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A GROUP OF database researchers meets periodically 
to discuss the state of the field and its key directions 
going forward. Past meetings were held in 1989,6 1990,11 
1995,12 1996,10 1998,7 2003,1 and 2008.2 Continuing 
this tradition, 28 database researchers and two invited 
speakers met in October 2013 at the Beckman Center 
on the University of California-Irvine campus for two 
days of discussions. The meeting attendees represented 
a broad cross-section of interests, affiliations, seniority, 
and geography. Attendance was capped at 30 so the 
meeting would be as interactive as possible. This article 
summarizes the conclusions from that meeting; an 
extended report and participant presentations are 
available at http://beckman.cs.wisc.edu. 
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Database researchers paint big data as  
a defining challenge. To make the most  
of the enormous opportunities at hand will 
require focusing on five research areas.
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The meeting participants quickly 
converged on big data as a defining 
challenge of our time. Big data arose 
due to the confluence of three ma-
jor trends. First, it has become much 
cheaper to generate a wide variety of 
data, due to inexpensive storage, sen-
sors, smart devices, social software, 
multiplayer games, and the Internet of 
Things, which connects homes, cars, 
appliances, and other devices. Second, 
it has become much cheaper to pro-
cess large amounts of data, due to ad-
vances in multicore CPUs, solid state 
storage, inexpensive cloud computing, 
and open source software. Finally, data 
management has become democra-
tized. The process of generating, pro-

cessing, and consuming data is no 
longer just for database professionals. 
Decision makers, domain scientists, 
application users, journalists, crowd 
workers, and everyday consumers now 
routinely do it.

Due to these trends, an unprec-
edented volume of data needs to be 
captured, stored, queried, processed, 
and turned into knowledge. These 
goals are remarkably well aligned 
with those that have driven the data-
base research community for decades. 
Many early systems for big data aban-
doned database management system 
(DBMS) principles, such as declarative 
programming and transactional data 
consistency, in favor of scalability and 

 key insights
 ˽ Thirty leaders from the database 

research community met in October 
2013 to discuss the state of the field and 
important future research directions.

 ˽ Big data was identified as a defining 
challenge for the field. Five related 
challenges were called out: developing 
scalable data infrastructures, coping with 
increased diversity in both data and data 
management, addressing the end-to-end 
data-to-knowledge pipeline, responding 
to the adoption of cloud-based computing, 
and accomodating the many and changing 
roles of individuals in the data life cycle.

 ˽ College-level database education needs 
modernization to catch up with the many 
changes in database technology of the 
past decade and to meet the demands of 
the emerging disciplines of data science.
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fault tolerance on commodity hard-
ware. However, the latest generation 
of big data systems is rediscovering the 
value of these principles and is adopt-
ing concepts and methods that have 
been long-standing assets of the da-
tabase community. Building on these 
principles and assets, the database 
community is well positioned to drive 
transformative improvements to big 
data technology.

But big data also brings enormous 
challenges, whose solutions will re-
quire massive disruptions to the de-
sign, implementation, and deploy-
ment of data management solutions. 
The main characteristics of big data 
are volume, velocity, and variety. The 
database community has worked on 
volume and velocity for decades, and 
has developed solutions that are mis-
sion critical to virtually every com-
mercial enterprise on the planet. The 
unprecedented scale of big data, how-
ever, will require a radical rethinking 
of existing solutions.

Variety arises from several sources. 
First, there is the problem of integrat-
ing and analyzing data that comes 
from diverse sources, with varying 
formats and quality. This is anoth-
er long-standing topic of database 
work, yet it is still an extremely labor-
intensive journey from raw data to 
actionable knowledge. This problem 
is exacerbated by big data, causing a 
major bottleneck in the data process-
ing pipeline. Second, there is the vari-
ety of computing platforms needed to 
process big data: hardware infrastruc-
tures; processing frameworks, lan-
guages, and systems; and program-
ming abstractions. Finally, there is a 
range of user sophistication and pref-
erences. Designing data management 
solutions that can cope with such ex-
treme variety is a difficult challenge.

