, while
promising, is often carried out in an ad-hoc fashion. As far
as we know, no strategy on how to do reduction systemat-
ically has been reported. In what follows, we show how to
do this in a rigorous way, using crowdsourcing and negative
rules extracted from the random forest.

6.2 Crowdsourced Estimation with Corleone

Our solution incrementally samples from C. If it detects
data skew, i.e., too few positive examples, it performs reduc-
tion (i.e., using rules to eliminate certain negative examples
from C) to increase the positive density, then samples again.
This continues until it has managed to estimate P and R

within a given margin of error €,,q,. Our solution does not
use any developer. Rather, it uses the crowd to label ex-
amples in the samples, and to generate reduction rules, as
described below.

1. Generating Candidate Reduction Rules: When
applied to a set of examples (e.g., C), reduction rules elimi-
nate negative examples, thus increasing the density of pos-
itive examples in the set. As such, they are conceptually
the same as blocking rules in Section 4. Those rules cannot
be used on C, however, because they are already applied to
A X B to generate C.

Instead, we can generate candidate reduction rules exactly
the way we generate blocking rules in Section 4, except for
the followings. First, in the blocking step in Section 4 we
extract the rules from a random forest trained over a rela-
tively small sample S. Here, we extract the rules from the
random forest of matcher M, trained over the entire set C.
Second, in the blocking step we select top k rules, evalu-
ate them using the crowd, then keep only the precise rules.
Here, we also select top k rules, but we do not yet evaluate
them using the crowd (that will come later, if necessary).
We return the selected rules as candidate reduction rules.

2. Repeating a Probe-Eval-Reduce Loop: We then
perform the following online search algorithm to estimate
the accuracy of matcher M over C'

1. Enumerating our options: To estimate the accuracy, we
may execute no reduction rule at all, or just one rule, or
two rules, and so on. Let R = {R1,...,Rn} be the set
of candidate reduction rules. Then we have a total of 2™
possible options, each executing a subset of rules in R.

2. Estimating and selecting the lowest-cost option: A priori
we do not know which option is the best. Hence, we
perform a limited sampling of C (the probe operation) to
estimate the cost of each option (to be discussed below),
then select the one with the lowest cost.

3. Partially evaluating the selected option: Without loss of
generalization, suppose we have selected the option that
executes rules D = {Ru,...,Rq}. Fully evaluating this
option means (a) using the crowd to evaluate rules Ry, .. .,
exactly the way we evaluate blocking rules in Section 4.2
(the eval operation), (b) keeping only good, i.e., highly
precise, rules, (c) executing these rules on C to reduce it,
thereby increasing the positive density, then (d) sampling
from the reduced C until we have managed to estimate
P and R within the margin of error €maqz.

Instead of fully evaluating the selected option, we do mid-
execution optimization. Specifically, after executing (a)-
(c), we do not do (d). Instead we return to Step 1 to re-
enumerate our options. Note that now we have a reduced
set C' (because we have applied the good rules in D), and
also a reduced set R (because we have removed all rules
in D from R).

The above strategy is akin to mid-query re-optimization
in RDBMSs, where given a SQL query, we select a good
execution plan, partially evaluate it, then use the newly
gathered statistics to re-optimize to find a potentially bet-
ter execution plan. Similarly, in our setting, once we have
selected a plan, we perform a partial evaluation by exe-
cuting Steps (a)-(c). At this point we may have gained
more information, such as which rules are bad. So we
skip Step (d), and return to Step 1 to see if we can find

Rch



Algorithm 2 Pseudo-code for the estimate operation

Algorithm 3 Pseudo-code for probe operation

Input: Original candidate set C', Reduced candidate set C’, Matcher
M
Output: P, €,, R, €,

1: /* We first sample from C’ until the recall error is below €nqz */
2: S =0,n0p =0,n¢p =0, n=0
3: recallDone = false
4: while (not recallDone) do
5: Uniformly draw next batch B of b examples from (C’ — S)
6: Get label [(t) for each example t € B, from the crowd
7 S=SUB,n=n+b
8: for all t € B do
9: if (I(t) = +) then
10: Nap = Nap + 1
11: if M(t) = + then
12: Ntp = Ngp + 1
13: end if
14: end if
15: end for
16: MaTap = Nap + |C’'| — n
n, R(1-R mazap—na
17: R= nai’ €r = Z1—6/2\/ ("ap )) ( m(m};p_lp)
18: if €, < €mae then
19: recallDone = true
20: end if

21: end while

22: /* Now we check if precision error is already below €,qz, if yes
we are done */

23: Spp = M(S), npp = |Sppl|, done = false /* here M(A) denotes
{feA:M@E) =4} */

= M) — . tp
24 Q= ey P=a« pp

P(l—P)) "pp~"PP

“npp ni,—1

26: if € < €mar then

27: done = true

28: end if

29: /* If not done, then sample more from (M (C’) — Spp)*/
30: while (not done) do

31: Uniformly draw next batch B of b examples from (M (C’)—Sp;)
32: Get label I(t) for each example t € B, from the crowd
33: Spp = Spp U B, npp =npp + 0

34: for allt € B do

25 €p = - Zy1_5/2

35: if (I(t) = +) then

36: Ngp = Ngp + 1

37: end if

38: end for

39: Compute P and €, as in 24 and 25.
40: if €, < €maz then

41: done = true

42: end if

43: end while
44: return P, €,, R, €,

a potentially better plan. Eventually we do have to exe-
cute Step (d), but only after we have concluded that we
cannot find any potentially better plan.

4. Termination: If we have not terminated earlier (e.g., in
Step 2, after sampling of C, see below), then eventu-
ally we will select the option of using no rules (in the
worst-case scenario this happens when we have applied
all rules). If so, we sample until we have managed to
estimate P and R within a margin of error €mqz. Algo-
rithm 2 shows the pseudo-code for this estimation step
that terminates the algorithm.

All that is left is to describe how we estimate the costs
of the options in Step 2. Without loss of generalization,
consider an option that executes rules Q@ = {Ri,..., Rq}.
We estimate its cost to be (1) the cost of evaluating all rules
in Q, plus (2) the cost of sampling from the reduced set C
after we have applied all rules in @ (note that we are making
an optimistic assumption here that all rules in Q turn out
to be good).

Currently we estimate the cost in (1) to be the sum of

Input: Candidate set C, Matcher M, €maqx

Output: Density of actual positives d
1: Uniformly sample b examples from C, and label them using the
crowd to create sample S.

: Ngp < Number of actual positives in S

n¢p < Number of true positives in S

npp < Number of predicted positives in S

Compute P, R, €,, and €, (using equations 2)

if €5 < €mar and €, < €maq, then stop the estimation process.

RN

n
: return d = ‘gf’

the costs of evaluating each individual rule. In turn, the
cost of evaluating a rule is the number of examples that
we would need to select from its coverage for the crowd to
label, in order to estimate the precision to be within €;qx
(see Section 4.2). We can estimate this number using the
formulas for precision P and error margin € given in Section
4.2.

Suppose after applying all rules in Q, C' is reduced to set
C’. We estimate the cost in (2) to be the number of examples
we need to sample from C’ to guarantee margin of error
€maz- If we know the positive density d’ of C’, we estimate
the above number. It is easy to prove that d’ = d*|C|/|C’|,
where d is the positive density of C' (assuming that the rules
are 100% precise).

To estimate d, we perform a “limited sampling”, i.e., the
probe operation, by sampling b examples from the set C' (cur-
rently b = 50). Algorithm 3 shows the pseudo-code for the
probe operation. We use the crowd to label these examples,
then estimate d to be the fraction of examples being labeled
positive by the crowd. (We note that in addition, we also use
these labeled b examples to estimate P, R, ¢y, €, as shown
in Section 6.1, and immediately exit if €, and €, are already
below €maz.) We now present an example to illustrate the
algorithm.

EXAMPLE 6.1. Suppose that we have a candidate set C
containing 50000 pairs, and we want to estimate the preci-
sion and recall of a given matcher M over the set C. Figure
8 shows a step-by-step execution of the crowdsourced esti-
mation algorithm for this example. Suppose that generat-
ing top rules from M gives us a set R containing 3 rules
R = {Ri1,R2,Rs}. As the first step, Corleone enumerates
all the options, i.e., lists all the subsets of R. Next, it per-
forms the probe operation, taking a sample S of size 50 to
estimate the density of positives d. Suppose d is 0.01 (i.e.
1%).

