
TSL: A System for Generating Abstract Interpreters

and its Application to Machine-Code Analysis

JUNGHEE LIM

University of Wisconsin

and

THOMAS REPS

University of Wisconsin and GrammaTech, Inc.

This paper describes the design and implementation of a system, called TSL (for “Transformer
Specification Language”), that provides a systematic solution to the problem of creating retar-
getable tools for analyzing machine code. TSL is a tool generator—i.e., a meta-tool—that auto-
matically creates different abstract interpreters for machine-code instruction sets.

The most challenging technical issue that we faced in designing TSL was how to automate
the generation of the set of abstract transformers for a given abstract interpretaton of a given
instruction set. From a description of the concrete operational semantics of an instruction set,
together with the datatypes and operations that define an abstract domain, TSL automatically
creates the set of abstract transformers for the instructions of the instruction set. TSL advances
the state of the art in program analysis because it provides two dimensions of parameterizability:
(i) a given analysis component can be retargeted to different instruction sets; (ii) multiple analysis
components can be created automatically from a single specification of the concrete operational
semantics of the language to be analyzed.

TSL is an abstract-transformer-generator generator. The paper describes the principles behind
TSL, and discusses how one uses TSL to develop different abstract interpreters.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Assertion checkers; model checking; D.2.5 [Software Engineering]: Testing and De-
bugging—Symbolic execution; testing tools; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement—Restructuring, reverse engineering, and reengineering; D.3.2 [Pro-

gramming Languages]: Language Classifications—Applicative (functional) languages; macro
and assembly languages; F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis

Authors’ addresses: J. Lim, Computer Sciences Dept., Univ. of Wisconsin, 1210 W. Dayton
St., Madison, WI 53703, junghee@cs.wisc.edu. T. Reps, Computer Sciences Dept., Univ. of
Wisconsin, 1210 W. Dayton St., Madison, WI 53703, and GrammaTech, Inc., 531 Esty St., Ithaca,
NY 14850; reps@cs.wisc.edu.

The work was supported in part by NSF under grants CCF-{0524051, 0540955, 0810053,
0904371}; by ONR under grants N00014-{01-1-0708, 01-1-0796, 09-1-0510, 09-1-0776, 10-M-0251,
11-C-0447}; by ARL under grant W911NF-09-1-0413; by AFRL under grants FA8750-05-C-
0179, FA8750-06-C-0249, FA9550-09-1-0279 and FA8650-10-C-7088; by DARPA under cooper-
ative agreement HR0011-12-2-0012; by a donation from GrammaTech, Inc.; and by a Symantec
Research Labs Graduate Fellowship. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors, and do not necessarily reflect the views of
the sponsoring companies or agencies.

T. Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of the
technology reported in this publication.

Portions of this work appeared in the 17th Int. Conf. on Compiler Construction [Lim and Reps
2008], the 16th Int. SPIN Workshop [Lim et al. 2009] and a subsequent journal article [Lim et al.
2011], and the 22nd Int. Conf. on Computer Aided Verification [Thakur et al. 2010], as well as in
J. Lim’s Ph.D. dissertation [Lim 2011].
c© 2012 J. Lim and T. Reps

2 · J. Lim and T. Reps

General Terms: Algorithms, Languages, Security, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, machine-code analysis, dynamic
analysis, symbolic analysis, static analysis, dataflow analysis

1. INTRODUCTION

In recent years, methods to analyze machine-code programs have been receiving
increased attention. Two of the factors that motivate such work are (i) source code
is often unavailable, and (ii) machine code is closer than source code to what is
actually executed, which is often important in the context of computer security.
While the tools and techniques that have been developed for analyzing machine
code are, in principle, language-independent, implementations are often tied to one
specific instruction set. Retargeting them to another instruction set can be an
expensive and error-prone process.
This paper describes the design and implementation of a system, called TSL

(for “Transformer Specification Language”),1 that provides a systematic solution
to the problem of creating retargetable tools for analyzing machine code. TSL is
a tool generator—i.e., a meta-tool—that automatically creates different abstract
interpreters for machine-code instruction sets. More precisely, TSL is an abstract-
transformer-generator generator. The TSL system provides a language in which
a user specifies the concrete operational semantics of an instruction set; from a
TSL specification, the TSL compiler generates an intermediate representation that
allows the meanings of the input-language constructs to be redefined by supplying
alternative interpretations of the primitives of the TSL language (i.e., the TSL base-
types, map-types, and operations on values of those types). TSL’s run-time system
supports the use of such generated abstract-transformer generators for dynamic
analysis, static analysis, and symbolic execution.
TSL advances the state of the art in program analysis by providing a YACC-like

mechanism for creating the key components of machine-code analyzers: from a
description of the concrete operational semantics of a given instruction set, TSL
automatically creates implementations of different abstract interpreters for the in-
struction set.
In designing the TSL system, the most challenging technical issue that we faced

was how to automate the generation of the set of abstract transformers for a given
abstract interpretaton of a given instruction set. There have been a number of
past efforts to create generator tools to support abstract interpretation, including
MUG2 [Wilhelm 1981], SPARE [Venkatesh 1989; Venkatesh and Fischer 1992],
Steffen’s work on harnessing model checking for dataflow analysis [Steffen 1991;
1993], Sharlit [Tjiang and Hennessy 1992], Z [Yi and Harrison, III 1993], PAG [Alt
and Martin 1995], OPTIMIX [Assmann 2000], TVLA [Lev-Ami and Sagiv 2000;
Reps et al. 2010], HOIST [Regehr and Reid 2004], and RHODIUM [Scherpelz et al.
2007]. However, in all but the last three, the user specifies an abstract semantics,
but not the concrete semantics of the language to be analyzed. Moreover, it is
the responsibility of the user to establish, outside of the system, the soundness of

1TSL is also used as the name of the system’s meta-language.

TSL: A System for Generating Abstract Interpreters · 3

the abstract semantics with respect to the (generally not-written-down) concrete
semantics.
In contrast, a major goal of our work was to adhere closely to the credo of abstract

interpretation [Cousot and Cousot 1977]:

—specify the concrete semantics

—obtain an abstract semantics as an abstraction of the concrete semantics.

In particular, a specification of the concrete semantics of the language to be ana-
lyzed is an explicit artifact that the TSL compiler receives as input. Consequently,
TSL differs from most past work that has attempted to automate the creation of
abstract interpreters.
A language’s concrete semantics is specified in TSL’s meta-language. The meta-

language is a strongly typed, first-order functional language with a datatype-
definition mechanism for defining recursive datatypes, plus deconstruction by means
of pattern matching. Thus, writing a TSL specification for an language is similar
to writing an interpreter for that language in first-order ML.
TSL provides a fixed set of basetypes and operators, as well as map-types with

map-access and (applicative) map-update operations. From a TSL specification,
the TSL compiler generates a common intermediate representation (CIR) that al-
lows the meanings of the input-language constructs to be redefined by supplying
alternative interpretations of the basetypes, map-types, and the operations on them
(also known as “semantic reinterpretation”). Because all the abstract operations
are defined at the meta-level, semantic reinterpretation is independent of any given
language defined in TSL. Therefore, each implementation of an analysis compo-
nent’s driver serves as the unchanging driver for use in different instantiations of
the analysis component to different languages. The TSL language becomes the spec-
ification language for retargeting that analysis component for different languages.
Thus, to createM ×N analysis components, the TSL system only requiresM spec-
ifications of the concrete semantics of a language, and N analysis implementations,
i.e., M +N inputs to obtain M ×N analysis-component implementations.

Problem Statement. Our work addresses the following fundamental problem in
abstract interpretation:

Given the concrete semantics for a language, how can one systematically
create the associated abstract transformers?

In addition to the theory of abstract interpretation itself [Cousot and Cousot 1977],
the inspiration for our work is two-fold:

—Prior work on systems that generate analyzers from the concrete semantics of a
language: TVLA, HOIST, and RHODIUM.

—Prior work on semantic reinterpretation [Mycroft and Jones 1985; Jones and
Mycroft 1986; Nielson 1989; Malmkjær 1993].

The use of semantic reinterpretation in TSL as the basis for generating abstract
transformers is what distinguishes our work from TVLA, HOIST, and RHODIUM.
Semantic reinterpretation is discussed in more detail in §2.2 and §3.2.

4 · J. Lim and T. Reps

Our work also addresses the retargeting problem. The literature on program anal-
ysis is vast, and essentially all of the results described in the literature are, in prin-
ciple, language-independent. However, their implementations are often tied to one
specific language. Retargeting them to another language (as well as implementing
a new analysis for the same language) can be an expensive and error-prone process.
TSL represents one point in the design space of tools to support retargetable pro-
gram analyzers, namely, a meta-tool—a tool generator—that automatically creates
different abstract interpreters for a language.

Contributions. TSL advances the state of the art in program analysis because it
provides two dimensions of parameterizability. In particular,

—a given analysis component can be retargeted to different instruction sets. One
merely has to write a TSL specification of the concrete semantics of a given
instruction set. In this respect, TSL provides a YACC-like mechanism for creating
different instantiations of an analysis component for different languages: from
a description of the concrete operational semantics, TSL automatically creates
implementations of different analysis components.

—multiple analysis components can be created automatically from a single spec-
ification of the concrete operational semantics of the language to be analyzed.
For each new analysis component, the analysis designer merely has to provide
a reinterpretation of the basetypes, map-types, and operators of the TSL meta-
language.

Other notable aspects of our work include

—Support for multiple analysis types. The system supports several analysis types:

—classical worklist-based value-propagation analyses
—transformer-composition-based analyses [Cousot and Cousot 1979; Sharir and
Pnueli 1981], which are particularly useful for context-sensitive interprocedural
analysis, and for relational analyses

—unification-based analyses for flow-insensitive interprocedural analysis
—dynamic analyses (including concrete emulation using concrete semantics)
—symbolic analyses

—Implemented analyses. These mechanisms have been instantiated for a number of
specific analyses that are useful for analyzing machine code, including value-set
analysis [Balakrishnan 2007; Balakrishnan and Reps 2004] (§4.1.1), affine-relation
analysis [Müller-Olm and Seidl 2005; Elder et al. 2011] (§4.1.2), def-use analy-
sis (for memory, registers, and flags) (§4.1.4), aggregate structure identification
[Ramalingam et al. 1999] (§4.1.3), and generation of symbolic expressions for an
instruction’s semantics (§4.1.5).
Using TSL, we also developed a novel way of applying semantic reinterpretation

to create symbolic-analysis primitives automatically for symbolic evaluation, pre-
image computation, and symbolic composition [Lim et al. 2011].

—Established applicability. The capabilities of our approach have been demon-
strated by writing specifications for IA32 and PowerPC. These are nearly com-
plete specifications of the integer subset of these languages, and include such
features as (1) aliasing among 8-, 16-, and 32-bit registers, e.g., al, ah, ax, and

TSL: A System for Generating Abstract Interpreters · 5

eax (for IA32), (2) endianness, (3) issues arising due to bounded-word-size arith-
metic (overflow/underflow, carry/borrow, shifting, rotation, etc.), and (4) setting
of condition codes (and their subsequent interpretation at jump instructions). We
have also experimented with sufficiently complex features of other machine-code
languages (e.g., register windows for Sun SPARC and conditional execution of
instructions for ARM) to know that they fit our specification and implementation
models.

TSL has been used to recreate the analysis components employed by
CodeSurfer/x86 [Balakrishnan et al. 2005], which is a static-analysis framework
for analyzing stripped x86 executables. The TSL-generated analysis components
include value-set analysis, affine-relation analysis, def-use analysis (for memory,
registers, and flags), and aggregate structure identification. From the TSL spec-
ification of PowerPC, we also generated the analysis components needed for a
PowerPC version, CodeSurfer/ppc32.

In addition, using TSL-generated primitives for symbolic analysis, we developed
a machine-code verification tool, called MCVETO [Thakur et al. 2010] (§4.3), and
a concolic-execution-based program-exploration tool, called BCE [Lim and Reps
2010] (§4.4).

—Evaluation of the benefits of the approach. As discussed in §5, TSL provides
benefits from several standpoints, including (i) development time, and (ii) the
precision of TSL-generated abstract transformers.

Organization of the Paper. The remainder of the paper is organized as follows.
§2 presents an overview of the TSL system, the principles that lie behind it, and
the kinds of applications to which it has been applied. §3 describes TSL in more
detail, and considered from three perspectives: (i) how to write a TSL specification
(from the point of view of instruction-set-specification developers), (ii) how to write
domains for (re)interpreting the TSL basetypes and map-types (from the point of
view of reinterpretation developers), and (iii) how to use TSL-generated abstract
transformers (from the point of view of tool developers). §4 summarizes some of
the analyses that have been written using TSL. §5 presents an evaluation of the
costs and benefits of the TSL approach. §6 discusses related work. §7 concludes.