Moving beyond the three Vs, many 
big data applications will be deployed 
in the cloud, both public and private, on 
a massive scale. This requires new tech-
niques to offer predictable performance 
and flexible interoperation. Many ap-
plications will also require people to 
solve semantic problems that still be-
devil current automatic solutions. This 
can range from a single domain expert 
to a crowd of workers, a user commu-
nity, or the entire connected world (for 
example, Wikipedia). This will require 

new techniques to help people be more 
productive and to reduce the skill level 
needed to solve these problems.

Finally, big data brings important 
community challenges. We must re-
think the approach to teaching data 
management, reexamine our research 
culture, and adapt to the emergence of 
data science as a discipline.

Research Challenges
The meeting identified five big data 
challenges: scalable big/fast data in-
frastructures; coping with diversity in 
data management; end-to-end pro-
cessing of data; cloud services; and the 
roles of people in the data life cycle. 
The first three challenges deal with the 
volume, velocity, and variety aspects of 
big data. The last two deal with deploy-
ing big data applications in the cloud 
and managing the involvement of peo-
ple in these applications.

These big data challenges are not 
an exclusive agenda to be pursued at 
the expense of existing work. In recent 
years the database community has 
strengthened core competencies in re-
lational DBMSs and branched out into 
many new directions. Some important 
issues raised repeatedly during the 
meeting are security, privacy, data pric-
ing, data attribution, social and mobile 
data, spatiotemporal data, personal-
ization and contextualization, energy-
constrained processing, and scientific 
data management. Many of these is-
sues cut across the identified big data 
challenges and are captured in the dis-
cussion here.

It is important to note that some 
of this work is being done in collabo-
ration with other computer science 
fields, including distributed systems, 
artificial intelligence, knowledge dis-
covery and data mining, human-com-
puter interaction, and e-science. In 
many cases, these fields provided the 
inspiration for the topic and the data 
management community has joined 
in, applying its expertise to produce 
robust solutions. These collaborations 
have been very productive and should 
continue to grow.

Scalable big/fast data infrastruc-
tures. Parallel and distributed process-
ing. In the database world, parallel 
processing of large structured datas-
ets has been a major success, leading 
to several generations of SQL-based 

Many big data 
applications will 
be deployed in the 
cloud, both public 
and private, on 
a massive scale. 
This requires new 
techniques to 
offer predictable 
performance 
and flexible 
interoperation.
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products that are widely used by en-
terprises. Another success is data 
warehousing, where database re-
searchers defined the key abstraction 
of data cube (for online analytic pro-
cessing, or OLAP) and strategies for 
querying it in parallel, along with sup-
port for materialized views and rep-
lication. The distributed computing 
field has achieved success in scaling 
up data processing for less structured 
data on large numbers of unreliable, 
commodity machines using con-
strained programming models such 
as MapReduce. Higher-level languag-
es have been layered on top, to enable 
a broader audience of developers to 
use scalable big data platforms. To-
day, open source platforms such as 
Hadoop3—with its MapReduce pro-
gramming model, large-scale distrib-
uted file system, and higher-level lan-
guages, such as Pig5 and Hive4—are 
seeing rapid adoption for processing 
less structured data, even in tradition-
al enterprises.

Query processing and optimization. 
Given the enthusiastic adoption of 
declarative languages for processing 
big data, there is a growing recogni-
tion that more powerful cost-aware 
query optimizers and set-oriented 
query execution engines are needed, 
to fully exploit large clusters of many-
core processors, scaling both “up” 
and “out.” This will create challenges 
for progress monitoring, so a user can 
diagnose and manage queries that are 
running too slowly or consuming ex-
cessive resources. To adapt to the char-
acteristics of previously unseen data 
and reduce the cost of data movement 
between stages of data analysis, query 
processors will need to integrate data 
sampling, data mining, and machine 
learning into their flows.

New hardware. At datacenter scale, 
the ratio between the speed of sequen-
tial processing and interconnects is 
changing with the advent of faster 
networks, full bisection bandwidth 
networks between servers, and remote 
direct memory access. In addition to 
clusters of general-purpose multicore 
processors, more specialized proces-
sors should be considered. Commer-
cially successful database machines 
have shown the potential of hardware-
software co-design for data manage-
ment. Researchers should continue 

to explore ways of leveraging special-
ized processors, for example, graphics 
processing units, field-programmable 
gate arrays, and application-specific 
integrated circuits, for processing very 
large datasets. These changes in com-
munications and processing technolo-
gies will require a reconsideration of 
parallel and distributed query-process-
ing algorithms, which have tradition-
ally focused on more homogeneous 
hardware environments.