It then estimates the expected cost (i.e. number of ex-
amples to be labeled) for each of the options listed, starting
from {}, i.e., the option of applying zero rules to reduce,
and sampling all the way from the current candidate set.
As explained earlier, the estimated cost of an option Q =
{R1,...,Rq} is ¢(Q) = cr + ¢s, where ¢, is the cost of eval-
uating all the rules in Q, cs is the cost of sampling from the
reduced set after applying all the rules in Q. Here ¢, = q-c1
where q is the number of rules in Q, and cs = c2 - (1/d")
where cz is the number of positives we need in the sample to
guarantee an error margin below €may, and d' is the expected
positive density in the reduced set we will obtain on applying
all the rules in Q.

To illustrate how the cost is computed, let us consider Q =
{}. In this case ¢, =0 as ¢ =0, and d’' = d, since C is not
reduced at all. Suppose, c1 = 70 and co = 392. Thus, we
get c({}) = 04 392(1/0.01), s.e. 39.2k.

Next, Corleone picks the option with the lowest cost, which
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Figure 8: Example to illustrate the estimation process.

is {R1, R2} in this case, as shown in Figure 8. It then eval-
uates the selected rules. Suppose Ri1 passes the test for pre-
cision, but Ro fails. In this case, it applies only the rule Ry
to reduce C, and removes R1 and Rz from the set of rules
R. After the reduction, C' contains 25000 pairs as shown
in Figure 8. At this point, R = {Rs}. Now Corleone again
enumerates the options and performs the probe operation to
estimate the cost of each option. We only have two possible
options either to use no rules ({}) and sample all the way
from current C, or {Rs}, i.e., to evaluate R3 and if it is
precise, apply it to reduce C. The second option has lower
expected cost (5.3k as opposed to 13k), and thus, the option
{Rs3} gets picked. Neat, the algorithm evaluates Rs to find
that it is precise. It then applies R to reduce C further. At
this stage, we are left with a candidate set C of size 10000,
and no more rules to reduce. Thus, the algorithm picks the
default option {}, and samples from C until it has estimated
both precision and recall, within €maqz error margin. This
terminates the estimation step.

Correctness of the Estimates: In the crowdsourced es-
timation algorithm above, the final estimates for precision
and recall over the original candidate set C' are computed in
the sampling step at the end (lines 17, 24, and 25 from Algo-
rithm 2). However, the sample here is drawn only from the
reduced candidate set C’. Since this sampling procedure is
the same as described in 6.1, estimating precision and recall
over (' is straightforward. Thus, to prove the correctness of
the equations from lines 17, 24, and 25, we simply need to
show how to estimate the precision and recall over original
candidate set C, using estimates over reduced set C’. This
is exactly what we do next.

PROPOSITION 1. Let M be a given binary classifier. Let
P and R be the precision and recall values of M on the candi-
date set of matching pairs C. Let P’ and R’ be the precision
and recall values of M on the reduced set C' obtained at the
end of crowdsourced estimation with Corleone. With the as-
sumption that all the rules used for reducing C are perfect,
i.e., they do not eliminate any positive pairs, and the labels
provided by the crowd are perfect, we have:

R=R P=qa P

[M(Ch
= M) @
X predicted as positive by M.

PROOF. We first show that Matches(C') = Matches(C),
where Matches(X) returns the set of actual matching pairs
in set X. We then derive the expressions for recall and
precision of f on the set C.

where o = and M (X) returns the set of pairs in set

In the crowdsourced estimation algorithm, we begin with
C' as the candidate set, and then iteratively apply reduc-
tion rules on the candidate set to finally obtain C’. Since
each of these reduction rules retain all the positive examples
in C, C' must contain all the positive examples in C, i.e.,
Matches(C") = Matches(C).

Let G denote this set of all the matching pairs in C. We
have, G = Matches(C') = Matches(C).

Given G as the set of actual positives in C' (as well as C”),
M(C) as the set of predicted positives in C, and M(C’) as
the set of predicted positives in C’, we can show that (a) for
the set C, |Actual positives| = |G|, |Predicted positives| =
|M(C)|, |True positives| = |M(C) N G|, and (b) for the
set C', |Actual positives| = |G|, |Predicted positives| =
[M(C")|, |Truepositives| = |[M(C") N G|.

Using the definitions for precision and recall, from Section
6.1, we can now write R, R’, P and P’ as follows:

_IM(@)nG] L IM(C) NG
= |G| B = G| (4)
_IM(O)nG|  _ IM(C) NG
P="nror " = o) (5)

Let C" = C\C’. We can write, M(C) = M(C")UM(C"),
where M (C"') is the set of predicted positives in C”. Thus,
M(C)YNG = (M(C)YUM(C")NG, ie.,

M(CYNG = (M(IC")YNG)U(M(C")NG).

However, G is completely contained inside C’. Thus,

M(C")N G = (. Therefore,

MC)NG=MCYNG
Substituting this in the equations 4 and 5, we get:

/ IM(C)]
R=R,p=1""p
|M(C)]

O

7. ITERATING TO IMPROVE

In practice, entity matching is not a one-shot operation.
Developers often estimate the matching result, then revise
and match again. A common way to revise is to find tu-
ple pairs that have proven difficult to match, then modify
the current matcher, or build a new matcher specifically for
these pairs. For example, when matching e-commerce prod-
ucts, a developer may find that the current matcher does
reasonably well across all categories, except in Clothes, and
so may build a new matcher specifically for Clothes prod-
ucts.

Corleone operates in a similar fashion. It estimates the
matching accuracy (as discussed earlier), then stops if the
accuracy does not improve (compared to the previous itera-
tion). Otherwise, it revises and matches again. Specifically,
it attempts to locate difficult-to-match pairs, then build a
new matcher specifically for those. The challenge is how to
locate difficult-to-match pairs. Our key idea is to identify
precise positive and negative rules from the learned random
forest, then remove all pairs covered by these rules (they are,
in a sense, easy to match, because there already exist rules
that cover them). We treat the remaining examples as dif-
ficult to match, because the current forest does not contain
any precise rule that covers them. We now describe this idea
in detail.



1. Extract Positive & Negative Rules: Let F' be the
random forest learned by matcher M. In Section 4 we have
discussed how to extract negative rules from F, select top
rules, use the crowd to evaluate them, then keep only the
highly precise ones. Here we do exactly the same thing to
obtain k highly precise negative rules (or as many as F' has).
Note that some of these rules might have been used in esti-
mating the matching accuracy (Section 6).

We then proceed similarly to obtain k highly precise pos-
itive rules (or as many as F has). A positive rule is similar
to a negative rule, except that it is a path from a root to a
“yes” leaf node in F. That is, if it applies to a pair, then it
predicts that the pair match.

2. Apply Rules to Remove Easy-to-Match Pairs:
Let £ be the set of positive and negative rules so obtained.
Recall that in the current iteration we have applied matcher
M to match examples in set C. We now apply all rules in €
to C, to remove examples covered by any of these rules. Let
the set of remaining examples be C’. As mentioned earlier,
we treat these examples as difficult to match, because they
have not been covered by any precise (negative or positive)
rule in the current matcher M.

3. Learn a New Matcher for Surviving Pairs: In
the next iteration, we learn a new matcher M’ over the
set C’, using the same crowdsourced active learning method
described in Section 5 , and so on. In the end we use the
so-constructed set of matchers to match examples in C. For
example, if we terminate after two iterations, then we use
matcher M to make prediction for any example in C'\ C’
and M’ for any example in C'.

Note that if the set C’ is too small (e.g., having less than
200 examples), or if no significant reduction happens (e.g.,
|C’] > 0.9 % |C]), then we terminate without learning a new
matcher M’ for C’.

8. ENGAGING THE CROWD

As described so far, Corleone heavily uses crowdsourcing.
In particular, it engages the crowd to label examples, to
(a) supply training data for active learning (in blocking and
matching), (b) supply labeled data for accuracy estimation,
and (c) evaluate rule precision (in blocking, accuracy estima-
tion, and locating difficult examples). We now describe how
Corleone engages the crowd to label examples, highlighting
in particular how we address the challenges of noisy crowd
answers and example reuse.