2. OVERVIEW OF THE TSL SYSTEM

The goal of TSL is to provide a systematic way of implementing analyzers that work
on machine code. TSL has three classes of users: (i) instruction-set-specification
(ISS) developers, (ii) reinterpretation developers, and (iii) tool developers. The ISS

developers are involved in specifying the semantics of different instruction sets; the
reinterpretation developers are involved in defining abstract domains and reinter-
pretations for the TSL basetypes; the tool developers are involved in extending the
analysis framework. The TSL language allows ISS developers to specify the concrete
semantics of an instruction set. The TSL run-time system—defined by a collection
of C++ classes—allows analysis developers to easily create analyzers that support
dynamic analysis, static analysis, and symbolic analysis of executables written in
any instruction set for which a TSL semantic specification has been written.

6 · J. Lim and T. Reps

Client Analyzer

M Instruction-Set Specifications

TSL System

N Analysis Components

• • •

interpInstr1 interpInstr2 interpInstrN

• • •

Fig. 1. The interaction between the TSL system and a client analysis tool. Each gray box
represents a TSL-generated abstract-transformer generator.

2.1 Design Principles

In designing the TSL language, we were guided by the following principles:

—There should be a formal language for specifying the semantics of the language
to be analyzed. Moreover, an ISS developer should specify only the abstract
syntax and a concrete operational semantics of the language to be analyzed.
Each analyzer should be generated automatically from this specification.

—Concrete syntactic issues—including (i) decoding (machine code to abstract syn-
tax), (ii) encoding (abstract syntax to machine code), (iii) parsing assembly (as-
sembly code to abstract syntax), and (iv) assembly pretty-printing (abstract syn-
tax to assembly code)—should be handled separately from the abstract syntax
and concrete semantics.2

—There should be a clean interface for reinterpretation developers to specify the
abstract semantics for each analysis. An abstract semantics consists of an in-
terpretation: an abstract domain and a set of abstract operators (i.e., for the
operations of TSL).

—The abstract semantics for each analysis should be separated from the languages
to be analyzed so that one does not need to specify multiple versions of an
abstract semantics for multiple languages.

Each of these objectives has been achieved in the TSL system: The TSL system
translates the TSL specification of each instruction set to a common intermediate
representation (CIR) that can be used to create multiple analyzers (§2.3 and §3.1.3).
Each analyzer is specified at the level of the meta-language (i.e., by reinterpreting
the operations of TSL), which—by extension to TSL expressions and functions—
provides the desired reinterpretation of the instructions of an instruction set.

2The translation of the concrete syntaxes to and from abstract syntax is handled by a generator
tool, called ISAL, which is separate from TSL and will not be discussed in this paper. It suffices to
say that the relationship between ISAL and TSL is similar to that between Flex and Bison. With
Flex and Bison, the specification of a collection of token identifiers is shared, which allows a Flex-
generated lexer to pass tokens to a Bison-generated parser. With ISAL and TSL, the specification
of an instruction set’s abstract syntax is shared, which allows ISAL to pass abstract-syntax trees
to a TSL-generated instruction-set analyzer.

TSL: A System for Generating Abstract Interpreters · 7

s1: x= x⊕ y;
s2: y = x⊕ y;
s3: x= x⊕ y;

Fig. 2. Code fragment that swaps two ints, using three ⊕ operations.

Many for the Price of One!. In Fig. 1, once one has the N analysis implementa-
tions that are the core of some client analysis tool A, one obtains a generator that
can create different versions A/M1, A/M2, . . . at the cost of writing specifications
of the concrete semantics of instruction sets M1, M2, etc. Thus, each client anal-
ysis tool A built using abstract-transformer generators created via TSL acts as a
“YACC-like” tool for generating different versions of A automatically.

2.2 Semantic Reinterpretation

The TSL system is based on factoring the concrete semantics of a language into
two parts: (i) a client specification, and (ii) a semantic core. The interface to
the core consists of certain basetypes, map-types, and operators (sometimes called
a semantic algebra [Schmidt 1986]), and the client is expressed in terms of this
interface. This organization permits the core to be reinterpreted to produce an
alternative semantics for the subject language.3

Semantic Reinterpretation for Abstract Interpretation. The idea of exploiting
such a factoring comes from the field of abstract interpretation [Cousot and Cousot
1977], where factoring-plus-reinterpretation has been proposed as a convenient tool
for formulating abstract interpretations and proving them to be sound [Mycroft
and Jones 1985; Jones and Mycroft 1986; Nielson 1989; Malmkjær 1993]. In partic-
ular, soundness of the entire abstract semantics can be established via purely local
soundness arguments for each of the reinterpreted operators.

The following example shows the basic principles of semantic reinterpretation in
the context of abstract interpretation. We use a simple language of assignments, and
define the concrete semantics and an abstract sign-analysis semantics via semantic
reinterpretation.

Example 2.1. (Adapted from [Malmkjær 1993].) Consider the following frag-
ment of a denotational semantics, which defines the meaning of assignment state-
ments over variables that hold signed 32-bit int values (where ⊕ denotes exclusive-

3Semantic reinterpretation is a program-generation technique, and thus we follow the terminology
of the partial-evaluation literature [Jones et al. 1993], where the program on which the partial
evaluator operates is called the subject program.

In logic and linguistics, the programming language would be called the “object language”. In
the compiler literature, an object program is a machine-code program produced by a compiler,
and so we avoid using the term “object programs” for the programs that TSL operates on.

8 · J. Lim and T. Reps

or):

I ∈ Id E ∈ Expr ::= I | E1 ⊕ E2 | . . .
S ∈ Stmt ::= I = E; σ ∈ State = Id → Int32

E : Expr → State → Int32
EJIKσ = σI
EJE1 ⊕ E2Kσ = EJE1Kσ ⊕ EJE2Kσ

I : Stmt → State → State
IJI = E;Kσ = σ[I 7→ EJEKσ]

By “σ[I 7→ v],” we mean the function that acts like σ except that argument I is
mapped to v. The specification given above can be factored into client and core
specifications by introducing a domain Val, as well as operators xor, lookup, and
store. The client specification is defined by

xor : Val → Val → Val
lookup : State → Id → Val
store : State → Id → Val → State

E : Expr → State → Val
EJIKσ = lookup σ I
EJE1 ⊕ E2Kσ = EJE1Kσ xor EJE2Kσ

I : Stmt → State → State
IJI = E;Kσ = store σ I EJEKσ

For the concrete (or “standard”) semantics, the semantic core is defined by

v ∈ Valstd = Int32
Statestd = Id → Val

lookup
std

= λσ.λI.σI
storestd = λσ.λI.λv.σ[I 7→ v]
xorstd = λv1.λv2.v1 ⊕ v2

Different abstract interpretations can be defined by using the same client semantics,
but giving different interpretations to the basetypes, map-types, and operators of
the core. For example, for sign analysis, assuming that Int32 values are represented
in two’s-complement notation, the semantic core is reinterpreted as follows:

v ∈ Valabs = {neg, zero, pos}⊤

Stateabs = Id → Valabs
lookupabs = λσ.λI.σI
storeabs = λσ.λI.λv.σ[I 7→ v]

xorabs = λv1.λv2.

v2
neg zero pos ⊤

neg ⊤ neg neg ⊤
v1 zero neg zero pos ⊤

pos neg pos ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊤

For numbers represented in two’s-complement notation, pos xorabs neg =
neg xorabs pos = neg because, for all combinations of values represented by pos

TSL: A System for Generating Abstract Interpreters · 9

σ0 := {x 7→ neg, y 7→ pos}
σ1 := IJs1 : x = x⊕ y;Kσ0 = storeabs σ0 x (neg xorabs pos) = {x 7→ neg, y 7→ pos}
σ2 := IJs2 : y = x⊕ y;Kσ1 = storeabs σ1 y (neg xorabs pos) = {x 7→ neg, y 7→ neg}
σ3 := IJs3 : x = x⊕ y;Kσ2 = storeabs σ2 x (neg xorabs neg) = {x 7→ ⊤, y 7→ neg}.

Fig. 3. Application of the abstract transformers created by the sign-analysis rein-
terpretation to the initial abstract state σ0 = {x 7→ neg, y 7→ pos}.

and neg, the high-order bit of the result is set, which means that the result is al-
ways negative. However, pos xorabs pos = neg xorabs neg = ⊤ because the concrete
result could be either 0 or positive, and zero ⊔ pos = ⊤.
For the code fragment shown in Fig. 2, which swaps two ints, sign-analysis

reinterpretation creates abstract transformers that, given the initial abstract state
σ0 = {x 7→ neg, y 7→ pos}, produce the abstract states shown in Fig. 3. 2

Alternatives to Semantic Reinterpretation. The mapping of a client specifica-
tion to the operations of the semantic core resembles a translation to a universal
assembly language (UAL). Thus, another approach to obtaining “systematic” rein-
terpretations that are similar to semantic reinterpretations—in that they can be re-
targeted to multiple subject languages—is to translate subject-language programs
to a UAL, and then retarget the instructions of the UAL to operate on abstract
values or abstract states. Semantic reinterpretation is compared with this approach
in §6.2.

2.3 Technical Contributions Incorporated in the TSL Compilation Process

The specific technical contributions incorporated in the part of the TSL compiler
that generates the CIR can be summarized as follows:

—Two-Level Semantics: In the TSL system, the notion of a two-level interme-
diate language [Nielson and Nielson 1992] is used to generate the CIR in a way
that reduces the loss of precision that could otherwise come about with certain
reinterpretations. To address this issue, the TSL compiler performs binding-time
analysis [Jones et al. 1993] on the TSL specification to identify which values
can always be treated as concrete values, and which operations should therefore
be performed in the concrete domain (i.e., should not be reinterpreted). §3.2.2
discusses more details of the two-level intermediate language along with binding-
time analysis.

—Abstract Interpretation: From a specification, the TSL compiler generates a CIR
that has the ability (i) to execute over abstract states, (ii) possibly propagate ab-
stract states to more than one successor in a conditional expression, (iii) compare
abstract states and terminate abstract execution when a fixed point is reached,
and (iv) apply widening operators, if necessary, to ensure termination. §3.2.1
contains a detailed discussion of these issues.

—Paired Semantics: The TSL system allows easy instantiations of reduced products
by means of paired semantics. The CIR can be instantiated with a paired semantic
domain that couples two interpretations. Communication between the values
carried by the two interpretations may take place in the TSL basetype and map-

10 · J. Lim and T. Reps

type operators. §3.2.3 discusses more details of paired semantics.

2.4 The Context of Our Work

TSL has primarily been applied to the creation of abstract interpreters for machine
code. Machine-code analysis presents many interesting challenges. For instance,
at the machine-code level, memory is one large byte-addressable array, and an an-
alyzer must handle computed—and possibly non-aligned—addresses. It is crucial
to track array accesses and updates accurately; however, the task is complicated
by the fact that arithmetic and dereferencing operations are both pervasive and
inextricably intermingled. For instance, if local variable x is at offset –12 from the
activation record’s frame pointer (register ebp), an access on x would be turned
into an operand [ebp–12]. Evaluating the operand first involves pointer arithmetic
(“ebp–12”) and then dereferencing the computed address (“[·]”). On the other
hand, machine-code analysis also offers new opportunities, in particular, the oppor-
tunity to track low-level, platform-specific details, such as memory-layout effects.
Programmers are typically unaware of such details; however, they are often the
source of exploitable security vulnerabilities.
For more discussion of the challenges and opportunities that arise in machine-

code analysis, the reader is referred to [Balakrishnan and Reps 2010] and [Reps
et al. 2010]. However, it is worth mentioning a couple of points here that help to
illustrate the scope of the problem that TSL addresses:

—The paper presents several fragments of TSL specifications that specify the opera-
tional semantics of instruction sets, such as IA32 (also known as x86) and PowerPC

(see §4). In such specifications, the subject language is modeled at the level of
the instruction-set semantics. That is, the TSL specification describes how the
execution of each instruction changes the execution state. Lower-level hardware
operations, such as pipelining and paging, are not modeled in our specifications,
although TSL is powerful enough to specify such lower-level operations.

—Given a TSL specification of an interpreter at the instruction-set level, the TSL
compiler generates an analysis component that performs abstract interpretation
on a per-instruction basis. It is the tool developer’s responsibility to complete
the implementation of the analysis by handling the higher levels of abstract inter-
pretation, such as (i) the propagation of abstract values through the control-flow
graph, (ii) determining when a fixed point is reached, etc.