Cost-efficient storage. The database 
research community must learn how 
best to leverage emerging memory 
and storage technologies. Relative to 
commodity magnetic disks, solid-state 
disks are expensive per gigabyte but 
cheap per I/O operation. Various non-
volatile random-access memory tech-
nologies are under development, all 
with different speed, power, and dura-
bility characteristics.

Both server-attached and network-
attached storage architectures need 
to be considered. Distributed file sys-
tems like HDFS, which are server-at-
tached yet shared across the network, 
are a hybrid of both approaches. How 
best to use this range of storage con-
figurations reopens many questions 
reminiscent of past debates of shared 
memory vs. shared disk vs. shared 
nothing, questions many have consid-
ered to be “closed” for parallel rela-
tional systems.

High-speed data streams. For data 
that arrives at ever-higher speeds, 
new scalable techniques for ingest-
ing and processing streams of data 
will be needed. Algorithms will need 
to be tuned carefully to the behavior 
of hardware, for example, to cope 
with non-uniform memory access 
and limited transfer rates across lay-
ers of the memory hierarchy. Some 
very high-speed data sources, often 
with lower information density, will 
need to be processed online and then 
discarded without being persisted in 
its entirety. Rather, samples and ag-
gregations of such data will need to 
be selected and stored persistently 
to answer queries that arrive after 
the raw data is no longer available. 
For such data, progressive query pro-
cessing will be important to provide 
incremental and partial results with 
increasing accuracy as data flows 
through the processing pipeline.

Late-bound schemas. For data that 
is persisted but processed just once 
(if ever), it makes little sense to pay 
the substantial price of storing and 
indexing it first in a database system. 
Instead, it should be stored as a binary 
file and interpreted as a structured re-
cord only if and when it is read later. 
Record structure may be self-describ-
ing via attribute-value pairs, such as 
JavaScript Object Notation (JSON), 
interpreted via predefined schemas, 
or deduced using data mining. To of-
fer the benefits of database queries 
in such scenarios, we need query en-
gines that can run efficiently over raw 
files with late-bound schemas.

Consistency. Today’s world brings 
new requirements for data capture, 
updates, and simple and fast data 
access. Handling high rates of data 
capture and updates for schema-less 
data has led to the development of 
NoSQL systems. There are many such 
systems, with a range of transaction 
models. Most provide only basic data 
access and weak atomicity and isola-
tion guarantees, making it difficult 
to build and reason about reliable 
applications. As a result, a new class 
of big data system has emerged that 
provides full-fledged database-like 
features over key-value stores or simi-
lar substrates. For some applications, 
the stored data is still managed and 
updated as “the source of truth” for 
an enterprise. For others, such as the 
Internet of Things, the stored data re-
flects ongoing events in the outside 
world that applications can use to rec-
ognize and respond to situations of 
interest. This creates an opportunity 
to revisit programming models and 
mechanisms for data currency and 
consistency and to design new models 
and techniques for developing robust 
applications.

Metrics and benchmarks. Finally, 
scalability should be measured not 
only in petabytes of data and queries 
per second, but also total cost of own-
ership (including management and 
energy use), end-to-end processing 
speed (that is, time from raw data ar-
rival to eventual insights), brittleness 
(for example, the ability to continue 
despite failures such as partial data 
parse errors), and usability (especially 
for entry-level users). To measure prog-
ress against such broader metrics, new 
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data must be used together in a struc-
tured fashion. Data tools must exploit 
human feedback in every step of the 
analytical pipeline, and must be us-
able by subject-matter experts, not 
just by IT professionals. For example, 
a journalist may want to clean, map, 
and publish data from a spreadsheet 
file of crime statistics. Tools must also 
be tailored to data scientists, the new 
class of data analysis professionals 
that has emerged.

Tool diversity. Since no one-size-fits-
all tool will cover the wide variety of 
data analysis scenarios ahead, we need 
multiple tools, each solving a step of 
the raw-data-to-knowledge pipeline. 
They must be seamlessly integrated 
and easy to use for both lay and expert 
users, with best-practice guidance on 
when to use each tool.