1. Crowdsourcing Platforms: Currently we use Ama-
zon’s Mechanical Turk (AMT) to label the examples. How-
ever we believe that much of what we discuss here will also
carry over to other crowdsourcing platforms. To label a
batch of examples, we organize them into HITs (i.e., “Hu-
man Intelligence Tasks”), which are the smallest tasks that
can be sent to the crowd. Crowd often prefer many exam-
ples per HIT, to reduce their overhead (e.g., the number of
clicks). Hence, we put 10 examples into a HIT. Within each
HIT, we convert each example (z,y) into a question “does
x match y?”. Figure 9 shows a sample question. Currently
we pay 1-2 pennies per question, a typical pay rate for EM
tasks on AMT.

2. Combining Noisy Crowd Answers: Several solu-
tions have been proposed for combining noisy answers, such
as golden questions [15] and expectation maximization [11].
They often require a large number of answers to work well,

Do these products match?
Product 1 Product 2
Product
image
Brand Kingston Kingston
Kingston HyperX 4GB Kit | Kingston HyperX 12GB
Name 2% 2GB ... Kit 3 x 4GB ...
Model no. KHX1800C9D3K2/4G KHX1600C9D3K3/12GX
F 0 Memory size 4 GB 03 x4 GB 1600 MHz
ealres |, 5y 2GB 667 MHz ... 0 HyperX module with ...
( Yes ) ([ N ) ( Notsure )

Figure 9: A sample question to the crowd.

and it is not yet clear when they outperform simple solu-
tions, e.g., majority voting [26]. Hence, we started out using
the 241 majority voting solution: for each question, solicit
two answers; if they agree then return the label, otherwise
solicit one more answer then take the majority vote. This
solution is commonly used in industry and also by recent
work [9, 32, 17].

Soon we found that this solution works well for supplying
training data for active learning, but less so for accuracy
estimation and rule evaluation, which are quite sensitive to
incorrect labels. Thus, we need a more rigorous scheme than
2+1. We adopted a scheme of “strong majority vote”: for
each question, we solicit answers until (a) the number of an-
swers with the majority label minus that with the minority
label is at least 3, or (b) we have solicited 7 answers. In both
cases we return the majority label. For example, 4 positive
and 1 negative answers would return a positive label, while
4 negative and 3 positive would return negative.

The strong majority scheme works well, but is too costly
compared to the 241 scheme. So we improved it further,
by analyzing the importance of different types of error, then
using strong majority only for the important ones. Specif-
ically, we found that false positive errors (labeling a true
negative example as positive) are far more serious than false
negative errors (labeling a true positive as negative). This
is because false positive errors change nqp, the number of
actual positives, which is used in estimating R = ntp/nap
and in Formula 3 for estimating ¢,. Since this number ap-
pears in the denominators, a small change can result in a
big change in the error margins, as well as estimated R and
hence Fi. The same problem does not arise for false nega-
tive errors. Based on this analysis, we use strong majority
voting only if the current majority vote on a question is
positive (thus can potentially be a false positive error), and
use 241 otherwise. We found empirically that this revised
scheme works very well, at a minimal overhead compared to
the 2+1 scheme.

3. Re-using Labeled Examples: Since Corleone engages
the crowd to label at many different places (blocking, match-
ing, estimating, locating), we cache the already labeled ex-
amples for reuse. When we get a new example, we check the
cache to see if it is there and has been labeled the way we
want (i.e., with the 241 or strong majority scheme). If yes
then we can reuse without going to the crowd.
Interestingly this simple and obviously useful scheme poses



Datasets Table A | Table B | # of Matches
Restaurants 533 331 112
Citations 2616 64263 5347
Products 2554 22074 1154

Table 1: Data sets for our experiment.

complications in how we present the questions to the crowd.
Recall that at any time we typically send 20 examples, packed
into two HITs (10 questions each), to the crowd. What hap-
pens if we find 15 examples out of 20 already in the cache.
It turns out we cannot send the remaining 5 examples as a
HIT. Turkers avoid such “small” HITs because they contain
too few questions and thus incurs a high relative overhead.

To address this problem, we require that a HIT always
contains 10 questions. Now suppose that k examples out of
20 have been found in the cache and k < 10, then we take
10 example from the remaining 20 — k examples, pack them
into a HIT, ask the crowd to label, then return these 10 plus
the k examples in the cache (as the result of labeling this
batch). Otherwise if k¥ > 10, then we simply return these k
examples as the result of labeling this batch (thus ignoring
the 20 — k remaining examples).

9. EMPIRICAL EVALUATION

We now empirically evaluate Corleone. Table 1 describes
three real-world data sets for our experiments. Restaurants
matches restaurant descriptions. Citations matches cita-
tions between DBLP and Google Scholar [14]. These two
data sets have been used extensively in prior EM work (Sec-
tion 9.1 compares published results on them with that of
Corleone, when appropriate). Products, a new data set cre-
ated by us, matches electronics products between Amazon
and Walmart. Overall, our goal is to select a diverse set of
data sets, with varying matching difficulties.

We used Mechanical Turk and ran Corleone on each data
set three times, each in a different week. The results re-
ported below are averaged over the three runs. In each run
we used common turker qualifications to avoid spammers,
such as allowing only turkers with at least 100 approved
HITs and 95% approval rate. We paid 1 cent per question
for Restaurants & Citations, and 2 cents for Products (it
can take longer to answer Product questions due to more
attributes involved).

9.1 Opverall Performance

Accuracy and Cost: We begin by examining the over-
all performance of Corleone. The first five columns of Table
2 (under “Corleone”) show this performance, broken down
into P, R, F1, the total cost, and the total number of tuple
pairs labeled by the crowd. The results show that Corleone
achieves high matching accuracy, 89.3-96.5% F}, across the
three data sets, at a reasonable total cost of $9.2-256.8. The
number of pairs being labeled, 274-3205, is low compared
to the total number of pairs. For example, after blocking,
Products has more than 173,000 pairs, and yet only 3205
pairs need to be labeled, thereby demonstrating the effec-
tiveness of Corleone in minimizing the labeling cost.

The total number of pairs labeled is lowest for Restau-
rants, followed by Citations, and Products. This can be
attributed to three factors:

1. Restaurants is small enough not to trigger blocking, and
thus avoids the blocking cost.

2. Restaurants and Citations are both relatively easier to

match compared to Products, i.e., they have less diverse
matching pairs. As a result, they require fewer training
examples to achieve similar matching accuracy.

3. Being harder to match, Products is much harder to re-
duce during the estimation step, e.g., Restaurants re-
quires only 1 reduction rule during estimation, while Prod-
ucts requires an average of 16 rules. It also has a lower
positive density than Citations. Thus, it requires many
more labeled pairs to estimate precision and recall, than
the other two datasets.

Run time: The total run times for Corleone are 2.3 hours,
2.5 days and 2.1 days for Restaurants, Citations and Prod-
ucts datasets respectively. To understand the run times for
each of the components of Corleone, let us focus on Prod-
ucts. Here, Corleone takes 2.5 hours for blocking, 1.4 days
for learning, 14 hours for estimation and 1.4 hours for reduc-
tion. If we exclude the crowd time, then the runtimes for
Corleone over the three datasets are 12 seconds, 12.4 min-
utes and 49 minutes respectively. The total machine time
taken to compute entropy for all the examples in the candi-
date set is only 2 minutes, which is negligible compared to
the overall run time. This clearly shows that time spent to
obtain labels from the crowd dominates the run time.

Comparison to Traditional Solutions: In the next step,
we compare Corleone to two traditional solutions: Baseline
1 and Baseline 2. Baseline 1 uses a developer to perform
blocking, then trains a random forest using the same number
of labeled pairs as the average number of labeled pairs used
by Corleone. Baseline 2 is similar to Baseline 1, but uses 20%
of the candidate set (obtained after blocking) for training.
For example, for Products, Baseline 1 uses 3205 pairs for
training (same as Corleone), while Baseline 2 uses 20% *
180,382 = 36,076 pairs, more than 11 times what Corleone
uses. Baseline 2 is therefore a very strong baseline matcher.

The next six columns of Table 2 show the accuracy (P, R,
and F1) of Baseline 1 and Baseline 2. The results show that
Corleone significantly outperforms Baseline 1 (89.3-96.5% F
vs. 7.6-87.1% F1), thereby demonstrating the importance of
active learning, as used in Corleone. Corleone is compara-
ble to Baseline 2 for Restaurants and Citations (92.1-96.5%
vs. 92.0-96.4%), but significantly outperforms Baseline 2 for
Products (89.3% vs. 69.5%). This is despite the fact that
Baseline 2 uses 11 times more training examples.