To help out in this task, the TSL system provides several kinds of generic execu-
tion/analysis engines that can be instantiated to create finished analyses, includ-
ing (i) a worklist-based solver for abstract-value propagation over a control-flow
graph (for static analysis), (ii) an instruction emulator (for dynamic analysis),
and (iii) an engine for performing symbolic execution along a path (for symbolic
analysis), as well as a solver for aggregate-structure-identification problems (ASI)
[Ramalingam et al. 1999; Balakrishnan and Reps 2007]—a unification-based,
flow-insensitive algorithm to identify the structure of aggregates in a program.

In addition, we have used TSL-generated abstract transformers with general-
purpose analysis packages, such as the WALi system [WALi 2007] for weighted
pushdown systems (WPDSs) [Reps et al. 2005; Bouajjani et al. 2003] and the
OpenNWA system [Driscoll et al. 2012] for nested-word automata [Alur and

TSL: A System for Generating Abstract Interpreters · 11

Madhusudan 2006]. In principle, it would be easy to use TSL to drive other
similar external packages, such as the Banshee system for solving set-constraint
problems [Kodumal and Aiken 2005]. (See §4.1.)

—Although this paper only discusses the application of TSL to machine-code in-
struction sets, only small extensions would be needed to be able to apply TSL to
source-code languages (i.e., to create language-independent analyzers for source-
level IRs), as well as bytecode. The main obstacle is that the concrete se-
mantics of a source-code language generally uses an execution state based on
a stack of variable-to-value (or variable-to-location, location-to-value) maps. For
a machine-code language, the state incorporates an address-based memory model,
for which the TSL language provides appropriate primitives.

3. TRANSFORMER SPECIFICATION LANGUAGE

This section presents the basic elements of the TSL system. §3.1 describes the ba-
sic elements of the TSL language and what is produced by the TSL compiler. It
considers the TSL system from the perspective of instruction-set specifiers (ISS),
reinterpretation developers, and tool developers. §3.2 discusses how the TSL com-
piler generates a CIR from a TSL specification and how the CIR is instantiated
for creating analysis components. §3.2 also describes how the TSL system handles
some important issues, such as recursion and conditional branches in the CIR. §3.3
discusses the leverage that the TSL system provides.

3.1 Overview of the TSL Language and its Compilation

The key principle of the TSL system is the separation of the semantics of a subject
language from the analysis semantics in the development of an analysis component.
As discussed in §2.2, the TSL system is based on semantic reinterpretation, which
was originally proposed as a convenient methodology for formulating abstract inter-
pretations [Cousot and Cousot 1977; Mycroft and Jones 1985; Jones and Mycroft
1986; Malmkjær 1993; Nielson 1989] (see §2.2). Semantic reinterpretation involves
refactoring the specification of the concrete semantics of a language into two parts:
(i) a client specification, and (ii) a semantic core. The client is expressed in terms
of the semantic core. Such an organization permits the core to be reinterpreted to
produce an alternative semantics for the subject language.
The key insight behind the TSL system is that if a rich enough meta-language is

provided for writing semantic specifications, the meta-language itself can serve as
the core, and one thereby obtains a suitable client/core factoring for free.
As presented earlier, the TSL system has three classes of users: (i) instruction-

set specifiers (ISS), (ii) reinterpretation developers, and (iii) tool developers. The
ISS developers use the TSL language to specify the concrete semantics of different
instruction sets (the lower part of Fig. 1); the reinterpretation developers use se-
mantic reinterpretation to create new analysis components (the gray boxes in the
upper part of Fig. 1).

3.1.1 TSL from an Instruction-Set Specifier’s Standpoint. Fig. 4 shows part of
a specification of the IA32 instruction set taken from the Intel manual [IA32]. The
specification describes the syntax and the semantics of each instruction only in a
semi-formal way (i.e., a mixture of English and pseudo-code).

12 · J. Lim and T. Reps

General Purpose Registers: ADD r/m32,r32; Add r32 to r/m32
EAX,EBX,ECX,EDX,ESP,EBP,ESI,EDI,EIP ADD r/m16,r16; Add r16 to r/m16 . . .
Each of these registers also has 16- or 8-bit subset names. Operation: DEST ← DEST + SRC;

Addressing Modes: [sreg:][offset][([base][,index][,scale])] Flags Affected: The OF,SF,ZF,AF,CF, and
EFLAGS register: ZF,SF,OF,CF,AF,PF, . . . PF flags are set according to the result.

Fig. 4. A part of the Intel manual’s specification of IA32’s add instruction.

Type Terms Constants

BOOL false, true false, true

INT64 64-bit signed integers 0d64, 1d64, 2d64, . . .

INT32 32-bit signed integers 0d32, 1d32, 2d32, . . .

INT16 16-bit signed integers 0d16, 1d16, 2d16, . . .

INT8 8-bit signed integers 0d8, 1d8, 2d8, . . .

MAP[α,β] Maps [α 7→ vβ]

Fig. 5. Basetype and map-type constants. [α 7→ vβ] denotes the map λx:α . v:β.

Our work is based on completely formal specifications that are written in TSL’s
meta language. TSL is a strongly typed, first-order functional language. TSL sup-
ports a fixed set of basetypes; a fixed set of arithmetic, bitwise, relational, and logi-
cal operators; the ability to define recursive data-types, map-types, and user-defined
functions; and a mechanism for deconstruction by means of pattern matching.

Basetypes. Fig. 5 shows the basetypes that TSL provides. There are two cate-
gories of primitive basetypes: unparameterized and parameterized. An unparam-
eterized basetype is just a set of terms. For example, BOOL is a type consisting
of truth values, INT32 is a type consisting of 32-bit signed whole numbers, etc.
MAP[α, β] is a predefined parameterized type, with parameters α and β. Each of
the following is an instance of the parameterized type MAP:

MAP[INT32,INT8]
MAP[INT32,BOOL]
MAP[INT32,MAP[INT8,BOOL]]

TSL supports arithmetic/logical operators (+, −, ∗, /, !, &&, ||, xor), bit-
manipulation operators (∼, &, |, ˆ, ≪, ≫, right-rotate, left-rotate), relational
operators (<, <=, >, >=, ==, !=), and a conditional-expression operator (? :).
TSL also provides access/update operators for map-types.

Specifying an Instruction Set. Fig. 6(a) shows a snippet of the TSL specification
that corresponds to Fig. 4. (The TSL specification has been pared down to simplify
the presentation.)
Much of what an instruction-set specifier writes in a TSL specification is similar

to writing an interpreter for an instruction set in first-order ML. One specifies (i)
the abstract-syntax grammar of the instruction-set (e.g., lines 2–9 of Fig. 6(a)),
(ii) a type for concrete states (e.g., lines 10–12 of Fig. 6(a)), and (iii) the concrete
semantics of each instruction (e.g., lines 14–30 of Fig. 6(a)).

Reserved, but User-Defined Types and Reserved Functions. Each specification
must define several reserved (but user-defined) types: in Fig. 6(a), instruction
(lines 7–9); state—e.g., for 32-bit Intel x86 the type state is a triple of maps (lines 10–

TSL: A System for Generating Abstract Interpreters · 13

[1] // User-defined abstract syntax
[2] reg: EAX() | EBX() | . . . ;
[3] flag: ZF() | SF() | . . . ;
[4] operand: Indirect(reg reg INT8 INT32)
[5] | DirectReg(reg)
[6] | Immediate(INT32) | ...;
[7] instruction
[8] : MOV(operand operand)
[9] | ADD(operand operand| . . . ;
[10] state: State(MAP[INT32,INT8] // memory-map
[11] MAP[reg32,INT32] // register-map
[12] MAP[flag,BOOL]); // flag-map
[13] // User-defined functions
[14] INT32 interpOp(state S, operand op) { . . . };
[15] state updateFlag(state S, . . .) { . . . };
[16] state updateState(state S, . . .) { . . . };
[17] state interpInstr(instruction I, state S) {

[18] with(I) (
[19] MOV(dstOp, srcOp):
[20] let srcVal = interpOp(S, srcOp);
[21] in (updateState(S, dstOp, srcVal)),
[22] ADD(dstOp, srcOp):
[23] let dstVal = interpOp(S, dstOp);
[24] srcVal = interpOp(S, srcOp);
[25] res = dstVal + srcVal;
[26] S2 = updateFlag(S, dstVal, srcVal, res);
[27] in (updateState(S2, dstOp, res)),
[28] . . .
[29]);
[30] };

[1] template <class INTERP> class CIR {
[2] class reg { . . . };
[3] class EAX : public reg { . . . }; . . .
[4] class flag { . . . };
[5] class ZF : public flag { . . . }; . . .
[6] class operand { . . . };
[7] class Indirect: public operand { . . . }; . . .
[8] class instruction { . . . };
[9] class MOV : public instruction { . . .
[10] operand op1; operand op2; . . .
[11] };
[12] class ADD : public instruction { . . . }; . . .
[13] class state { . . . };
[14] class State: public state { . . . };
[15] INTERP::INT32 interpOp(state S, operand op) { . . . };
[16] state updateFlag(state S, . . .) { . . . };
[17] state updateState(state S, . . .) { . . . };
[18] state interpInstr(instruction I, state S) {
[19] switch(I.id) {
[20] case ID MOV: . . .
[21] case ID ADD:
[22] operand dstOp = I.get child1();
[23] operand srcOp = I.get child2();
[24] INTERP::INT32 dstVal = interpOp(S, dstOp);
[25] INTERP::INT32 srcVal = interpOp(S, srcOp);
[26] INTERP::INT32 res = INTERP::Plus(dstVal, srcVal);
[27] state S2 = updateFlag(S, dstVal, srcVal, res);
[28] ans = updateState(S2, dstOp, res);
[29] break;

[30] . . . }
[31] }};

(a) (b)

Fig. 6. (a) A part of the TSL specification of IA32 concrete semantics, which corresponds to the
specification of add from the IA32 manual. Reserved types and function names are underlined,
(b) A part of the CIR generated from (a). The CIR is simplified in this presentation.

12); as well as the reserved TSL function interpInstr (lines 17–30). These reserved
types and functions form part of the API available to analysis engines that use the
TSL-generated transformers (i.e., the instantiated CIR).

The definition of types and constructors on lines 2–9 of Fig. 6(a) is an abstract-
syntax grammar for IA32. Type reg consists of nullary constructors for the names of
the IA32 registers, such as EAX() and EBX(); flag consists of nullary constructors for
the names of the IA32 condition codes, such as ZF() and SF(). Lines 4–6 define types
and constructors to represent the various kinds of operands that IA32 supports, i.e.,
various sizes of immediate, direct register, and indirect memory operands. The
reserved (but user-defined) type instruction consists of user-defined constructors for
each instruction, such as MOV and ADD.

The type state specifies the structure of the execution state. The state for IA32

is defined on lines 10–12 of Fig. 6(a) to consist of three maps, i.e., a memory-map,
a register-map, and a flag-map. The concrete semantics is specified by writing a
function named interpInstr (see lines 17–30 of Fig. 6(a)), which maps an instruction
and a state to a state. For instance, the semantics of ADD is to evaluate the two
operands in the input state S and create a return state in which the target location
holds the summation of the two values and the flags hold appropriate flag values.

14 · J. Lim and T. Reps

3.1.2 Case Study of Instruction Sets. In this section, we discuss the quirky
characteristics of some instruction sets, and various ways these can be handled in
TSL.

IA32. To provide compatibility with 16-bit and 8-bit versions of the instruction
set, IA32 provides overlapping register names, such as AX (the lower 16-bits of EAX),
AL (the lower 8-bits of AX), and AH (the upper 8-bits of AX). There are two possible
ways to specify this feature in TSL. One is to keep three separate maps, for 32-bit
registers, 16-bit registers, and 8-bit registers, respectively, and specify that updates
to any one of the maps affect the other two maps. Another is to keep one 32-bit
map for registers, and obtain the value of a 16-bit or 8-bit register by masking
the value of the 32-bit register. (The former can yield more precise VSA results.)
Similarly, a 32-bit register is updated with the value of the corresponding 16-bit or
8-bit register by masking and performing a bitwise-or.
The IA32 instruction set keeps condition codes in a special register, called EFLAGS.

(Many other instruction sets, such as SPARC, PowerPC, and ARM, also use a special
register to store condition codes.) One way to address this feature is to declare
“reg32: Eflags();”, and make every flag manipulation fetch the bit value from an
appropriate bit position of the value associated with Eflags in the register-map.
Another way is to introduce flag names, as in our examples, and have every ma-
nipulation of EFLAGS affect the entries in a flag-map for the individual flags.