Tool customizability. Tools should 
be able to exploit domain knowledge, 
such as dictionaries, knowledge bases, 
and rules. They should be easy to cus-
tomize to a new domain, possibly us-
ing machine learning to automate the 
customization process. Handcrafted 
rules will remain important, though, 
as many analysis applications require 
very high precision, such as e-com-
merce. For such applications, analysts 
often write many rules to cover “corner 
cases” that are not amenable to learn-
ing and generalization. Thus, tools 
should provide support for writing, 
evaluating, applying, and managing 
handcrafted rules.

Open source. Few tools in this area 
are open source. Most are expensive 
proprietary products that address cer-
tain processing steps. As a result, ex-
isting tools cannot easily benefit from 
ongoing contributions by the data inte-
gration research community.

Understanding data. Explanation, 
provenance, filtering, summarization, 
and visualization requirements will be 
critical to making analytic tools easy to 
use. Capturing and managing appro-
priate meta-information is key to en-
able explanation, provenance, reuse, 
and visualization. Visual analytics is 
receiving growing attention in the da-
tabase, visualization, and HCI commu-
nities. Continued progress in this area 
is essential to help users cope with big 
data volumes.

Knowledge bases. The more knowl-
edge we have about a target domain, 

types of benchmarks will be required.
Diversity in data management. 

No one-size-fits-all. Today’s data-
driven world involves a richer variety 
of data types, shapes, and sizes than 
traditional enterprise data, which is 
stored in a data warehouse optimized 
for analysis tasks. Today, data is of-
ten stored in different representa-
tions managed by different software 
systems with different application 
programming interfaces, query pro-
cessors, and analysis tools. It seems 
unlikely a single, one-size-fits-all, big 
data system will suffice for this degree 
of diversity. Instead, we expect multi-
ple classes of systems to emerge, each 
addressing a particular need (for ex-
ample, data deduplication, analysis of 
large graphs, diverse scientific experi-
ments, and real-time stream process-
ing) or exploiting a particular type of 
hardware platform (for example, clus-
ters of inexpensive machines or large 
multicore servers). Addressing these 
scenarios will require applying exper-
tise in set-oriented parallel process-
ing and in efficiently handling data- 
sets that do not fit in main memory.

Cross-platform integration. Given 
this diversity of systems, platforms will 
need to be integrated or federated to 
enable data analysts to combine and 
analyze data across systems. This will 
involve not only hiding the heteroge-
neity of data formats and access lan-
guages, but also optimizing the per-
formance of accesses that span diverse 
big data systems and of flows that move 
data between them. It will also require 
managing systems that run on diverse 
devices and span large datacenters. 
Disconnected devices will become 
increasingly common, raising chal-
lenges in reliable data ingestion, query 
processing, and data inconsistency in 
such sometimes-connected, wide-area 
environments.

Programming models. A diverse and 
data-driven world requires diverse 
programming abstractions to operate 
on very large datasets. A single data 
analysis language for big data, such 
as an extension of SQL, will not meet 
everyone’s needs. Rather, users must 
be able to analyze their data in the 
idiom they find most natural: SQL, 
Pig, R, Python, a domain-specific lan-
guage, or a lower-level constrained 
programming model such as MapRe-

duce or Valiant’s bulk synchronous 
processing model. This also suggests 
the development of reusable middle-
layer components that can support 
multiple language-specific bindings, 
such as scalable support for matrix 
multiplication, list comprehension, 
and stylized iterative execution mod-
els. Another potentially fruitful focus 
is tools for the rapid development of 
new domain-specific data analysis 
languages—tools that simplify the 
implementation of new scalable, da-
ta-parallel languages.

Data processing workflows. To han-
dle data diversity, we need platforms 
that can span both “raw” and “cooked” 
data. The cooked data can take many 
forms, for example, tables, matrices, 
or graphs. Systems will run end-to-end 
workflows that mix multiple types of 
data processing, for example, query-
ing data with SQL and then analyzing 
it with R. To unify diverse systems, 
lazy computation is sometimes benefi-
cial—lazy data parsing, lazy conversion 
and loading, lazy indexing and view 
construction, and just-in-time query 
planning. Big data systems should be-
come more interoperable like “Lego 
bricks.” Cluster resource managers, 
such as Hadoop 2.0’s YARN, provide 
some inspiration at the systems level, 
as do workflow systems for the Hadoop 
ecosystem and tools for managing sci-
entific workflows.