Baseline 1 uses passive learning (i.e. training examples
are randomly sampled once at the beginning), while Cor-
leone uses active learning, selecting the training examples
iteratively, and only those judged informative are added to
the training set, until it has a satisfactory matcher. This
explains why Baseline 1 performs a lot worse than Corleone,
in spite of using the same number of labeled examples. For
Restaurants, Baseline 1 does especially worse due to the ex-
tremely low positive density (0.06%) in the candidate set,
resulting in very few (or no) positive example in the train-
ing set.

Baseline 2 also uses passive learning, but with a signifi-
cantly larger training set. This explains the improved perfor-
mance of Baseline 2 over Baseline 1. On Products, however,
Baseline 2 does not fare very well compared to Corleone.
This again has to do with Products dataset being harder to
match, i.e., requiring a larger and more diverse training set.

When comparing Baseline 1 and Baseline 2 against Cor-
leone, it is important to note that Corleone not only returns



Datasets Corleone . Baseline 1 Baseline 2 Published Works
P R F1 Cost # Pairs P R F1 P R F1 F1
Restaurants || 97.0 | 96.1 | 96.5 $9.2 274 10.0 | 6.1 7.6 99.2 | 93.8 | 96.4 92-97 [27, 13]
Citations 89.9 | 94.3 | 92.1 | $69.5 2082 90.4 | 84.3 | 87.1 | 93.0 | 91.1 | 92.0 || 88-92 [14, 13, 3]
Products 91.5 | 87.4 | 89.3 | $256.8 3205 92.9 | 26.6 | 40.5 || 95.0 | 54.8 | 69.5 Not available

Table 2: Comparing the performance of Corleone against that of traditional solutions and published works.

the matched results, but also the estimated precision and
recall, while Baseline 1 and Baseline 2 do not report any
estimates for accuracy.

Comparison to Published Results: The last column
of Table 2 shows F} results reported by prior EM work for
Restaurants and Citations. On Restaurants, [13] reports 92-
97% F1 for several works that they compare. Furthermore,
CrowdER [27], a recent crowdsourced EM work, reports 92%
F at a cost of $8.4. In contrast, Corleone achieves 96.5% Fi
at a cost of $9.2 (including the cost of estimating accuracy).
On Citations, [14, 13, 3] report 88-92% Fi, compared to
92.1% F1 for Corleone. Tt is important to emphasize that due
to different experimental settings, the above results are not
directly comparable. However, they do suggest that Corleone
has reasonable accuracy and cost, while being hands-off.

Summary: The overall result suggests that Corleone achieves

comparable or in certain cases significantly better accuracy
than traditional solutions and published results, at a rea-
sonable crowdsourcing cost. The important advantage of
Corleone is that it is totally hands-off, requiring no devel-
oper in the loop, and it provides accuracy estimates of the
matching result.

9.2 Performance of the Components

‘We now “zoom in” to examine Corleone in more details.

Cartesian | Umbrella

Datasets Product Set Recall (%) | Cost | # Pairs
Restaurants | 176.4K 176.4K 100 30 0
Citations 168.1M 38.2K 99 $7.2 214
Products 56.4M 173.4K 92 $22 333

Table 3: Blocking results for Corleone.

Blocking: Table 3 shows the results for crowdsourced au-
tomatic blocking executed on the three data sets. From left
to right, the columns show the size of the Cartesian product
(of tables A and B), the size of the umbrella set (i.e., the set
after applying the blocking rules), recall (i.e., the percent-
age of positive examples in the Cartesian product that are
retained in the umbrella set), total cost, and total number
of pairs being labeled by the crowd. Note that Restaurants
is relatively small and hence does not trigger blocking.

The results show that automatic crowdsourced blocking
is quite effective, reducing the total number of pairs to be
matched to be just 0.02-0.3% of the original Cartesian prod-
uct, for Citations and Products. This is achieved at a low
cost of $7.2-22; or just 214-333 examples having to be la-
beled. In all the runs, Corleone applied 1-3 blocking rules.
These rules have 99.9-99.99% precision. Finally, Corleone
also achieves high recall of 92-99% on Products and Ci-
tations. For comparison purposes, we asked a developer
well versed in EM to write blocking rules. The developer
achieved 100% recall on Citations, reducing the Cartesian
product to 202.5K pairs (far higher than our result of 38.2K
pair). Blocking on Products turned out to be quite difficult,
and the developer achieved a recall of 90%, compared to our

result of 92%. Overall, the results suggest that Corleone can
find highly precise blocking rules at a low cost, to dramati-
cally reduce the original Cartesian products, while achieving
high recall.

Performance of the Iterations: Table 4 shows Corleone’s
performance per iteration on each data set. To explain, con-
sider for example the result for Restaurants (the first row
of the table). In Iteration 1 Corleone trains and applies a
matcher. This step uses the crowd to label 140 examples,
and achieves a true Fy of 96.5%. Next, in Estimation 1, Cor-
leone estimates the matching accuracy in Iteration 1. This
step uses 134 examples, and produces an estimated Fi of
96% (very close to the true Fy of 96.5%). Next, in Reduc-
tion 1, Corleone identifies the difficult pairs and comes up
with 157 such pairs. It uses no new examples, being able to
re-use existing examples. At this point, since the set of diffi-
cult pairs is too small (below 200), Corleone stops, returning
the matching results of Iteration 1.

The result shows that Corleone needs 1-2 iterations on
the three data sets. The estimated F) is quite accurate,
always within 0.5-5.4% of true Fj. Note that sometimes
the estimation error can be larger than our desired maximal
margin of 5% (e.g., Estimation 2 for Products). This is
due to the noisy labels from the crowd. Despite the crowd
noise, however, the effect on estimation error is relatively
insignificant. Note that the iterative process can indeed lead
to improvement in Fi, e.g., by 3.3% for Products from the
first to the second iteration (see more below). Note further
that the cost of reduction is just a modest fraction (3-10%)
of the overall cost.

Crowd Workers: For the end-to-end solution, an average
of 22 (Restaurants) to 104 (Citations) turkers worked on our
HITs. The average accuracy of turkers was the highest for
Restaurants (94.7%), and the lowest for matching citations
(75.9%). For Products, it was again quite high (92.4%),
which is understandable given the familiarity of turkers with
products as opposed to citations. The accuracy of the labels
inferred by Corleone (using majority voting) was higher than
the average turker accuracy for all the datasets (96.3% for
Restaurants, 77.3% for Citations, and 96% for Products).
Note that in spite of the low labeling accuracy for Citations,
Corleone still performs just as good as the traditional solu-
tions and published works.

9.3 Additional Experimental Results

We have run a large number of additional experiments to
extensively evaluate Corleone.

Estimating Matching Accuracy: Section 9.2 has shown
that our method provides accurate estimation of matching
accuracy, despite noisy answers from real crowds. Compared
to the baseline accuracy estimation method in Section 6.1,
we found that our method also used far fewer examples.
We now compare the average cost (i.e., the number of pairs
labeled) of the two methods. For a fair comparison, we use
a simulated crowd that labels everything perfectly for both



Datasets Iteration 1 Estimation 1 Reduction 1 Iteration 2 Estimation 2
# Pairs] P [ R [ Fi |#Pairs| P [ R [ Fi |# Pairs[Reduced Set [# Pairs] P [ R [ Fi [#Pairs] P R [ F
Restaurants 140 97 196.1|96.5 134 |95.6|96.3| 96 0 157
Citations 973 [89.4(94.2|91.7| 366 92.4193.8|93.1 213 4934 475 189.9(94.3]92.1 0 95.2195.7[95.5
Products 1060 [89.7|82.8| 86 1677 |90.9(86.1|88.3 94 4212 597 191.5(87.4(89.3 0 96 [93.5|94.7
Table 4: Corleone’s performance per iteration on the data sets.
100000 - m Baseline Corleone the ease of matching the dataset and the positive density,
e.g., for Restaurants, which is the easiest to match among
g the three, just one rule is sufficient for the estimation pro-
o 10000 | cedure, while Products, which is the most difficult to match
-g among the three, and has lower positive density than Cita-
- tions, requires more rules (7.67) for the estimation proce-
2 1000 - dure.
é_“ l For the rules used in reduction step, the average accuracy
1t is still very high (97.5% and above), but a little lower than
100 | ‘ that for estimation (99.9% and above). This is because we
Restaurants Citations Products select only the topmost precise rules for estimation (since

Figure 10: Comparing estimation cost of Corleone vs. Base-
line.

the methods, and we start the estimation procedure without
any cached labels.