ARM. Almost all ARM instructions contain a condition field that allows an in-
struction to be executed conditionally, depending on condition-code flags. This
feature reduces branch overhead and compensates for the lack of a branch predic-
tor. However, it may worsen the precision of an abstract analysis because in most
instructions’ specifications, the abstract values from two arms of a TSL conditional
expression would be joined.

[1] MOVEQ(destReg, srcOprnd):
[2] let cond = flagMap(EQ());
[3] src = interpOperand(curState, srcOprnd);
[4] a = regMap[destReg |−> src];
[5] b = regMap;
[6] answer = cond ? a : b;
[7] in (answer)

Fig. 7. An example of the specification of an ARM conditional-move instruction in TSL.

For example, MOVEQ is one of ARM’s conditional instructions; if the flag EQ is
true when the instruction starts executing, it executes normally; otherwise, the
instruction does nothing. Fig. 7 shows the specification of the instruction in TSL.
In many abstract semantics, the conditional expression “cond ? a : b” will be in-
terpreted as a join of the original register map b and the updated map a, i.e.,
join(a,b). Consequently, destReg would receive the join of its original value and
src, even when cond is known to have a definite value (TRUE or FALSE) in VSA

semantics. The paired-semantics mechanism presented in §3.2.3 can help with im-
proving the precision of analyzers by abstractly interpreting conditions. When the

TSL: A System for Generating Abstract Interpreters · 15

[1] reg32 : Reg(INT8) | CWP() | . . .;
[2] reg32 : OutReg(INT8) | InReg(INT8) | . . .;
[3] state: State(. . . , MAP[var32,INT32], . . .);
[4] INT32 RegAccess(MAP[var32,INT32] regmap, reg32 r) {
[5] let cwp = regmap(CWP());
[6] key = with(r) (
[7] OutReg(i):
[8] Reg(8+i+(16+cwp*16)%(NWINDOWS*16),
[9] InReg(i): Reg(8+i+cwp*16),
[10] . . .);
[11] in (regmap(key))
[12]}

Fig. 8. A method to handle the SPARC register window in TSL.

CIR is instantiated with a paired semantics of VSA INTERP and DUA INTERP, and
the VSA value of cond is FALSE, the DUA INTERP value for answer gets empty def -
and use-sets because the true branch a is known to be unreachable according to
the VSA INTERP value of cond (instead of non-empty sets for def s and uses that
contain all the definitions and uses in destReg and srcOprnd).

SPARC. SPARC uses register windows to reduce the overhead associated with
saving registers to the stack during a conventional function call. Each window has
8 in, 8 out, 8 local, and 8 global registers. Outs become ins on a context switch,
and the new context gets a new set of out and local registers. A specific platform
will have some total number of registers, which are organized as a circular buffer;
when the buffer becomes full, registers are spilled to the stack to free up a sufficient
number for the called procedure. Fig. 8 shows a way to accommodate this feature.
The syntactic register (OutReg(n) or InReg(n), defined on line 2) in an instruction
is used to obtain a semantic register (Reg(m), defined on line 1, where m represents
the register’s global index), which is the key used for accesses on and updates to
the register map. The desired index of the semantic register is computed from the
index of the syntactic register, the value of CWP (the current window pointer) from
the current state, and the platform-specific value NWINDOWS (lines 8–9).

3.1.3 Common Intermediate Representation (CIR). Fig. 6(b) shows part of the
common intermediate representation (CIR) generated by the TSL compiler from
Fig. 6(a). (The CIR has been simplified for the presentation in the paper.)
The CIR generated for a given TSL specification is a C++ template that can be

used to create multiple analysis components by instantiating the template with
different semantic reinterpretations. Each generated CIR is specific to a given
instruction-set specification, but common (whence the name CIR) across gener-
ated analyses. Each generated CIR is a template class that takes as input class
INTERP, which is an abstract domain for an analysis (line 1 of Fig. 6(b)). The
user-defined abstract syntax (lines 2–9 of Fig. 6(a)) is translated to a set of C++

abstract-syntax classes (lines 2–12 of Fig. 6(b)). The user-defined types, such as reg,
operand, and instruction, are translated to abstract C++ classes, and the construc-
tors, such as EAX(), Indirect(, , ,), and ADD(,), are subclasses of the appropriate
parent abstract C++ classes.
Each user-defined function is translated to a CIR function (lines 15–31 of

16 · J. Lim and T. Reps

Fig. 6(b)). Each TSL basetype and basetype-operator is pre-pended with the tem-
plate parameter name INTERP. To instantiate the CIR, class INTERP is supplied by
an analysis developer for the analysis of interest.
The TSL front-end performs with-normalization, which transforms all multi-level

with expressions to use only one-level patterns, and then compiles the one-level pat-
tern via the pattern-compilation algorithm developed by Wadler [1987] and Pet-
tersson [1992]. Thus, the with expression on line 18 and the patterns on lines 19
and 22 of Fig. 6(a) are translated into switch statements in C++ (lines 19–30 in
Fig. 6(b)).
The function calls for obtaining the values of the two operands (lines 23–24

in Fig. 6(a)) correspond to the C++ code on lines 22–25 in Fig. 6(b). The TSL
basetype-operator + on line 25 in Fig. 6(a) is translated into a call to INTERP::Plus,
as shown on line 26 in Fig. 6(b). The function calls for updating the state (lines 26–
27 in Fig. 6(a)) are translated into C++ calls (lines 27–28 in Fig. 6(b)).
§3.2 presents more details about how the CIR is generated and what kind of

facilities CIR provides for creating analysis components.

3.1.4 TSL from a Reinterpretation Developer’s Standpoint. A reinterpretation
developer creates a new analysis component by (i) redefining (in C++) the TSL
basetypes (BOOL, INT32, INT8, etc.), and (ii) redefining (in C++) the primitive op-
erations on basetypes (+INT32, +INT8, etc.). These are used to instantiate the CIR
template by passing a class of basetypes as the template parameter. This approach
implicitly defines an alternative interpretation of each expression and function in
an instruction-set’s concrete semantics (including interpInstr), and thereby yields
an alternative semantics for an instruction set from its concrete semantics.

Table I. Parts of the declarations of the basetypes, basetype-operators, and map-access/update
functions for three analyses.

VSA DUA QFBV

[1] class VSA INTERP {
[2] // basetype
[3] typedef ValueSet32 INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Plus(INT32 a, INT32 b) {
[7] return a.addValueSet(b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef Map<reg32,INT32>
[12] REGMAP32;
[13] . . .
[14] // map-access/update functions
[15] INT32 MapAccess(
[16] REGMAP32 m, reg32 k) {
[17] return m.Lookup(k);
[18] }
[19] REGMAP32
[20] MapUpdate(REGMAP32 m,
[21] reg32 k, INT32 v) {
[22] return m.Insert(k, v);
[23] }
[24] . . .
[25]};

[1] class DUA INTERP {
[2] // basetype
[3] typedef UseSet INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Plus(INT32 a, INT32 b) {
[7] return a.Union(b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef Map<var32,INT32>
[12] REGMAP32;
[13] . . .
[14] // map-access/update functions
[15] INT32 MapAccess(
[16] REGMAP32 m, reg32 k) {
[17] return m.Lookup(k);
[18] }
[19] REGMAP32
[20] MapUpdate(REGMAP32 m,
[21] reg32 k, INT32 v) {
[22] return m.Insert(k,v);
[23] }
[24]. . .
[25]};

[1] class QFBV INTERP {
[2] // basetype
[3] typedef QFBVTerm32 INT32;
[4] . . .
[5] // basetype-operators
[6] INT32 Plus(INT32 a, INT32 b) {
[7] return QFBVPlus32(a, b);
[8] }
[9] . . .
[10] // map-basetypes
[11] typedef QFBVArray
[12] REGMAP32;
[13] . . .
[14] // map-access/update functions
[15] INT32 MapAccess(
[16] REGMAP32 m, reg32 k) {
[17] return QFBVArrayAccess(m,k);
[18] }
[19] REGMAP32
[20] MapUpdate(REGMAP32 m,
[21] reg32 k, INT32 v) {
[22] return QFBVArrayUpdate(m,k,v);
[23] }
[24] . . .
[25]};

Tab. I shows the implementations of primitives for three selected analyses: value-

TSL: A System for Generating Abstract Interpreters · 17

TSL compiler

N Analysis Components

• • •

Analysis1 Analysis2

AnalysisN

state# interpInstr#(instruction I, state# S) {
with(I) (

ADD(dstOp, srcOp):
let dstVal = interpOp(S, dstOp);

srcVal = interpOp(S, srcOp);
res = dstVal +# srcVal;

while(worklist ≠ {}) {
select an edge nàààà m from worklist
. . .

new_S = interpInstr#(instr(n), S)
. . .

}

• • •

res = dstVal +# srcVal;
new_S = updateFlag(S, dstVal, srcVal, res);

in (
updateState(new_S, dstOp, res)

), …)
};

M Instruction-Set Specifications

Fig. 9. How a TSL-generated abstract interpreter for instructions, interpInstr♯, is invoked by an
analysis engine that performs classical worklist-based propagation of abstract states.

set analysis (VSA, see §4.1.1), def-use analysis (DUA, see §4.1.4), and quantifier-free
bit-vector semantics (QFBV, see §4.1.5). Each interpretation defines an abstract
domain. For example, line 3 of each column defines the abstract-domain class for
INT32: ValueSet32, UseSet, and QFBVTerm32, respectively. To define an interpreta-
tion, one needs to define 42 basetype operators, most of which have four variants,
for 8-, 16-, 32-, and 64-bit integers, as well as 12 map access/update operations.
Each abstract domain is also required to contain a set of reserved functions, such
as join, meet, and widen, which forms an additional part of the API available to
analysis engines that use TSL-generated transformers (see §4).

Usage of TSL-Generated Analysis Components. Fig. 9 shows how the CIR is con-
nected to an analysis engine. The analysis engine in Fig. 9 uses classical worklist-
based value propagation in which the TSL-generated transformer interpInstr is in-
voked with an instruction and the current state S. On each iteration of the main loop
of the solver, changes (new S) would be propagated to successors/predecessors (de-
pending on propagation direction). §4.1 discusses more about how different kinds
of analysis engines make use of the CIR.

Generated Transformers. Consider the instruction “add ebx, eax”, which causes
the sum of the values of the 32-bit registers ebx and eax to be assigned into ebx.
When Fig. 6(b) is instantiated with the three interpretations from Tab. I, lines 17–30
of Fig. 6(a) implement the three transformers that are presented (using mathemat-
ical notation) in Tab. II.

3.2 More About the Common Intermediate Representation

Given a TSL specification of an instruction set, the TSL system generates a CIR
that consists of two parts: one is a list of C++ classes for the user-defined abstract-
syntax grammar; the other is a list of C++ template functions for the user-defined

18 · J. Lim and T. Reps

Table II. Semantics of the abstract transformers created using the TSL system.
Analysis Generated Transformers for “add ebx, eax”

1.VSA λS.S[ebx 7→ S(ebx)+vsaS(eax)] [ZF 7→ (S(ebx)+vsaS(eax) = 0)][more flag updates]
2.DUA [ebx 7→ {eax, ebx}, ZF 7→ {eax, ebx}, . . .]
3.QFBV (ebx′ = ebx+32eax) ∧ (ZF′ ⇔ (ebx+32eax = 0)) ∧ (SF′ ⇔ (ebx+32eax< 0)) ∧ . . .

[1] INTERP::BOOL t0 = . . . ; // translation of a
[2] INTERP::INT32 t1, t2, answer;
[3] if(Bool3::possibly true(t0.getBool3Value())) {

[4] . . .
[5] t1 = . . . ; // translation of a
[6] answer = t1;
[7] }
[8] if(Bool3::possibly false(t0.getBool3Value())) {
[9] . . .
[10] t2 = . . . ; // translation of b
[11] answer = t2;
[12] }
[13] if(t0.getBool3Value() == Bool3::MAYBE) {
[14] answer = t1.join(t2);
[15] }

Fig. 10. The translation of the conditional expression “let answer = cond ? a : b”.

functions, including the interface function interpInstr. The C++ functions are gen-
erated by linearizing the TSL specification, in evaluation order, into a series of C++

statements, as illustrated by Fig. 6(b). However, there are several issues—discussed
below—that need to be properly handled for the resulting code to be suitable for
abstract interpretation via semantic reinterpretation.

—§3.2.1 concerns the basic properties needed so that the code can be executed over
an abstract domain.

—§3.2.2 discusses a technique that is needed with some generated abstract trans-
formers to side-step a loss of precision during abstract interpretation that would
otherwise occur.