End-to-end processing of data. The 
database research community should 
pay more attention to end-to-end pro-
cessing of data. Despite years of R&D, 
surprisingly few tools can go from raw 
data all the way to extracted knowledge 
without significant human interven-
tion at each step. For most steps, the 
intervening people need to be highly 
computer savvy.

Data-to-knowledge pipeline. The 
steps of the raw-data-to-knowledge 
pipeline will be largely unchanged: 
data acquisition; selection, assess-
ment, cleaning, and transformation 
(also called “data wrangling”); extrac-
tion and integration; mining, OLAP, 
and analytics; and result summariza-
tion, provenance, and explanation. 
In addition to greater scale, what has 
significantly changed is the greater 
diversity of data and users. Data today 
comes in a wide variety of formats. 
Often, structured and unstructured 
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the better that tools can analyze the 
domain. As a result, there has been a 
growing trend to create, share, and use 
domain knowledge to better under-
stand data. Such knowledge is often 
captured in knowledge bases (KBs) 
that describe the most important en-
tities and relationships in a domain, 
such as a KB containing profiles of tens 
of thousands of biomedical research-
ers along with their publications, affili-
ations, and patents. Such KBs are used 
for improving the accuracy of the raw-
data-to-knowledge pipeline, answering 
queries about the domain, and find-
ing domain experts. Many companies 
have also built KBs for answering user 
queries, annotating text, supporting 
e-commerce, and analyzing social me-
dia. The KB trend will likely accelerate, 
leading to a proliferation of commu-
nity-maintained “knowledge centers” 
that offer tools to query, share, and use 
KBs for data analysis.

While some progress has been made 
on this topic, more work is needed on 
tools to help groups of users with dif-
ferent skill levels collaboratively build, 
maintain, query, and share domain-
specific KBs.

Cloud services. Cloud computing 
comes in three main forms: Infra-
structure as a Service (IaaS), where 
the service is virtualized hardware; 
Platform as a Service (PaaS), where the 
service is virtualized infrastructure 
software such as a DBMS; and Soft-
ware as a Service (SaaS), where the ser-
vice is a virtualized application such 
as a customer relationship manage-
ment solution. From a data platform 
perspective, the ideal goal is a PaaS 
for data, where users can upload data 
to the cloud, query it as they do today 
over their on-premise SQL databases, 
and selectively share the data and re-
sults easily, all without worrying about 
how many instances to rent, what op-
erating system to run on, how to parti-
tion databases across servers, or how 
to tune them. Despite the emergence 
of services such as Database.com 
from Salesforce.com, Big Query from 
Google, Redshift from Amazon, and 
Azure SQL Database from Microsoft, 
we have yet to achieve the full ideal. 
Here, we outline some of the critical 
challenges to realize the complete vi-
sion of a Data PaaS in the cloud.

Elasticity. Data can be prohibitively 

expensive to move. Network-attached 
storage makes it easier to scale out a 
database engine. However, network 
latency and bandwidth limit database 
performance. Server-attached storage 
reduces these limitations, but then 
server failures can degrade availability 
and failover can interfere with load bal-
ancing and hence violate service-level 
agreements (SLAs).

An open question is whether the 
same cloud storage service can sup-
port both transactions and analytics; 
how caching best fits into the overall 
picture is also unclear. To provide elas-
ticity, database engines and analysis 
platforms in a Data PaaS will need to 
operate well on top of resources that 
can be allocated quickly during work-
load peaks but possibly preempted for 
users paying for premium service.

Data replication. Latency across geo-
graphically distributed datacenters 
makes it difficult to keep replicas con-
sistent yet offer good throughput and 
response time to updates. Multi-mas-
ter replication is a good alternative, 
when conflicting updates on different 
replicas can be automatically synchro-
nized. But the resulting programming 
model is not intuitive to mainstream 
programmers. Thus, the challenge is 
how best to trade-off availability, con-
sistency performance, programmabil-
ity, and cost.

System administration and tuning. 
In the world of Data PaaS, database 
and system administrators simply do 
not exist. Therefore, all administra-
tive tasks must be automated, such as 
capacity planning, resource provision-
ing, and physical data management. 
Resource control parameters must 
also be set automatically and be high-
ly responsive to changes in load, such 
as buffer pool size and admission con-
trol limits.