Figure 10 shows the number of pairs labeled for estimation
for all three datasets, for the both the methods (Baseline)
and Corleone). For Restaurants, the baseline method needs
100,000+ examples to estimate both P and R within a 0.05
error margin, while ours uses just 170 examples. For Cita-
tions and Products, we use 50% and 92% fewer examples,
respectively. The result here is not as striking as for Restau-
rants primarily because of the much higher positive density
for Citations and Products.

Effectiveness of Reduction: Section 9.2 has shown that
the iterative matching process can improve the overall F},
by 0.4-3.3% in our experiments. This improvement is actu-
ally much more pronounced over the set of difficult-to-match
pairs, primarily due to increase in recall. On this set, recall
improves by 3.3% and 11.8% for Citations and Products, re-
spectively, leading to F increases of 2.1% and 9.2%. These
results suggest that in subsequent iterations Corleone suc-
ceeds in zooming in and matching correctly more pairs in
the difficult-to-match set, thereby increasing recall.

Note that this increase in recall is a lot more pronounced
for Products (11.8%) than for Citations (3.3%). This is
mainly due to the lower positive density for Products (1.9%
compared to 21.4%). The lower positive density results in
fewer positives getting selected in the training set in the first
iteration, and thus, a less representative training set. In the
second iteration, we narrow down to a set with a much higher
positive density, and thus, many of these previously unrep-
resented positives get added to the training set which leads
to a higher recall.

Effectiveness of Rule Evaluation: Section 9.2 has shown
that blocking rules found by Corleone are highly precise
(99.9-99.99%). We have found that rules found in later steps

(estimation, reduction, i.e., identifying difficult-to-match pairs)

are highly precise as well, at 97.5-99.99%. For the estima-
tion step, Corleone uses 1, 4.33, and 7.67 rules on average
(over three runs) for Restaurants, Citations, and Products,
respectively. For the reduction step, Citations uses on aver-
age 11.33 negative rules and 16.33 positive rules, and Prod-
ucts uses 17.33 negative rules and 9.33 positive rules.

The number of rules used during estimation depends on

we need near-perfect rules here). For reduction, there is no
such necessity, and thus, we consider even the not-so-precise
rules.

Finally, if we look at the number of rules used, then we see
a similar trend as for estimation rules, except for the positive
rules. For Products, only 9.33 precise positive rules are ap-
plied during reduction, whereas for Citations we apply 16.33
positive rules. This is because Citations has almost 5 times
the total number of positive examples as Products (5347 vs.
1154). With more positives, we get more positive rules, and
thus, higher number of precise positive rules. Overall, the
crowdsourced rule evaluation works extremely well to give
us almost perfect rules.

Using Corleone up to a Pre-specified Budget: Cor-
leone runs until the estimated matching accuracy no longer
improves. However, the user can stop it at any time. In par-
ticular, he or she can run Corleone only until a pre-specified
budget for crowdsourcing has been exhausted, an operation
mode likely to be preferred by users in the “masses”, with
modest crowdsourcing budgets. We found that even with a
modest budget, Corleone already delivers reasonable results
(which improve steadily with more money). In the case of
Products, for instance, a budget of $50, $150, and $250.9
(the end) delivers Fi score of 79.1%, 85.9%, and 88.5%, re-
spectively. Table 5 shows the detailed execution status of
Corleone for Products, from start ($0) to finish ($250.9).

9.4 Sensitivity Analysis

Each of the components of Corleone has some parameters
that can be used to fine tune the performance. We have
run extensive sensitivity analyses for Corleone to test the
robustness of the system. Overall we observe that small
changes in these parameters do not affect the performance
of Corleone in any significant way. However, one can cer-
tainly tune them to extract the best performance out of the
system. We report here the results for the most important
factors that may affect the performance of Corleone. For
all the sensitivity analyses, we performed experiments on
the Products dataset, since that is the most difficult one to
match, as can be seen from the results reported earlier. Ad-
ditionally, we used a simulated crowd for all the experiments,
since performing so many experiments with real crowd is
prohibitively expensive and time consuming.

Blocking Threshold tg: The effect of tg is most pro-
nounced in the blocking stage, so we vary ¢t from 1 million
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tains > 25% of the
input set. Est. P
= 95.5 + 3%, Est.
R = 94.4 + 3.6%.
Total time = 57.2
hours.

Table 5: Execution status of Corleone at different time points during one particular run on Products.

to 20 million to see how it affects the blocking time, size of
the candidate set, and the recall of the candidate set.

Effect of tg on the blocking time: The total blocking time
can be broken down into 4 main components:

e Sampling and feature vector generation time (¢1)

e Rule learning time (t2)

e Rule evaluation time (3)

e Applying the rule on the Cartesian product time (t4)

t1, t2 and t3 are directly proportional to ¢t g because higher
the t g, larger is the sample size, longer it takes to sample and
compute features and longer it takes to learn and evaluate
rules. From our plots we observe that t; + t2 + t3 increases
linearly from 3m 43s to 1h 15m 40s as we increase tp from
1M to 20M. t4, however, does not directly depend on ¢tz but
depends on the blocking rule applied. So we do not observe
any particular trend for ¢4 as we vary tg. The highest t4 is
34m 49s, the lowest is 11m 38s and the average is 21m 2s.

Effect of tg on the size of the candidate set: We observe
that, on increasing tp the candidate set size increases in
the average case. For example, we obtain candidate sets of
sizes 22.4K, 247K and 3.8M for tg = 1M, 3M and 5M
respectively. However, note that the size of the candidate
set depends on the blocking rule that was applied. Thus, in
certain cases, this trend may not be strictly followed, as we
observe for tg = 10M for which we have a candidate set of
size 583.6 K.

Effect of tg on the recall of the candidate set: In general,
larger the candidate set higher is the recall. We observe this
behavior in our experiments where we have recalls of 92.63%,
95.67% and 99.13% for candidate sets of sizes 247K, 3.8 M
and 5.9M respectively. For a very small tp of 1 million, we
get a recall of 82.8%, otherwise the recall is in the range
92.63% to 99.31%.

Number of Trees (k) and Features (m) in Random
Forest: Section 5.1 describes the random forest ensemble
model and its parameters: the number of trees in the forest
(k) and the number of features (m) considered for splitting
at each node in the tree. These parameters can only affect
the training step, hence, to understand the effect of varying
these parameters on Corleone, we only execute the training
step in the workflow. In particular, we start with a candidate
set returned by the blocking step, and the 4 user-provided
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Figure 11: Sensitivity analysis for parameters in learning.

labeled pairs, and then perform active learning over the can-
didate set until the stopping condition kicks in.

Figures 11a, 11b, and 11c show the effect of varying the
number of trees (k) in the forest from 5 to 100, on the execu-
tion time, cost, i.e., the number of pairs labeled for training,
and accuracy (F} score). We observe that the execution time
grows linearly as we increase k, from 1 minute for 5 trees to
20 minutes for 50 (Figure 11a). This is expected since for
every new tree added, the forest needs to apply one more
tree to classify a given pair. The increasing number of trees
also lead to a better I}, however, the increase in F} is signif-
icant (12%) only as we go from 5 to 10 trees. Going from 10
to 50 trees in the forest, the F} increases by just 2% (Figure
11c). This marginally higher accuracy comes at a higher
labeling cost as well (Figure 11b). From 5 to 10 trees, the
labeling cost rises from 500 to almost 1400, but beyond this,



the cost rises at a very slow pace, going up by just 200 as
we go from 10 to 50 trees. Overall, we can see that at k =
10, the execution time is very small (2 minutes), while the
Fy is almost as good as that for k£ = 50. Thus, the default
value of £ = 10 used in Corleone is highly justified.

The small rise in F}, and cost as we increase the number
of trees can be explained. By increasing the number of trees,
we get a more diverse ensemble (forest), since each tree is
trained on a different portion of the training data. This re-
sults in a higher Fi. However, more diverse trees also have
more disagreement (higher entropy), and thus, the confi-
dence of the whole forest takes longer to stabilize leading to
a higher labeling cost.