—§3.2.3 presents the paired-semantics facility that the TSL system provides.

3.2.1 Execution over an Abstract Domain. There are four basic properties that
the CIR code must support so that it can be executed over an abstract domain. In
particular, the code generated for each transformer must be able to

(1) execute over abstract values and abstract states,

(2) possibly propagate abstract values to more than one successor in a conditional
expression,

(3) compare abstract states and terminate abstract execution when a fixed point
is reached, and

(4) apply widening operators, if necessary, to ensure termination.

Conditional Expressions. Fig. 10 shows part of the CIR that corresponds to the
TSL expression “let answer = cond ? a : b”. Bool3 is an abstract domain of Booleans

TSL: A System for Generating Abstract Interpreters · 19

[1] state repMovsd(state S, INT32 count) {
[2] count == 0
[3] ? S
[4] : with(S) (
[5] State(mem, regs, flags):
[6] let direction = flags(DF());
[7] edi = regs(EDI());
[8] esi = regs(ESI());
[9] src = MemAccess 32 8 LE 32(mem, esi);
[10] newRegs = direction
[11] ? regs[EDI()|−>edi-4][ESI()|−>esi-4]
[12] : regs[EDI()|−>edi+4][ESI()|−>esi+4]
[13] newMem = MemUpdate 32 8 LE 32(
[14] memory, edi, src);
[15] newS = State(newMem, newRegs, flags);
[16] in (repMovsd(newS, count - 1))
[17])
[18]};

[1] state global S;
[2] INTERP::INT32 global count;
[3] state global retval;
[4] state repMovsd(
[5] Istate S, INTERP::INT32 count) {
[6] global S = ⊥;
[7] global count = ⊥;
[8] global retval = ⊥;
[9] return repMovsdAux(S, count);
[10]};
[11]state repMovsdAux(
[12] state S, INTERP::INT32 count) {
[13] // Widen and test for convergence
[14] state tmp S = global S

`
(global S ⊔ S);

[15] INTERP::INT32 tmp count =
[16] global count

`
(global count ⊔ count);

[17] if(tmp S ⊑ global S
[18] && tmp count ⊑ global count) {
[19] return global retval;
[20] }
[21] S = tmp S; global S = tmp S;
[22] count = tmp count; global count = tmp count;
[23]
[24] // translation of the body of repMovsd
[25] . . .
[26] state newS = . . . ;
[27] state t = repMovsdAux(newS, count - 1);
[28] global retval = global retval ⊔ t;
[29] return global retval;
[30]};

(a) (b)

Fig. 11. (a) A recursive TSL function, (b) The translation of the recursive function from (a). For
simplicity, some mathematical notation is used, including ⊔ (join),

`
(widening), ⊑ (approxima-

tion), and ⊥ (bottom).

(which consists of three values {TRUE, FALSE, MAYBE}, where MAYBE means “may
be TRUE or may be FALSE”). The TSL conditional expression is translated into
three if-statements (lines 3–7, lines 8–12, and lines 13–15 in Fig. 10). The body of
the first if-statement is executed when the Bool3 value for cond is possibly true (i.e.,
either TRUE or MAYBE). Likewise, the body of the second if-statement is executed
when the Bool3 value for cond is possibly false (i.e., either FALSE or MAYBE). The
body of the third if-statement is executed when the Bool3 value for cond is MAYBE.
Note that in the body of the third if-statement, answer is overwritten with the join
of t1 and t2 (line 14).

The Bool3 value for the translation of a TSL BOOL-valued value is fetched by
getBool3Value, which is one of the TSL interface functions that each interpretation is
required to define for the type BOOL. Each analysis developer decides how to handle
conditional branches by defining getBool3Value. It is always sound for getBool3Value

to be defined as the constant function that always returns MAYBE. For instance,
this constant function is useful when Boolean values cannot be expressed in an
abstract domain, such as DUA for which the abstract domain for BOOL is a set of
uses. For an analysis where Bool3 is itself the abstract domain for type BOOL, such
as VSA, getBool3Value returns the Bool3 value from evaluating the translation of a
so that either an appropriate branch or both branches can be abstractly executed.

20 · J. Lim and T. Reps

Comparison, Termination, and Widening. Recursion is not often used in TSL
specifications, but is needed for handling some instructions that involve iteration,
such as the IA32 string-manipulation instructions (STOS, LODS, MOVS, etc., with
various REP prefixes), and the PowerPC multiple-word load/store instructions (LMW,
STMW, etc). For these instructions, the amount of work performed is controlled
either by the value of a register, the value of one or more strings, etc. These
instructions can be specified in TSL using recursion.4 For each recursive function,
the TSL system generates a function that appropriately compares abstract values
and terminates the recursion if abstract values are found to be equal (i.e., the
recursion has reached a fixed point). The function is also prepared to apply the
widening operator that the reinterpretation developer has specified for the abstract
domain in use.
For example, Fig. 11(a) shows the user-defined TSL function that handles “rep

movsd”, which copies the contents of one area of memory to a second area.5 The
amount of memory to be copied is passed into the function as the argument count.
Fig. 11(b) shows its translation in the CIR. A recursive function like repMovsd

(Fig. 11(a)) is automatically split by the TSL compiler into two functions, repMovsd

(line 4 of Fig. 11(b)) and repMovsdAux (line 11 of Fig. 11(b)). The TSL system ini-
tializes appropriate global variables global S and global count (lines 6–8) in repMovsd,
and then calls repMovsdAux (line 9). At the beginning of repMovsdAux, it generates
statements that widen each of the global variables with respect to the arguments,
and test whether all of the global variables have reached a fixpoint (lines 13–17).
If so, repMovsdAux returns global retval (line 19). If not, the body of repMovsdAux is
analyzed again (lines 24–27). Note that at the translation of each normal return
from repMovsdAux (e.g., line 28), the return value is joined into global retval. The
TSL system requires each reinterpretation developer to define the functions join
and widen for the basetypes of the interpretation used in the analysis.

3.2.2 Two-Level CIR. The examples given in Fig. 6(b), Fig. 10, and Fig. 11(b),
show slightly simplified versions of CIR code. The TSL system actually generates
CIR code in which all the basetypes, basetype-operators, and access/update func-
tions are appended with one of two predefined namespaces that define a two-level
interpretation [Jones and Nielson 1995; Nielson and Nielson 1992]: CONCINTERP

for concrete interpretation (i.e., interpretation in the concrete semantics), and AB-

SINTERP for abstract interpretation. Either CONCINTERP or ABSINTERP would
replace the occurrences of INTERP in the example CIR shown in Fig. 6(b), Fig. 10,
and Fig. 11(b).
The reason for using a two-level CIR is that the specification of an instruction

set often contains some manipulations of values that should always be treated as
concrete values. For example, an instruction-set specification developer could follow
the approach taken in the PowerPC manual [PowerPC32] and specify variants of
the conditional branch instruction (BC, BCA, BCL, BCLA) of PowerPC by interpreting
some of the fields in the instruction (AA and LK) to determine which of the four
variants is being executed (Fig. 12).
Another reason that this issue arises is that most well-designed instruction sets

4Currently, TSL supports only linear tail-recursion.
5repMovsd is called by interpInstr, which passes in the value of register ecx, and sets ecx to 0 after

TSL: A System for Generating Abstract Interpreters · 21

[1] // User-defined abstract-syntax grammar
[2] instruction: . . .
[3] | BCx(BOOL BOOL INT32 BOOL BOOL)
[4] | . . . ;

[5] // User-defined functions
[6] state interpInstr(instruction I, state S) {
[7] . . .
[8] BCx(BO, BI, target, AA, LK):
[9] let . . .
[10] cia = RegValue32(S, CIA()); // current address
[11] new ia = (AA ? target // direct: BCA/BCLA
[12] : cia + target); // relative: BC/BCL
[13] lr = RegValue32(S, LR()); // linkage address
[14] new lr =
[15] (LK ? cia + 4 // change the link register: BCL/BCLA
[16] : lr); // do not change the link register: BC/BCA
[17] . . .
[18]}

Fig. 12. A fragment of the PowerPC specification for interpreting BCx instructions (BC, BCA,
BCL, BCLA). For a given instruction, each of BO, BI, target, AA, and LK will have a specific
concrete value.

[1] AddSubInstr(op, dstOp, srcOp): // ADD or SUB
[2] let dstVal = interpOp(S, dstOp);
[3] srcVal = interpOp(S, srcOp);
[4] ans = (op == ADD() ? dstVal + srcVal
[5] : dstVal - srcVal); // SUB()
[6] in (. . .),
[7] . . .

Fig. 13. An example of factoring in TSL.

have many regularities, and it is convenient to factor the TSL specification to take
advantage of these regularities when specifying the semantics. Such factoring leads
to shorter specifications, but leads to the introduction of auxiliary functions in
which one of the parameters holds a constant value for a given instruction. Fig. 13
shows an example of factoring. The IA32 instructions add and sub both have two
operands and can share the code for fetching the values of the two operands.
Lines 4–5 are the instruction-specific operations; the equality expression “op ==

ADD()” on line 4 can be (and should be) interpreted in concrete semantics.
In both cases, the precision of an abstract transformer can sometimes be

improved—and is never made worse—by interpreting subexpressions associated
with the manipulation of concrete values in concrete semantics. For instance, con-
sider a TSL expression let v = (b ? 1 : 2) that occurs in a context in which b
is definitely a concrete value; v will get a precise value—either 1 or 2—when b is
concretely interpreted. However, if b is not expressible precisely in a given abstract
domain, the conditional expression “(b ? 1 : 2)” will be evaluated by joining the
two branches, and v will not hold a precise value. (It will hold the abstraction of
{1, 2}.)

repMovsd returns.

22 · J. Lim and T. Reps

(a)

[1] template <typename INTERP1, typename INTERP2>
[2] class PairedSemantics {
[3] typedef PairedBaseType<INTERP1::INT32, INTERP2::INT32> INT32;
[4] . . .
[5] INT32 MemAccess 32 8 LE 32(MEMMAP32 8 mem, INT32 addr) {
[6] return INT32(INTERP1::MemAccess 32 8 LE 32(mem.GetFirst(), addr.GetFirst()),

[7] INTERP2::MemAccess 32 8 LE 32(mem.GetSecond(), addr.GetSecond()));
[8] }
[9] };

(b)

[1] typedef PairedSemantics<VSA INTERP, DUA INTERP> DUA;
[2] template<> DUA::INT32 DUA::MemAccess 32 8 LE 32(
[3] DUA::MEMMAP32 8 mem, DUA::INT32 addr) {
[4] DUA::INTERP1::MEMMAP32 8 memory1 = mem.GetFirst();
[5] DUA::INTERP2::MEMMAP32 8 memory2 = mem.GetSecond();
[6] DUA::INTERP1::INT32 addr1 = addr.GetFirst();
[7] DUA::INTERP2::INT32 addr2 = addr.GetSecond();
[8] DUA::INT32 answer = interact(mem1, mem2, addr1, addr2);
[9] return answer;
[10]}

Fig. 14. (a) A part of the template class for paired semantics; (b) an example of C++ explicit
template specialization to create a reduced product.

Binding-time analysis. To address the issue, we perform a kind of binding-time
analysis [Jones et al. 1993] on the TSL code, the outcome of which is that ex-
pressions associated with the manipulation of concrete values in an instruction are
annotated with C, and others with A. We then generate the two-level CIR by ap-
pending CONCINTERP for C values, and ABSINTERP for A values. The generated
CIR is instantiated for an analysis transformer by defining ABSINTERP. The TSL
translator supplies a predefined concrete interpretation for CONCINTERP.
The instruction-set-specification developer annotates the top-level user-defined

(but reserved) functions, including interpInstr, with binding-time information.

EXPORT <A> interpInstr(<C>, <A>)

The first argument of interpInstr, of type instruction, is annotated with <C>,
which indicates that all data extracted from an instruction is treated as concrete.
The second argument of interpInstr, of type state, is annotated with <A>, which
indicates that all data extracted from state is treated as abstract. The return type
is also annotated as <A>.
Binding-time information is propagated through a TSL specification until a fixed

point is reached, or an inconsistency is identified.