Multitenancy. To be competitive, a 
Data PaaS should be cheaper than an 
on-premises solution. This requires 
providers to pack multiple tenants to-
gether to share physical resources to 
smooth demand and reduce cost. This 
introduces several problems. First, the 
service must give security guarantees 
against information leakage across 
tenants. This can be done by isolating 
user databases in separate files and 
running the database engine in sepa-
rate virtual machines (VMs). However, 

A diverse and 
data-driven world 
requires diverse 
programming 
abstractions to 
operate on very 
large datasets. 
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this is inefficient for small databases, 
and makes it difficult to balance re-
sources between VMs running on the 
same server. An alternative is to have 
users share a single database and data-
base engine instance. But then special 
care is needed to prevent cross-tenant 
accesses. Second, users want an SLA 
that defines the level of performance 
and availability they need. Data PaaS 
providers want to offer SLAs too, to en-
able tiered pricing. However, it is chal-
lenging to define SLAs that are under-
standable to users and implementable 
by PaaS providers. The implementa-
tion challenge is to ensure perfor-
mance isolation between tenants, to 
ensure a burst of demand from one 
tenant does not cause a violation of 
other tenants’ SLAs.

Data sharing. The cloud enables 
sharing at an unprecedented scale. 
One problem is how to support es-
sential services such as data curation 
and provenance collaboratively in the 
cloud. Other problems include: how to 
find useful public data, how to relate 
self-managed private data with public 
data to add context, how to find high-
quality data in the cloud, how to share 
data at fine-grained levels, how to dis-
tribute costs when sharing computing 
and data, and how to price data. The 
cloud also creates new life-cycle chal-
lenges, such as how to protect data if 
the current cloud provider fails and to 
preserve data for the long term when 
users who need it have no personal 
or financial connection to those who 
provide it. The cloud will also drive in-
novation in tools for data governance, 
such as auditing, enforcement of legal 
terms and conditions, and explana-
tion of user policies.

Hybrid clouds. There is a need for 
interoperation of database services 
among the cloud, on-premise serv-
ers, and mobile devices. One scenar-
io is off-loading. For example, users 
may run applications in their private 
cloud during normal operation, but 
tap into a public cloud at peak times 
or in response to unanticipated work-
load surges. Another is cyber-phys-
ical systems, such as the Internet of 
Things. For example, cars will gather 
local sensor data, upload some of it 
into the cloud, and obtain control 
information in return based on data 
aggregation from many sources. 

Cyber-physical systems involve data 
streaming from multiple sensors and 
mobile devices, and must cope with 
intermittent connectivity and lim-
ited battery life, which pose difficult 
challenges for real-time and perhaps 
mission-critical data management in 
the cloud.

Roles of humans in the data life 
cycle. Back when data management 
was an enterprise-driven activity, roles 
were clear: developers built databases 
and database-centric applications, 
business analysts queried databases 
using (SQL-based) reporting tools, 
end users generated data and queried 
and updated databases, and database 
administrators tuned and monitored 
databases and their workloads. Today, 
a single individual can play multiple 
roles in the data life cycle, and some 
roles may be served by crowdsourcing. 
Thus, human factors need to be con-
sidered for query understanding and 
refinement, identifying relevant and 
trustworthy information sources, de-
fining and incrementally refining the 
data processing pipeline, visualizing 
relevant patterns, obtaining query an-
swers, and making the various micro-
tasks doable by domain experts and 
end users. We can classify people’s 
roles into four general categories: pro-
ducers, curators, consumers, and com-
munity members.

Data producers. Today, virtually any-
one can generate a torrent of data from 
mobile phones, social platforms and 
applications, and wearable devices. 
One key challenge for the database 
community is to develop algorithms 
and incentives that guide people to 
produce and share the most useful 
data, while maintaining the desired 
level of data privacy. When people pro-
duce data, how can we help them add 
metadata quickly and accurately? For 
example, when a user uploads an im-
age, Facebook automatically identi-
fies faces in the image so users can 
optionally tag them. Another example 
is tools to automatically suggest tags 
for a tweet. What else can we do, and 
what general principles and tools can 
we provide?