Next, we describe the effect of increasing the number of
features, i.e., attributes (m) considered at each node when
learning the trees in the forest. Figures 11d, 1le, and ??
plot the execution time, labeling cost, and F; as we increase
number of attributes m from 1 to 15. Note that for Prod-
ucts dataset, Corleone sets m = 5, since the total number of
attributes n for Products is 23, and m is set to log(n) + 1.

We found that on increasing m, the execution time goes
down from 4 minutes for m = 1, to 1.4 minutes for m =
5, and then decreases very slowly beyond this value of m
(Figure 11d). The labeling cost goes down by more than
50% from m = 1 to m = 5, and then reduces by just 20%
as m goes to 15. This reduction in time and cost, comes at
a cost. The Fy drops by 7% on increasing m from 1 to 15.
With a higher m, we get a less diverse ensemble, and thus,
the confidence converges sooner leading to stopping active
learning sooner. This results in a lower cost as well as lower
Fi. Note that at m = 5, which is the default in Corleone
the Fy is within 2% of that for m = 1, while both execution
time and cost are much lower than for m = 1.

Batch Size (q) for Active Learning: In all the exper-
iments reported so far we had set the batch size ¢ to 20.
We examine the effect of batch size on the active learning
step by executing only the training step, exactly as done for
varying k and m above.

Figures 11g, 11h, and 11i show the effect of varying the
batch size (q) from 10 to 50, on execution time, the labeling
cost (# examples) for learning, and F; score. On increasing
q from 10 to 50, we found that the execution time reduced
from 2 to 1 minutes, since the the algorithm required fewer
learning iterations. The number of iterations dropped by
55% from 77 to 32. This is expected since the algorithm can
learn more in each iteration by selecting a bigger batch. The
labeling cost, however, increased by more than 100%, from
770 for ¢ = 10, to 1600 for ¢ = 50, while there is a small
rise in F from 86% to 92%. At ¢ = 20, which is the default
in Corleone we observe that Fj is again within 2% of the
maximum, while the labeling cost is within 20% of the best
attainable. Given that there is a trade-off between cost, F1,
and time, we choose 20 as our “sweet spot” for batch size.

Size of Validation Set to Decide Stopping: The active
learning algorithm sets aside part of the candidate set as
validation set, to decide when to stop (as described in 5.3).
Corleone uses 3% of the candidate set as validation set. To
examine the effect of varying the size of validation set, we
perform just the training step over the candidate set C, as
done above for k, m, and ¢, and vary the validation set size
from 1% of candidate set (C) to 9% of C. Figures 11j, 11k,
and 111 show the effect of increasing the percentage of C' set

aside for validation.

Overall, we observe that increasing the size of validation
set has almost no effect on time. cost, or F1. The execution
time stays within 1.6 and 1.9 minutes as we increase tg. The
labeling cost stays within 1140 and 1240, while F; stays in
the range of 90% and 92%. Thus, we observe that the active
learning algorithm is quite robust to a change in the size of
validation set.

Parameters Used for Rule Pruning: Section 4.2 de-
scribes how we use Pp,in and maximum number of rules (k),
to select at most top k rules (currently, & = 20). In blocking
step, the number of rules that are finally applied is no more
than 3 in all our experiments with the three datasets, thus,
varying k from 10 to 50 had no effect on the system.

When evaluating the top rules, we use Ppin as a threshold
to remove the imprecise rules. On varying Po.in from 90%
to 99%, we did not observe any change in the rules that
get picked, and thus, on the whole system. This can be ex-
plained by the fact that in all our experiments the top rules
that got evaluated for precision were either highly precise
(precision being higher than 99% for most), or had a much
lower (less than 80%) precision. These low precision rules
may get picked when we fail to get a tight upper bound on
their precision. These factors could have more significant
effect on other datasets. We would consider exploring this
in future work.

Labeling Accuracy of the Crowd: To test the effect of
labeling accuracy, we use the random worker model in [11,
10] to simulate a crowd of random workers with a fixed error
rate (i.e., the probability of incorrectly labeling an example).
We found that a small change in the error rate causes only a
small change in Corleone’s performance. However, as we vary
the error rate over a large range, the performance can change
significantly. With a perfect crowd (0% error rate), Corleone
performs extremely well on all three data sets. With mod-
erate noise in labeling (10% error rate), Fi reduces by only
2-4%, while the cost increases by up to $20. As we move to a
very noisy crowd (20% error rate), Fi further dips by 1-10 %
for Products and Citations, and 28% for Restaurants. The
cost on the other hand shoots up by $250 to $500. Managing
crowd’s error rates better therefore is an important topic for
future research.

Number of Labels Per Pair: In Section 8, we mentioned
that we use 2+1 labeling scheme during the training phase,
to keep the cost low.

For the training step, we only get a maximum of 3 la-
bels per pair. We now analyze the effect of using more
labels per pair during training. The number of labels re-
quested per pair is of value only in presence of a noisy crowd.
Hence, to analyze the effect of per-pair labels, we used the
low accuracy simulated crowd (20% error rate). This crowd
performed especially worse on Restaurants. Hence, we re-
port here the results for increasing the number of labels for
Restaurants, with a crowd having 20% error rate.

On increasing the maximum requested labels from 3 to
5 to 7, we found that the Fi improved significantly from
70% to 97%, while the cost reduced by more than $500.
Intuitively, the cost reduces drastically because the quality
of inferred labels improves a lot, which in turn, leads to
a quick termination of the active learning algorithm. This
experiment demonstrates a little non-intuitive fact that with
a noisy crowd, getting more labels could not only give better



performance, but sometimes it can also help to drastically
lower the total cost.

9.5 Evaluating and Setting System Parameters

Finally, we discuss how we evaluated and set system pa-
rameters. In the blocker, ¢ is set to be the maximal number
of tuple pairs that can fit into memory (a heuristic used to
speed up active learning during blocking), and is currently
set to 3 million, based on the amount of memory available
on our machine. We have experimented and found that Cor-
leone is robust to varying tg (e.g., as we increase t g, the time
it takes to learn blocking rules increases only linearly, due
to processing larger samples). See Section 9.4 for details.

The batch size b = 20 is set using experimental validation
with simulated crowds (of varying degrees of accuracy). The
number of rules £ is set to a conservative value that tries to
ensure that the blocker does not miss any good blocking
rules. Our experiments show that k£ can be set to as low as
5 without affecting accuracy. Similarly, experiments suggest
we can vary P, from 0.9 to 0.99 without noticeable effects,
because the rules we learned appear to be either very accu-
rate (at least .99 precision) or very inaccurate (well below
0.9). Given this, we current set Pmin to 0.95. The confi-
dence interval 0.95 and error margin 0.95 are set based on
established conventions.

In the matcher, the parameters for the random forest
learner are set to default values in the Weka package. The
stopping parameters (validation set size, smoothing window
w, etc.) are set using experiments with simulated crowds
with varying degrees of accuracy.

For engaging the crowd, we solicit 3 labels per pair because
3 is the minimum number of labels that give us a majority
vote, and it has been used extensively in crowdsourcing pub-
lications as well as in industry. When we need higher crowd
accuracy for the estimator, we need to consider 5 labels or 7
labels. After extensive experiments with simulated crowds,
we found that 5 gave us too wide error ranges, whereas 7
worked very well (for the estimator). Hence our decision to
solicit 7 labels per pair in such cases. Finally, the estimator
and the difficult pairs’ locator use many algorithms used by
the blocker and the matcher, so their parameters are set as
described above.

10. DISCUSSION

In this section we discuss the key design choices that went
into building Corleone, the scope of our current work, and
various opportunities to extend the current system.

10.1 Design Choices

Our goal behind building Corleone was to (i) have a first
end-to-end HOC system for the entity matching problem
that performs well on real datasets, thus, demonstrating the
immense potential in HOC, and (ii) have the first starting
point for further research in building HOC systems. As a
result, when designing Corleone and its components, our fo-
cus was on having a practical solution that actually works
with real data and real crowd, and keeping it simple un-
less absolutely necessary. At the same time, we wanted the
overall architecture to be very general, so that each of the
components can be improved and extended.

We now take a top-down look at the choices we have made
while designing the Corleone system. At the very top, Cor-
leone is aimed at solving the entity matching problem using

the crowd, starting from the two input tables, all the way
to returning the matching pairs and the estimated match-
ing accuracy. The ideal goal for such a system would be to
maximize the matching accuracy (Fi score), minimize the
monetary cost of crowdsourcing, and minimize the end-to-
end execution time. This is a very challenging optimiza-
tion problem, since it is very difficult to model the trade-off
between matching accuracy, monetary cost, and execution
time. This trade-off can be highly dependent on the particu-
lar application setting, e.g., a large company may be willing
to pay a large monetary price for a small gain in accuracy,
while a domain scientist may care a lot more about the cost
than the accuracy.