3.2.3 Paired Semantics. Our system allows easy instantiations of reduced prod-
ucts [Cousot and Cousot 1979] by means of paired semantics. The TSL system
provides a template for paired semantics as shown in Fig. 14(a).
The CIR is instantiated with a paired semantic domain defined with two inter-

pretations, INTERP1 and INTERP2 (each of which may itself be a paired semantic
domain), as shown on line 1 of Fig. 14(b). The communication between interpreta-
tions may take place in basetype-operators or access/update functions; Fig. 14(b)
is an example of the latter. The two components of the paired-semantics values are
deconstructed on lines 4–7 of Fig. 14(b), and the individual INTERP1 and INTERP2

components from both inputs can be used (as illustrated by the call to interact
on line 8 of Fig. 14(b)) to create the paired-semantics return value, answer. Such
overridings of basetype-operators and access/update functions are done by C++

TSL: A System for Generating Abstract Interpreters · 23

[1] with(op) (. . .
[2] Indirect32(base, index, scale, disp):
[3] let addr = base
[4] + index * SignExtend8To32(scale)
[5] + disp;
[6] m = MemUpdate 32 8 LE 32(
[7] mem,addr,v);
[8] . . .)

Fig. 15. A fragment of updateState.

explicit specialization of members of class templates (this is specified in C++ by
“template<>”; see line 2 of Fig. 14(b)).
We also found this method of CIR instantiation to be useful to perform a form

of reduced product when analyses are split into multiple phases, as in a tool like
CodeSurfer/x86. CodeSurfer/x86 carries out many analysis phases, and the appli-
cation of its sequence of basic analysis phases is itself iterated. On each round,
CodeSurfer/x86 applies a sequence of analyses: VSA, DUA, and several others. VSA

is the primary workhorse, and it is often desirable for the information acquired by
VSA to influence the outcomes of other analysis phases by pairing the VSA inter-
pretation with another interpretation.
We can use the paired-semantics mechanism to obtain desired multi-phase in-

teractions among our generated analyzers—typically, by pairing the VSA inter-
pretation with another interpretation. For instance, with DUA INTERP alone, the
information required to obtain abstract memory location(s) for addr is lost because
the DUA basetype-operators (used for + and ∗ on lines 4–5 of Fig. 15) just re-
turn the union of the arguments’ use sets. With the pairing of VSA INTERP with
DUA INTERP (line 1 of Fig. 14(b)), DUA can use the abstract address computed
for addr2 (line 7 of Fig. 14(b)) by VSA INTERP, which uses VSA INTERP::Plus and
VSA INTERP::Times; the latter operators operate on a numeric abstract domain
(rather than a set-based one).
Note that during the application of the paired semantics, VSA interpretation will

be carried out on the VSA component of paired intermediate values. In some sense,
this is duplicated work; however, a paired semantics is typically used only in a phase
of transformer generation where the transformers are generated during a single pass
over the interprocedural CFG to generate a transformer for each instruction. Thus,
only a limited amount of VSA evaluation is performed (equal to what would be
performed to check that the VSA solution is a fixed point).

3.3 Leverage

The TSL system provides two dimensions of parameterizability: different instruction
sets and different analyses. Each instruction-set specification developer writes an
instruction-set semantics, and each reinterpretation developer defines an abstract
domain for a desired analysis by giving an interpretation (i.e., the implementations
of TSL basetypes, basetype-operators, and access/update functions). Given the in-
puts from these two classes of users, the TSL system automatically generates an
analysis component. Note that the work that an analysis developer performs is
TSL-specific but independent of each language to be analyzed; from the interpre-
tation that defines an analysis, the abstract transformers for that analysis can be

24 · J. Lim and T. Reps

generated automatically for every instruction set for which one has a TSL specifi-
cation. Thus, to create M ×N analysis components, the TSL system only requires
M specifications of the concrete semantics of instruction sets, and N analysis im-
plementations (Fig. 1), i.e., M + N inputs to obtain M × N analysis-component
implementations.
The TSL system provides considerable leverage for implementing analysis tools

and experimenting with new ones. New analyses are easily implemented because a
clean interface is provided for defining an interpretation.

TSL as a Tool Generator. A tool generator (or tool-component generator) such
as YACC [Johnson 1975] takes a declarative description of some desired behavior
and automatically generates an implementation of a component that behaves in
the desired way. Often the generated component consists of generated tables and
code, plus some unchanging driver code that is used in each generated tool compo-
nent. The advantage of a tool generator is that it creates correct-by-construction
implementations.
For machine-code analysis, the desired components each consist of a suitable

abstract interpretation of the instruction set, together with some kind of analysis
driver (a solver for finding the fixed-point of a set of dataflow equations, a symbolic
evaluator for performing symbolic execution, etc.). TSL is a system that takes
a description of the concrete semantics of an instruction set, a description of an
abstract interpretation, and creates an implementation of an abstract interpreter
for the given instruction set.

TSL : concrete semantics × abstract domain → abstract semantics.

In that sense, TSL is a tool generator that, for a fixed instruction-set semantics,
automatically creates different abstract interpreters for the instruction set.
The reinterpretation mechanism allows TSL to be used to implement tool-

component generators and tool generators. Each implementation of an analysis
component’s driver (e.g., fixed-point-finding solver, symbolic executor) serves as
the unchanging driver for use in different instantiations of the analysis component
for different instruction sets. The TSL language becomes the specification language
for retargeting that analysis component for different instruction sets:

analyzer generator = abstract-semantics generator + analysis driver.

For tools like CodeSurfer/x86, which incorporates multiple analysis components, we
thereby obtain YACC-like tool generators for such tools:

concrete semantics of L → Tool/L.

Consistency. In addition to leverage and thoroughness, for a system like
CodeSurfer/x86—which uses multiple analysis phases—automating the process of
creating abstract transformers ensures semantic consistency; that is, because anal-
ysis implementations are generated from a single specification of the instruction
set’s concrete semantics, this guarantees that a consistent view of the concrete
semantics is adopted by all of the analyses used in the system.

4. APPLICATIONS

The capabilities of the TSL system have been demonstrated by writing specifica-
tions for both the IA32 and PowerPC instruction sets, and then automatically cre-

TSL: A System for Generating Abstract Interpreters · 25

ating a variety of abstract interpreters from each of the specifications—including
dynamic-analysis components, static-analysis components, and symbolic-analysis
components.
In this section, we present various abstract interpreters generated using TSL,

as well as summarize various program-analysis tools developed by using the TSL-
generated abstract interpreters.

4.1 TSL-Generated Abstract Interpreters

As illustrated in Fig. 9, a version of the interface function interpInstr is created
for each reinterpretation supplied by a reinterpretation designer. At appropriate
moments, each analysis engine calls interpInstr with an instruction being processed
either (i) to perform one step of abstract interpretation, or (ii) to obtain an abstract
transformer. Analysis engines can be categorized as follows:

—Worklist-based value propagation (or Transformer application) [TA]. These per-
form classical worklist-based value propagation in which generated transformers
are applied, and changes are propagated to successors/predecessors (depending
on propagation direction). Context sensitivity in such analyses is supported by
means of the call-string approach [Sharir and Pnueli 1981]. VSA uses this kind of
analysis engine (§4.1.1).

—Transformer composition [TC]. These generally perform flow-sensitive, context-
sensitive interprocedural analysis. ARA (§4.1.2) uses this kind of analysis engine.

—Unification-based analyses [UB]. These perform flow-insensitive interprocedural
analysis. ASI (§4.1.3) uses this kind of analysis engine.

For each analysis, the CIR is instantiated with an interpretation provided by a
reinterpretation developer. This mechanism provides wide flexibility in how one can
couple TSL-generated components to an external package. One approach, used with
VSA, is that the analysis engine (written in C++) calls interpInstr directly. In this
case, the instantiated CIR serves as a transformer evaluator : interpInstr is prepared
to receive an instruction and an abstract state, and return an abstract state. An-
other approach, used in both ASI and in TC analyzers, is employed when interfacing
to an analysis framework that has its own input language for specifying abstract
transformers. In this case, the instantiated CIR serves as an abstract-transformer
generator : interpInstr is prepared to receive an instruction and an abstract trans-
former as the state parameter (often the identity function); interpInstr returns an
abstract-transformer specification in the analysis component’s input language.
The following subsections discuss how the CIR is instantiated for various analyses.

4.1.1 Creation of a TA Transformer Evaluator for VSA. VSA is a com-
bined numeric-analysis and pointer-analysis algorithm that determines an over-
approximation of the set of numeric values and addresses that each register and
memory location holds at each program point [Balakrishnan and Reps 2004]. A
memory region is an abstract quantity that represents all runtime activation records
of a procedure. To represent a set of numeric values and addresses, VSA uses value-
sets, where a value-set is a map from memory regions to strided intervals. A strided
interval consists of a lower bound lb, a stride s, and an upper bound lb + ks, and
represents the set of numbers {lb, lb+ s, lb+ 2s, ..., lb+ ks} [Reps et al. 2006].

26 · J. Lim and T. Reps

—The interpretation of basetypes and basetype-operators. An abstract value for an
integer-basetype value is a value-set. The abstract domain for BOOL is Bool3

({TRUE, FALSE, MAYBE}), where MAYBE means “may be FALSE or may be
TRUE”. The operators on these domains are described in detail in [Reps et al.
2006].

—The interpretation of map-types and access/update functions. An abstract value
for a memory map (MEMMAP32 8, MEMMAP64 8, etc.) is a dictionary that maps
each abstract memory location (i.e., the abstraction of INT32) to a value-set. An
abstract value for a register map (REGMAP32, REGMAP64, etc.) is a dictionary
that maps each variable (reg32, reg64, etc.) to a value-set. An abstract value
for a flag map (FLAGMAP) is a dictionary that maps a flag to a Bool3. The
access/update functions access or update these dictionaries.

VSA uses this transformer evaluator to create an output abstract state, given an
instruction and an input abstract state. For example, row 1 of Tab. II shows the
generated VSA transformer for the instruction “add ebx, eax”. The VSA evaluator
returns a new abstract state in which ebx is updated with the sum of the values of
ebx and eax from the input abstract state and the flags are updated appropriately.

4.1.2 Creation of a TC Transformer Generator for ARA. An affine relation is
a linear-equality constraint between integer-valued variables. ARA finds affine re-
lations that hold in the program, for a given set of variables. This analysis is
used to find induction-variable relationships between registers and memory loca-
tions; these help in increasing the precision of VSA when interpreting conditional
branches [Balakrishnan 2007].
The principle that is used to create a TC transformer generator is as follows:

by interpreting the TSL expression that defines the semantics of an individual in-
struction using an abstract domain in which values represent transformers, each
call to interpInstr will residuate a transformer for the instruction. In the case of
ARA, the CIR is instantiated so that for each instruction, the generated transformer
operates on an abstract domain whose values are sets of matrices that represent
affine transformations on registers and memory locations of the state [Müller-Olm
and Seidl 2005].

—The interpretation of basetypes and basetype-operators. An abstract value for
an integer-basetype value is a set of linear expressions in which variables are
either a register or an abstract memory location—the actual representation of
the domain is a set of columns that consist of an integer constant and an integer
coefficient for each variable. This column represents an affine expression over the
values that the variables hold at the beginning of the instruction. The basetype
operations are defined so that only a set of linear expressions can be generated;
any operation that leads to a non-linear expression, such as Times(eax, ebx),
returns TOP, which means that no affine relationship is known to hold.

—The interpretation of map-types and access/update functions. An abstract value
for a map is a set of matrices of size (N +1)× (N+1), where N is the number of
variables. This abstraction, which is able to find all affine relationships in an affine
program, was defined by Müller-Olm and Seidl [Müller-Olm and Seidl 2005]. Each
access function extracts a set of columns associated with the variable it takes as

TSL: A System for Generating Abstract Interpreters · 27

an argument, from the set of matrices for its map argument. Each update function
creates a new set of matrices that reflects the affine transformation associated
with the update to the variable in question.

For each instruction, the ARA transformer relates linear-equality relationships
that hold before the instruction to those that hold after execution of the instruction.

4.1.3 Creation of a UB Transformer Generator for ASI. ASI is a unification-
based, flow-insensitive algorithm to identify the structure of aggregates in a program
[Balakrishnan and Reps 2007]. For each instruction, the transformer generator
generates a set of ASI commands, each of which is either a command to split a
memory region or a command to unify some portions of memory (and/or some
registers). At analysis time, a client analyzer typically applies the transformer
generator to each of the instructions in the program, and then feeds the resulting
set of ASI commands to an ASI solver to refine the memory regions.

—The interpretation of basetypes and basetype-operators. An abstract value for an
integer-basetype value is a set of dataref s, where a dataref is an access on specific
bytes of a register or memory. The arithmetic, logical, and bit-vector operations
tag dataref s as non-unifiable dataref s, which means that they will only be used
to generate splits.

—The interpretation of map-types and access/update functions. An abstract value
for a map is a set of splits and unifications. The access functions generate
a set of dataref s associated with a memory location or register. The update
functions create a set of unifications or splits according to the dataref s of the
data argument.