Data curators. Data is no longer just 
in databases controlled by a DBA and 
curated by the IT department. Now, a 
wide variety of people are empowered 
to curate it. Crowdsourcing is one ap-

We need to build 
platforms that  
allow people to 
curate data easily 
and extend relevant 
applications  
to incorporate  
such curation. 
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proach. A key challenge, then, is to ob-
tain high-quality datasets from a pro-
cess based on often-imperfect human 
curators. We need to build platforms 
that allow people to curate data eas-
ily and extend relevant applications to 
incorporate such curation. For these 
people-centric challenges, data prov-
enance and explanation will be crucial, 
as will privacy and security.

Data consumers. People want to use 
messier data in complex ways, raising 
many challenges. In the enterprise, 
data consumers usually know how to 
ask SQL queries, over a structured da-
tabase. Today’s data consumers may 
not know how to formulate a query 
at all, for example, a journalist who 
wants to “find the average tempera-
ture of all cities with population over 
100,000 in Florida” over a structured 
dataset. Enabling people to get such 
answers themselves requires new 
query interfaces, for example, based 
on multi-touch, not just console-
based SQL. We need multimodal in-
terfaces that combine visualization, 
querying, and navigation. When the 
query to ask is not clear, people need 
other ways to browse, explore, visual-
ize, and mine the data, to make data 
consumption easier.

Online communities. People want to 
create, share, and manage data with 
other community members. They may 
want to collaboratively build commu-
nity-specific knowledge bases, wikis, 
and tools to process data. For example, 
many researchers have created their 
own pages on Google Scholar, there-
by contributing to this “community” 
knowledge base. Our challenge is to 
build tools to help communities pro-
duce usable data as well as to exploit, 
share, and mine it.

Community Challenges
In addition to research challenges, the 
database field faces many community 
issues. These include database educa-
tion, data science, and research culture. 
Some of these are new, brought about 
by big data. Other issues, while not new, 
are exacerbated by big data and are be-
coming increasingly important.

Database education. The database 
technology taught in standard database 
courses today is increasingly discon-
nected from reality. It is rooted in the 
1980s, when memory was small relative 

to database size, making I/O the bottle-
neck to most database operations, and 
when servers used relatively expensive 
single-core processors. Today, many 
databases fit in main memory, and 
many-core servers make parallelism 
and cache behavior critical to database 
performance. Moreover, although SQL 
DBMSs are still widely used, so are key-
value stores, data stream processors, 
and MapReduce frameworks. It is time 
to rethink the database curriculum.

Data science. As we discussed ear-
lier, big data has generated a rapidly 
growing demand for data scientists 
who can transform large volumes of 
data into actionable knowledge. Data 
scientists need skills not only in data 
management, but also in business in-
telligence, computer systems, math-
ematics, statistics, machine learning, 
and optimization. New cross-disci-
plinary programs are needed to pro-
vide this broad education. Successful 
research and educational efforts re-
lated to data science will require close 
collaboration with these other disci-
plines and with domain specialists. 
Big data presents computer science 
with an opportunity to influence the 
curricula of chemistry, earth sciences, 
sociology, physics, biology, and many 
other fields. The small computer sci-
ence parts of those curricula could 
be grown and redirected to give data 
management and data science a more 
prominent role.

Research culture. Finally, there is 
much concern over the increased em-
phasis of citation counts instead of 
research impact. This discourages 
large systems projects, end-to-end tool 
building, and sharing of large datasets, 
since this work usually takes longer 
than solving point problems. Program 
committees that value technical depth 
on narrow topics over the potential 
for real impact are partly to blame. It 
is unclear how to change this culture. 
However, to pursue the big data agen-
da effectively, the field needs to return 
to a state where fewer publications per 
researcher per time unit is the norm, 
and where large systems projects, end-
to-end tool sets, and data sharing are 
more highly valued.

Going Forward
This is an exciting time for database re-
search. In the past it has been guided 

by, but also restricted by, the rigors of 
the enterprise and relational database 
systems. The rise of big data and the 
vision of a data-driven world present 
many exciting new research challenges 
related to processing big data; handling 
data diversity; exploiting new hardware, 
software, and cloud-based platforms; 
addressing the data life cycle, from cre-
ating data to analyzing and sharing it; 
and facing the diversity, roles, and num-
ber of people related to all aspects of 
data. It is also time to rethink approach-
es to education, involvement with data 
consumers, and our value system and 
its impact on how we evaluate, dissemi-
nate, and fund our research.
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