Finding the globally optimal solution for this problem is
an entirely different challenge in itself. As a starting point,
we pursue a more modest goal focusing on maximizing the
accuracy while minimizing the monetary cost. Optimizing
for both accuracy and cost for the entire EM workflow is
again highly non-trivial, since it is very hard to estimate the
accuracy and cost of any step in the workflow before execut-
ing that particular step. To illustrate, if we could predict
the accuracy and cost for the matching step when we are ex-
ecuting the blocking step, then we could use that knowledge
to stop blocking at an optimal point. However, before we
perform the actual matching step, it is very hard to predict
its performance. Hence, we break down the problem, focus-
ing on optimizing the accuracy and cost for each individual
step. Now we look at some key choices made in the various
steps in EM workflow.

Why Need a Threshold for Blocking? We trigger
blocking only if the size of the Cartesian product (A x B) is
above a threshold (¢p) (as described in Section 4.1). Hav-
ing such a threshold has to do with the fundamental reason
blocking is needed in the first place, which is to execute the
EM workflow in an acceptable amount of time.

Building and applying a matching solution is often compu-
tationally expensive, e.g., if we are learning a classifier, then
we need to enumerate all the possible pairs that may match,
compute all the features for all the pairs, train the classi-
fier using the labeled pairs, and then apply the classifier to
predict each pair as matching or non-matching. If we have
to do this for the entire A x B, then for very large tables,
it could take several days to even weeks to execute, even on
a cluster of machines. Blocking is just a fast solution that
reduces the original input to a small size on which we can
apply the expensive matching solution. However, blocking
comes at a cost as it is typically not as accurate as matching.
Thus, intuitively one would want to perform blocking only if
applying matching is going to be prohibitively expensive. If
the Cartesian product is small enough that we can execute
matching within an acceptable time, then it would certainly
be better than to block first and risk losing some match-
ing pairs. To model this notion of “small enough”, we use a
parameter tp that represents the threshold for blocking.

Setting the Blocking Threshold: The blocking thresh-
old limits the size of the input to the matching step, and in
turn, limits the execution time. Thus, intuitively, we should
set the blocking threshold as small as we can to minimize the
execution time for the matching step. On the other hand,
the smaller the threshold we set, the more pairs we would
need to eliminate during blocking, i.e., more matching pairs
will be lost in blocking. To balance these conflicting goals,



we look further into the components that dominate the ex-
ecution time for matching.

The execution time T for the matching step (Section 5),
can be expressed as T = n - Titer, where n is the number
of iterations of active learning, Tjier is the execution time
for each iteration. Now Tjte, is dominated by t1, the time
to select the next batch of pairs for training, and t2, the
time for labeling the selected pairs. Now t2 is constrained
by the batch size and the maximum number of labels we can
request per pair and is independent of the threshold we set.
However, t1 is very much dependent on the threshold we
set, since t; involves computing the entropy for every pair
in the candidate set. ¢; involves only the CPU cost if the
feature vectors for the candidate set fit in memory and thus,
is relatively small compared to t2. However, if the feature
set is larger, then ¢; also has an I/O component, which can
get significant for large candidate sets. To balance our goals
of (i) keeping tp small to constrain the execution, while (ii)
keeping it large enough to avoid loss in matching accuracy,
we set tp such that the feature vectors of the candidate set
fit in memory, which avoids I/O cost, and constrains the
execution time for matching.

A few brief remarks about the above strategy. First, we
set the goal of trying to obtain a candidate set of size tp,
and we try to get as close to that goal as possible. But we
cannot guarantee that we will have a candidate set size of
tp or less. For example, if no blocking rule is good, then
we cannot perform any blocking and we would still have a
candidate set size of |A x B|. Second, the above strategy is
just a reasonable heuristic; other strategies are possible and
should be explored in future work. Finally, setting the value
of tp depends on the computational infrastructure used for
matching, e.g., if we are performing active learning over a
very large cluster then we could set ¢ to a much larger
value without affecting the execution time. A more princi-
pled solution to determine the blocking threshold can be an
interesting direction for future work.

Why Sample to Learn Blocking Rules? As far as we
know, ours is the first work that learns the blocking rules
starting from scratch, i.e. just the input tables, without
requiring a developer. To learn such rules we need some
labeled examples to train on. To obtain such training exam-
ples in a cost minimizing fashion, a natural choice is to use
active learning. However, if we were to use the entire A x B
as the input to the active learning algorithm (which is the
same as the one used in the matching step), then the learn-
ing process will be prohibitively expensive. This defeats the
very purpose of blocking. Hence, we take the approach of
sampling a small set of pairs from A x B, and using only this
sample to learn the blocking rules. This way we constrain
the cost as well as execution time for blocking.

Setting the Sample Size: Given that we take the sam-
pling approach to constrain the cost and execution time for
blocking, we should minimize the sample size as much as we
can. On the other hand, to learn effective rules, we need
to have a representative sample with a “sufficient” number
of positives in it. To illustrate, if our sample contains zero
positive examples, then any rule will have 100% accuracy on
the sample and we will have no way to judge which rule is
more effective. Thus, we also need to have a “large enough”
sample. These conflicting goals are very similar to what we
faced when setting the blocking threshold. In fact, just like

the matching step, the execution time for blocking is also
dominated by the crowdsourced active learning algorithm.
Thus, following similar reasoning we set the sample size to
tp such that the feature vectors for the sample just fit in
memory.

How Many Labels to Obtain per Pair?: In Section
8, we describe the labeling scheme used in Corleone in the
Estimator component, which requires “strong majority” only
if the majority label is positive. In this scheme, we get
a minimum of 3 labels and a maximum of 7. Getting a
minimum of 3 labels is quite straightforward as you need
at least at least 3 labels to avoid a possibility of a tie. In
fact, this is a standard value used in many works that use
majority voting for combining crowd answers [9, 32, 17].

We limit the maximum number of labels that can be ob-
tained per pair to 7. Now clearly we need some limit on
the total labels for a single pair we may get as otherwise,
in the worst case, the algorithm may never stop, and we
would end up spending an exorbitant amount. Since we
want to minimize the cost ideally we should set this limit
as low as possible. The first choice for this limit would be
5. However, in our experiments with simulated noisy crowd,
we found that getting 5 labels was not sufficient to estimate
the matcher accuracy with low error, especially with a very
noisy crowd (error rate of 20% or more). After increasing
this limit to 7 labels, on the other hand, we found the total
cost to increase only marginally by up to 100$, while the ac-
curacy of estimation improved significantly (by more than
10%), very close to what we would obtain with a perfect
crowd. On increasing the limit further to 9 or 11 labels, the
cost continues to increase, whereas there is very little gain
in estimation accuracy. Based on these experiments with
simulated crowd, we set the maximum number of labels to
get to 7.

10.2 Opportunities for Extension

The Corleone system is just a first step toward building
HOC systems. In this work, we have focused on only some
of the many novel challenges involved in building a robust
scalable HOC system for entity matching. As for any sys-
tem, addressing all of the challenges in the first attempt is
next to impossible, and thus, Corleone is designed with a
clean separation between the various components so that
each of them can be easily extended. We describe here some
key opportunities to further extend the system. We have
already started work on a few of these ideas.

10.2.1 Scaling Up to Very Large Datasets

While the Corleone system, as described in the paper,
shows its promise through the extensive experiments on three
datasets, our next goal is to ensure that it can handle datasets
of any nature and size. For scaling up to very large datasets,
we need to ensure that each of the components can scale up.
Intuitively, the blocking component is the one that is most
responsible to handle the scale problem. If blocking works
the way it is supposed to, then in most cases the output
of blocking should return a candidate set small enough for
efficient execution of the matching and subsequent steps in
the workflow. Hence, we now discuss how we can scale up
the blocking component.