For example, for the instruction “mov [ebx],eax”, when ebx holds the abstract
address AR foo−12, where AR foo is the memory region for the activation records
of procedure foo, the ASI transformer generator emits one ASI unification command
“AR foo[-12:-9] :=: eax[0:3]”.

4.1.4 Def-Use Analysis (DUA). Def-Use analysis finds the relationships between
definitions (defs) and uses of state components (registers, flags, and memory-
locations) for each instruction.

—The interpretation of basetypes and basetype-operators. An abstract value for
an integer-basetype value is a set of uses (i.e., abstractions of the map-keys in
states, such as registers, flags, and abstract memory locations), and the operators
on this domain perform a set union of their arguments’ sets.

—The interpretation of map-types and access/update functions. An abstract value
for a map is a dictionary that maps each def to a set of uses. Each access function
returns the set of uses associated with the key parameter. Each update function
update(D, k, S), where D is a dictionary, k is one of the state components, and S
is a set of uses, returns an updated dictionary D[k 7→ (D(k) ∪ S)] (or D[k 7→ S]
if a strong update is sound).

The DUA results (e.g., row 2 of Tab. II) are used to create transformers for several
additional analyses, such as GMOD analysis [Cooper and Kennedy 1988], which is an
analysis to find modified variables for each function f (including variables modified

28 · J. Lim and T. Reps

•
•
•

(A) cmp eax, 10

(B) js …

(C)succ 1 (D)succ 2

T F

(E) jz …
•
•
•

Fig. 16. An example for trace-splitting

by functions transitively called from f) and live-flag analysis, which is used in our
version of VSA to perform trace-splitting/collapsing (see §4.1.5).

4.1.5 Quantifier-Free Bit-Vector (QFBV) Semantics. QFBV semantics provides
a way to obtain a symbolic representation of an instruction’s semantics as a formula
in first-order quantifier-free bit-vector logic.

—The interpretation of basetypes and basetype-operators. An abstract value for an
integer-basetype value is a set of terms, and each operator constructs a term that
represents the operation. An abstract value for a BOOL value is a formula, and
each BOOL-valued operator constructs a formula that represents the operation.

—The interpretation of map-types and access/update functions. An abstract value
for a map is a dictionary that maps a storage component to a term (or a formula
in the case of FLAGMAP). The access/update functions retrieve from and update
the dictionaries, respectively.

QFBV semantics is useful for a variety of purposes. One use is as auxiliary in-
formation in an abstract interpreter, such as the VSA analysis engine, to provide
more precise abstract interpretation of branches in low-level code. The issue is that
many instruction sets provide separate instructions for (i) setting flags (based on
some condition that is tested) and (ii) branching according to the values held by
flags.
To address this problem, we use a trace-splitting/collapsing scheme [Mauborgne

and Rival 2005]. The VSA analysis engine partitions the state at each flag-setting
instruction based on live-flag information (which is obtained from a backwards
analysis that uses the DUA transformers). A semantic reduction [Cousot and Cousot
1979] is performed on the split VSA states with respect to a formula obtained from
the transformer generated by the QFBV semantics. The set of VSA states that result
are propagated to appropriate successors at the branch instruction that uses the
flags.
The cmp instruction (A) in Fig. 16, which is a flag-setting instruction, has sf

and zf as live flags because those flags are used at the branch instructions js (B)
and jz (E): js and jz jump according to sf and zf, respectively. After interpretation
of (A), the state S is split into four states, S1, S2, S3, and S4, which are reduced
with respect to the formulas ϕ1: (eax − 10 < 0) associated with sf, and ϕ2: (eax
− 10 == 0) associated with zf.

S1 := S[sf 7→T] [zf 7→ T] [eax 7→ reduce(S(eax), ϕ1 ∧ ϕ2)]
S2 := S[sf 7→T] [zf 7→ F] [eax 7→ reduce(S(eax), ϕ1 ∧ ¬ϕ2)]

TSL: A System for Generating Abstract Interpreters · 29

S3 := S[sf 7→F] [zf 7→ T] [eax 7→ reduce(S(eax), ¬ϕ1 ∧ ϕ2)]
S4 := S[sf 7→F] [zf 7→ F] [eax 7→ reduce(S(eax), ¬ϕ1 ∧ ¬ϕ2)]

Because ϕ1 ∧ ϕ2 is not satisfiable, S1 becomes ⊥. State S2 is propagated to the
true branch of js (i.e., just before (C)), and S3 and S4 to the false branch (i.e.,
just before (D)). Because no flags are live just before (C), the splitting mechanism
maintains just a single state, and thus all states propagated to (C)—here there is
just one—are collapsed to a single abstract state. Because zf is still live until (E),
the states S3 and S4 are maintained as separate abstract states at (D).

4.2 CodeSurfer/x86

TSL has been used to create a revised version of CodeSurfer/x86 in which the TSL-
generated analysis components for VSA, ARA, ASI, QFBV, etc. are put together.
CodeSurfer/x86 runs these analyses repeatedly, either until quiescence, or until some
user-supplied bound is reached [Balakrishnan and Reps 2010, §6]. It was necessary
to find a way in which the abstraction used in each analysis phase could be encoded
using TSL’s reinterpretation mechanism, and in several cases, including ARA (§4.1.2)
and instruction generation for the stand-alone ASI solver (§4.1.3), we were forced
to rethink how to implement a particular analysis. In addition, some other analysis
techniques were redesigned for the TSL-based version—e.g., an ad hoc technique for
handling conditional branch instructions during VSA [Balakrishnan and Reps 2010,
§3.4.2] was replaced with the trace-splitting method discussed in §4.1.5.

4.3 MCVETO

Using the TSL system, we developed a model checker for machine code, called
MCVETO (Machine-Code VErification TOol). MCVETO uses directed proof gen-
eration [Gulavani et al. 2006] to find either an input that causes a (bad) target
state to be reached, or a proof that the bad state cannot be reached. (The third
possibility is that MCVETO fails to terminate.)
What distinguishes the work on MCVETO is that it addresses a large number of

issues that have been ignored in previous work on software model checking, and
would cause previous techniques to be unsound if applied to machine code. The
contributions of our work on MCVETO can be summarized as follows:

(1) We show how to verify safety properties of machine code while avoiding a host
of assumptions that are unsound in general, and that would be inappropriate in
the machine-code context, such as reliance on symbol-table, debugging, or type
information, and preprocessing steps for (a) building a precomputed, fixed,
interprocedural control-flow graph (ICFG), or (b) performing points-to/alias
analysis.

(2) MCVETO does not require static knowledge of the split between code vs. data,
and uses a sound approach to disassembly. MCVETO builds its (sound) ab-
straction of the program’s state space on-the-fly, performing disassembly one
instruction at a time during state-space exploration, without static knowledge
of the split between code vs. data. MCVETO can analyze programs with in-
struction aliasing6 because it builds its abstraction of the program’s state space

6Programs written in instruction sets with varying-length instructions, such as x86, can have “hid-

30 · J. Lim and T. Reps

entirely on-the-fly. Moreover, MCVETO is capable of verifying (or detecting
flaws in) self-modifying code. With self-modifying code there is no fixed as-
sociation between an address and the instruction at that address, but this is
handled automatically by MCVETO’s mechanisms for abstraction refinement.
To the best of our knowledge, MCVETO is the first model checker to handle
self-modifying code.

(3) We developed a language-independent algorithm to identify the aliasing condi-
tion relevant to a property in a given state. Unlike previous techniques [Beck-
man et al. 2008], it applies when static names for variables/objects are unavail-
able.

(4) We developed several techniques to enhance the methods used during directed
proof generation to elaborate the abstraction in use.

We were able to develop MCVETO in a language-independent way by using the
TSL system to implement the analysis components needed by MCVETO—i.e., (a)
an emulator for running tests, (b) a primitive for performing symbolic execution,
and (c) a primitive for the pre-image operator. In addition, we developed language-
independent approaches to the issues discussed above (e.g., item 3). TSL-generated
analysis components, including those for VSA, ARA, and ASI, were used for item 4.
As discussed in §3, the TSL system acts as a “YACC-like” tool for creating versions

of MCVETO for different instruction sets: given an instruction-set description, a
version of MCVETO is generated automatically. We created two such instantiations
of MCVETO from descriptions of the IA32 and PowerPC instruction sets. The details
of MCVETO can be found in the full paper ([Thakur et al. 2010]).

4.4 BCE

A substantial number of computers on the Internet have been compromised and
have had software installed on them that make them part of a botnet. A typical way
to analyze the behavior of a bot executable is to run it and observe its actions. To
carry this out, however, one needs to identify inputs that trigger possibly malicious
behaviors. Using TSL, we developed a tool for extracting botnet-command infor-
mation from a bot executable. The tool, called BCE (Botnet-Command Extractor)
[Lim and Reps 2010], analyzes a bot executable with the goal of automatically
extracting inputs that trigger possibly malicious behaviors.
The contributions of the work on BCE can be summarized as follows:

(1) BCE automates the extraction of information from a bot executable about bot-
net commands and the arguments to commands. The analysis is carried out
without access to source code or symbol-table/debugging information.

(2) BCE is parameterized to take a list of library or system calls of interest (“API
calls”). The extracted information includes (a) constant command strings that
trigger API-level behaviors; (b) relationships, including type relationships, be-
tween the input command string and the actual parameters of an API call; and
(c) constraints on the actual parameters of an API call. The information ob-

den” instructions starting at positions that are out of registration with the instruction boundaries
of a given reading of an instruction stream [Linn and Debray 2003].

TSL: A System for Generating Abstract Interpreters · 31

tained via BCE can be used to build up input commands that trigger API-level
behaviors.

(3) BCE is able to provide a specification of the API-level behaviors of a bot program
without running the bot. Along with the input-command strings extracted from
a bot program, BCE also provides a sequence of API calls controlled by each
command, which can help the user understand the API-level behavior.

(4) BCE uses directed test generation [Godefroid et al. 2005], enhanced with a new
search technique that uses control-dependence information [Ferrante et al. 1987]
to direct the search. Our experiments showed that the method provides higher
coverage of the parts of the program relevant to identifying bot commands,
as well as lower overall execution time than standard directed test generation
(which does not use control-dependence information).

As with MCVETO, the BCE implementation has been structured so that it can
be retargeted to different languages easily. The BCE driver is structured so that
one only needs to provide an implementation of concrete execution and symbolic
execution of a language. We used the TSL-generated primitives for concrete execu-
tion and symbolic execution. The TSL-generated symbolic-analysis primitives allow
BCE to obtain accurate path constraints.
The details of BCE can be found in a technical report [Lim and Reps 2010].

5. EVALUATION

In this section, we present an evaluation of the costs and benefits of the TSL ap-
proach. The material discussed in this section is designed to shed light on the
following questions:

—Does the use of TSL help to reduce the development time of a program-analysis
tool that uses abstract interpretation?

—What are the costs in running time and space consumption of using a TSL-
generated method for creating abstract transformers?

—In terms of running time, space consumption, and precision, how does the TSL-
based method for generating abstract transformers for a given abstract domain
A stack up against a method for creating best abstract transformers [Cousot and
Cousot 1979] for A?

In §5.1, we present estimates of the time spent developing two different versions
of CodeSurfer/x86.
In §5.2, we report on experiments that compare TSL’s approach to creating ab-

stract transformers against best abstract transformers [Cousot and Cousot 1979]:
the experiment measures the precision of TSL-generated abstract transformers
against the limit of precision obtainable using a given abstraction.
For our experiments at the level of single instructions, we used a corpus of 11,220

x86 instructions, which covers various opcodes, addressing modes, and operand
sizes.
Fig. 17 lists several size parameters of a set of Windows utilities (numbers of

instructions, procedures, basic blocks, and branches) that we also used in our ex-
periments. For these programs, the generated abstract transformers were used as

32 · J. Lim and T. Reps

Prog. Measures of size

name instrs procs BBs branches

finger 532 18 298 48
subst 1093 16 609 74
label 1167 16 573 103
chkdsk 1468 18 787 119
convert 1927 38 1013 161
route 1982 40 931 243
comp 2377 35 1261 224
logoff 2470 46 1145 306
setup 4751 67 1862 589

Fig. 17. Windows utility applications. The columns show the number of instructions (instrs); the
number of procedures (procs); the number of basic blocks (BBs); the number of branch instructions
(branches).