Sampling Strategy for Large Datasets: After the sys-
tem has decided to block, the first step in blocking is to
sample from the Cartesian product. The sampling strat-



Datasets |A x B| | Positive # positives
density (%) | in sample
Citations 1681 M [ 32x10°° 4123
Citations 2X | 6724 M [ 1.6 x 107° 4219
Citations 5X 4202.5 M | 0.64 x 1073 4186
Citations 10X | 16810 M | 0.32 x 103 4145

Table 6: Stratified sampling for blocking.

egy currently used (Step 2 in Section 4.2) randomly samples
ts/|A| tuples from the larger table B and takes their Carte-
sian product with all of A. As one may suspect, this strategy
may not work very well if we have very large tables or very
low fraction of matching pairs in A x B. In such a situation,
the current sampling strategy may give us a sample with
very few positives.

This possible limitation can be addressed as follows. First,
we must select tp as large as we can without hurting the
execution time for matching. In our current system, we
assume a very modest infrastructure for matching, and thus
set tp to 3 million. Here our goal was to demonstrate that
even with very strict constraints on the size of candidate set,
our solution comes up with highly precise rules. In practice,
tp can be easily increased to a few hundred million by using
a cluster to speed up the active learning algorithm (as we
discuss later). This will ensure that ¢p is much larger than
|A| or |B].

Secondly, we can use a non-uniform sampling strategy to
select positives with a high likelihood. We already have one
such strategy and our preliminary results indicate that it
works very well even on large datasets or when there is very
low positive density. Here is how it works. Given the sample
size tp, we randomly select tg/m tuples from the table B
(m = 200). For each selected tuple from B we select m
tuples from table A, forming m tuple pairs, and add them
to the sample. The m tuples are selected as follows. We
“stratify” the tuples in A into two sets: A; - tuples that
have at least one token in common with the B tuple, and
As tuples with no common token. We then randomly pick
up to m/2 tuples from Ai, and then randomly pick tuples
from Az until we have a total of m tuples. At the end of this
process we have the desired sample with roughly ¢tz tuple
pairs.

To demonstrate the effectiveness of this strategy, we present
in Table 6 the results for a preliminary experiment on Cita-
tions dataset. We use the new sampling strategy to sample
from different versions of the Citations dataset. To test how
well it scales up to large datasets, we create larger versions
of the Citations dataset by replicating the tables. Thus, Ci-
tations 2X has tables A and B with twice as many tuples
as in Citations, while 5X Citations has 5 times the number
of tuples. For 2X Citations, A X B is 4 times that of Cita-
tions, while the positive density is half of that for Citations
(since the actual number of matching pairs is only 2 times
that of Citations). Thus, as we replicate Citations more and
more times, the size of A X B keeps increasing while positive
density keeps dropping. In Table 6, we show the number
of positives selected in the sample, as we create bigger and
bigger versions of the Citations dataset. As we can see, the
new sampling strategy gives us a consistently high number
of positives, even as the size of A X B increases and the
positive density drops.

Applying the Rules Efficiently: In the current system,
when a blocking rule is actually applied to eliminate the ob-

vious non-matching pairs, the rule is evaluated for every pair
in A x B. This may work well for now as this is computed
over a Hadoop cluster, however, beyond a certain input size
it will be too expensive to enumerate all the pairs. Fortu-
nately, there is a way around this problem. Prior work on
scaling up blocking has developed techniques such as sorted
neighborhood, canopy clustering, and indexing to speed up
the application of blocking rules [8]. We are currently work-
ing on extending the component for applying the blocking
rules to incorporate these techniques.

Efficient Active Learning: The active learning algo-
rithm for training the matcher proceeds iteratively. In each
iteration, it processes all the unlabeled pairs in the candidate
set and selects the most informative pairs among them (Sec-
tion 5.2). This step involves computing the entropy for each
unlabeled pair in the candidate set. The blocking thresh-
old already ensures that the size of candidate set is no more
than tp. However, when scaling up to very large datasets,
we might want to set tp to a very large value (hundreds of
millions).

To ensure that we can efficiently execute matching over a
very large candidate set, we need a scalable solution to com-
pute the entropy for pairs in the candidate set. Thankfully,
this is a very straightforward problem to parallelize, since
we can compute the entropy for each pair independently.
Thus, we can easily distribute the entropy computation over
a MapReduce cluster and can easily handle candidate sets
with hundreds of millions of pairs. There are additional
techniques we can use to further speed up this solution, e.g.,
as the active learning progresses, we can narrow down the
set of pairs for which we need to compute the entropy in
each iteration.

10.2.2  Improving Matching and Estimation

Improving the Blocking Recall: One way to improve
the overall matching performance is by improving the recall
for blocking. This could be achieved in two ways. First is to
learn a more diverse set of blocking rules. Our current frame-
work separates the process of generating candidate blocking
rules, from the evaluation of the candidates to pick the best
rules. Thus, we can easily extend the system to add new
techniques to generate the rules. In addition to pulling the
rules from the forest, we could use other learning techniques
to obtain candidate blocking rules. We can even consider
directly obtaining simple rules from the crowd, and adding
them to our set of candidate rules.

Another way to improve the blocking recall is by better
evaluation of the blocking rules. If we can precisely predict
the number of errors each candidate rule is going to make,
then we can do a better job at picking the best rules.

Improving the Estimation of Matcher Accuracy: The
current solution for estimating the precision and recall of the
matcher (Section 6.2) works very well, but is not perfect. It
relies on the accuracy of the rules used for reduction, and
also the accuracy of the labels inferred from crowd provided
labels. Next step to would be to make this solution more
tolerant to the errors made by the crowd, as well as the
imperfection of the reduction rules.

10.2.3 Cost Models

It is highly desirable to develop cost models making the
system more cost efficient. For example, given a monetary



budget constraint, how to best allocate it among the block-
ing, matching, and accuracy estimation step? As another
example, paying more per question often gets the crowd
to answer faster. How should we manage this money-time
trade-off 7 A possible approach is to profile the crowd dur-
ing the blocking step, then use the estimated crowd models
(in terms of time, money, and accuracy) to help guide the
subsequent steps of Corleone.

10.2.4 Other Extensions

Engaging the Crowd: There are a number of ways to
improve the interaction with the crowd. First, we can im-
prove the way we manage the workers, and infer the answers.
For instance, we can test alternative solutions to infer the
answers, such as estimating the worker accuracy and labels
in an online fashion. Secondly, we can look at optimizing
the time taken by the crowd, together with the accuracy of
labels. Third, we can improve the interface used for pre-
senting the pairs to the crowd. Finally, we can extend the
system to use multiple crowdsourcing platforms, instead of
using only Amazon Mechanical Turk.

Adding New Components: Another direction for ex-
tending the current system is to add new components that
complement the EM workflow. One such component is a
verification component at the end of the current workflow,
that takes the final predicted matches and the crowd pro-
vided labels as input, and verifies the predicted matches to
return only the most trustworthy matching pairs. Some of
the techniques developed in recent works on crowdsourcing
EM [27, 28, 6] can be used to implement such a verification
component.

Another useful addition to the Corleone system would be a
pre-processing component that performs data cleaning and
normalization operations. This can be extremely useful in
further improving the matching accuracy. Finally, a vi-
sualization module can make the system much more user-
friendly. This can also empower the user to make informed
decisions in the middle of workflow execution, e.g., when to
stop the execution, or whether to skip a particular step in
workflow.

10.2.5 Applying to Other Problem Settings

Finally, it would be interesting to explore how the ideas
underlying Corleone can be applied to other problem set-
tings. Consider for example crowdsourced joins, which lie
at the heart of recently proposed crowdsourced RDBMSs.
Many such joins in essence do EM. In such cases our solution
can potentially be adapted to run as hands-off crowdsourced
joins. We also note that crowdsourcing typically has helped
learning by providing labeled data for training and accuracy
estimation. Our work however raises the possibility that
crowdsourcing can also help “clean” learning models, such
as finding and removing “bad” positive/negative rules from
a random forest. Finally, our work shows that it is possible
to ask crowd workers to help generate complex machine-
readable rules, raising the possibility that we can “solicit”
even more complex information types from them. We plan
to explore these directions in near future.

11. CONCLUSIONS

We have proposed the concept of hands-off crowdsourc-
ing (HOC), and showed how HOC can scale to EM needs

at enterprises and startups, and open up crowdsourcing for
the masses. We have also presented Corleone, a HOC so-
lution for EM, and showed that it achieves comparable or
better accuracy than traditional solutions and published re-
sults, at a reasonable crowdsourcing cost. Our work thus
demonstrates the feasibility and promise of HOC, and sug-
gests many interesting research directions in this area.
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