“weights” in a weighted pushdown system (WPDS). WPDSs are a modern formal-
ism for solving flow-sensitive, context-sensitive interprocedural dataflow-analysis
problems [Reps et al. 2005; Bouajjani et al. 2003].7 In our experiments, all WPDSs
were constructed using the WALi package for WPDSs [WALi 2007]. Weights cor-
respond to abstract transformers for basic blocks.
The asymptotic cost of weight generation is linear in the size of the program: to

generate the weights, each basic block in the program is visited once, and a weight
is generated by the relevant method: (i) TSL-based reinterpretation of interpInstr
to create a weight directly; (ii) TSL-based reinterpretation of interpInstr to create a
QFBV formula, followed by application of an algorithm for creating the best weight
from the formula (i.e., the best abstract transformer [Cousot and Cousot 1979]).
For each example program, the number of WPDS rules equals the number of basic

blocks plus the number of branches (see Fig. 17), together with rules for modeling
procedure call and return.
Due to the high cost in §5.2 of constructing WPDSs with best-transformer

weights, we ran all WPDS analyses without the code for libraries. Values are re-
turned from x86 procedure calls in register eax, and thus in our experiments library
functions were modeled approximately (albeit unsoundly, in general) by “eax :=

?”, where “?” denotes an unknown value [Müller-Olm and Seidl 2005] (sometimes
written as “havoc(eax)”).

5.1 Development Time

We consider CodeSurfer/x86 to be representative of how TSL can be used to cre-
ate full-fledged analysis tools; we present our experience developing two different
versions of CodeSurfer/x86 [Balakrishnan et al. 2005] as an example of the kind of
leverage that TSL provides with respect to development time.
In the original implementation of CodeSurfer/x86, the abstract transformers were

implemented in the conventional way (i.e., by hand-writing routines to generate
an abstract transformers from an instruction’s abstract-syntax tree).8 The most
recent incarnation of CodeSurfer/x86—a revised version whose analysis components

7Running a WPDS-based analysis to find the join-over-all-paths value for a given set of program
points involves calling two operations, “post*” and “path summary”, as detailed in [Reps et al.
2005].
8The ideas used in the abstract transformers, and how the various abstract-interpretation phases

TSL: A System for Generating Abstract Interpreters · 33

are implemented via TSL—uses eight separate abstract-interpretation phases, each
based on a different abstract-transformer generator created from the TSL specifica-
tion of the IA32 instruction set by supplying an appropriate reinterpretation of the
basetypes, map-types, and operations of the TSL meta-language. We estimate that
the task of hand-writing an abstract-transformer generator for the eight analysis
phases used in the original CodeSurfer/x86 consumed about twenty man-months ; in
contrast, we have invested a total of about one man-month to write the C++ code
for eight TSL interpretations that are used to generate the replacement components.
To this, one should add 10–20 man-days to write the TSL specification for IA32:
the current specification for IA32 consists of 4,153 (non-comment, non-blank) lines
of TSL. We conclude that TSL can greatly reduce the time to develop the abstract
interpreters needed in a full-fledged analysis tool—perhaps as much as 12-fold (=
20 months/1.67 months).
Because each abstract interpretation is defined at the meta-level (i.e., by provid-

ing an interpretation for the collection of TSL primitives), an abstract-transformer
generator for a given abstract interpretation can be created automatically for each
instruction set that is specified in TSL. For instance, from the PowerPC specifi-
cation (1,862 non-comment, non-blank lines, which took approximately 4 days to
write), we were immediately able to generate PowerPC-specific versions of all of the
abstract-interpretation phases that had been developed for the IA32 instruction set.
It takes approximately 1 minute (on a single core of a four-processor, quad-core,

2.83GHz Intel machine, running Linux 2.6.32 with 8GB of memory, configured so
a user process has 4GB of memory) for the TSL (cross-)compiler to compile the
IA32 specification to C++. It then takes approximately 4 minutes wall-clock time
(on a single core of a four-processor, quad-core, 3GHz Xeon machine with 32GB of
RAM, configured so a user process has 4GB of memory, running 64-bit Windows
7 Enterprise with Service Pack 1) to compile the generated C++ for each CIR
instantiation, using Visual Studio 2010.

5.2 Comparison to the Best Abstract Transformer

As described in §3, for a given abstract domain A, an over-approximating abstract
transformer for an instruction is obtained by defining an over-approximating rein-
terpretation of each TSL basetype operator as an operation over A. The desired
set of abstract transformers are obtained by extending the reinterpretation to TSL
expressions and functions, including interpInstr.
However, that method abstracts each TSL operation in isolation, and is there-

fore rather myopic. In some cases, one can obtain a more precise transformer by
considering the semantics of an entire instruction (or, even better, an entire basic
block or other loop-free path fragment). It is known how to give a specification
of the most-precise abstract interpretation for a given abstract domain [Cousot
and Cousot 1979]: for a Galois connection defined by abstraction function α and

concretization function γ, the best abstract transformer τ ♯
best

for a given concrete
transformer τ , defined by

τ ♯
best

def

= α ◦ τ ◦ γ, (1)

fit together, are discussed in [Balakrishnan and Reps 2010].

34 · J. Lim and T. Reps

specifies the limit of precision obtainable using a given abstraction.
Unfortunately, Eqn. (1) is non-constructive in general; however, for some abstract

domains an algorithm is known for finding best abstract transformers [Graf and
Säıdi 1997; Reps et al. 2004; King and Søndergaard 2010; Elder et al. 2011].
To see how a method for constructing best transformers can yield better results

than TSL’s operator-by-operator reinterpretation approach, consider the following
example:

Example 5.1. ([Thakur et al. 2012]) The x86 instruction “add bh,al” adds the
value of al, the low-order byte of 32-bit register eax, to bh, the second-to-lowest
byte of 32-bit register ebx. The semantics of this instruction can be expressed in
quantifier-free bit-vector (QFBV) logic as follows:

ϕI
def

= ebx′ =

(
(ebx & 0xFFFF00FF)
| ((ebx+ 256 ∗ (eax & 0xFF)) & 0xFF00)

)
∧ eax′ = eax,

where “&” and “|” denote bitwise-and and bitwise-or, respectively. Note that the
semantics of the instruction involves non-linear bit-masking operations.
Now suppose that abstract domain is the domain of affine relations over integers

mod 232 [Müller-Olm and Seidl 2005; Elder et al. 2011]. For this abstract domain,
the best transformer is (216ebx′ = 216ebx+224eax) ∧(eax′ = eax), which captures
the relationship between the low-order two bytes of ebx and the low-order byte of
eax. It is the best over-approximation to ϕI that can be expressed as an affine
relation. In contrast, with TSL’s operator-by-operator reinterpretation approach,
the abstract transformer obtained from the TSL specification of “add bh,al” would
be (eax′ = eax), which loses all information about ebx. Such a loss of precision is
exacerbated when considering larger loop-free blocks of instructions. 2

To compare the TSL operator-by-operator approach with best abstract trans-
formers, we carried out a study using an algorithm for obtaining best abstract
transformers for an abstract domain of affine relations. For a given instruction (or
basic block) I, the TSL QFBV reinterpretation was used to obtain a formula ϕI that
captures the entire semantics of I. The formula ϕI was then used to obtain the
best ARA transformer that over-approximates ϕI , using the algorithm described in
[Elder et al. 2011; Thakur et al. 2012].
The comparison is based on an abstract domain of affine relations for modular

arithmetic, where the variables over which affine relations are inferred are the x86
registers. However, because no algorithm is known for finding best transformers
for the affine-relation domain of Müller-Olm and Seidl [2005] (ARA-MOS), we used
a related affine-relation domain due to Elder et al. [2011], called ARA-KS, for which
such an algorithm is known [Elder et al. 2011].9 The results reported in this section
were obtained using a single core of a four-processor, quad-core, 2.40GHz Xeon
machine, running 64-bit Windows XP (Service Pack 2). The machine has 12GB of
RAM, configured so a user process has 4GB of memory.
We performed a WPDS-based analysis of the examples from Fig. 17 using three

sets of ARA-KS weights (abstract transformers): (i) weights created using the TSL

9The domain is called ARA-KS in recognition of the fact that ARA-KS is the extension to modular
arithmetic of the abstract domain for Boolean affine relations due to King and Søndergaard [2010]).

TSL: A System for Generating Abstract Interpreters · 35

reinterpretation method applied to ARA-KS; (ii) weights corresponding to best
ARA-KS transformers, and (iii) weights generated using the “generalized St̊almarck”
algorithm [Thakur et al. 2012], which provides another point in the design space
of trade-offs between time and precision that lies somewhere between (i) and (ii)
[Thakur et al. 2012].10 Note that, except for cases in which an SMT solver time-
out is reported, (ii) is guaranteed to find the most-precise basic-block transformers
that are expressible in the ARA-KS abstract domain [Elder et al. 2011; Thakur et al.
2012].

5.2.1 Precision per Instruction. We compared precision and running time of the
“Reinterpretation” method (TSL ARA-KS reinterpretation) versus α̂KS at the gran-
ularity of individual instructions using the corpus of 11,220 x86 instructions. The
experiment showed that the best-transformer method (α̂KS) is strictly more precise
then the ARA-KS Reinterpretation method for only about 2.5% of the instructions—
271 out of the 10,964 (= 10,693 + 271) instances of IA32 instructions for which a
comparison was possible. The two methods created equal transformers for 10,693
instructions. The best-transformer method uses an SMT solver as a subroutine;
with a 1-second timeout limit, there were 256 timeouts in the SMT solver.
In terms of running time, the α̂KS method took about 19.5 times longer than the

ARA-KS Reinterpretation method.

5.2.2 Precision in Analysis. Although the α̂KS approach does create more pre-
cise abstract transformers than TSL ARA-KS reinterpretation, that only happens
for about 2.5% of the instructions. We would like to know what the effect of the
increased precision is on the dataflow facts (program invariants) obtained by run-
ning an abstract interpreter using the two different sets of abstract transformers.
To answer that question, we compared the precision of the ARA-KS results obtained
from a flow-sensitive, context-sensitive, interprocedural analysis of the examples
from Fig. 17, using ARA-KS abstract transformers generated by the two methods,
along with a third method discussed below.
The “Reinterpretation”, “St̊almarck”, and α̂KS methods represent three different

points in the design space of trade-offs between time and precision. We performed

10To be more precise about the relationship, we used the following “chained” method for gener-
ating weights:

(1) “Reinterpretation” is the TSL ARA-KS reinterpretation method.

(2) “St̊almarck” is the generalized-St̊almarck algorithm of Thakur and Reps [2012], starting with
the value obtained via the Reinterpretation method. The generalized-St̊almarck algorithm
successively over-approximates the best transformer from above. By starting the algorithm
with the value obtained via the Reinterpretation method, the generalized-St̊almarck algo-
rithm does not have to work its way down from ⊤; it merely continues to work its way down
from the over-approximation already obtained via the TSL ARA-KS reinterpretation method.
The generalized-St̊almarck algorithm is a faster algorithm than the α̂KS method, but does
not guarantee to find the best abstract transformer, even in the absence of solver timeouts
[Thakur and Reps 2012].

(3) α̂KS is the algorithm described in [Elder et al. 2011; Thakur et al. 2012], starting with the
value obtained via the St̊almarck method as an over-approximation as a way to accelerate its
performance. α̂KS does guarantee to obtain the best abstract transformer, except for cases
in which an SMT solver timeout is reported.

Thus, α̂KS ⊑ St̊almarck ⊑ Reinterpretation is always guaranteed to hold.

36 · J. Lim and T. Reps

Performance (x86) Precision

Prog. Reinterp. (RE) St̊almarck (ST) α̂KS ST < α̂KS < α̂KS <

WPDS post* query WPDS post* query WPDS post* query t/o RE ST RE

finger 4.250 0.406 0.110 21.719 0.437 0.110 163.110 0.422 0.125 6 14.6% 10.4% 25.0%
subst 6.203 0.765 0.203 28.484 0.782 0.219 258.094 0.813 0.203 5 12.2% 10.8% 17.6%
label 6.735 0.734 0.282 29.250 0.782 0.297 214.891 0.781 0.297 4 0.1% 0% 0.1%
chkdsk 9.109 0.609 0.312 50.063 0.610 0.297 556.766 0.594 0.313 13 10.9% 0% 10.9%
convert 10.671 1.719 0.453 55.235 1.625 0.422 389.781 1.610 0.422 25 30.4% 0% 30.4%
route 18.969 1.999 0.609 71.109 2.047 0.625 638.016 2.095 0.625 7 22.2% 3.7% 25.1%
comp 14.547 2.016 0.578 67.609 2.141 0.578 770.172 2.140 0.563 8 2.7% 0.5% 3.1%
logoff 23.953 2.625 0.750 98.437 2.751 0.781 805.625 2.655 0.781 28 19.3% 5.9% 23.5%
setup 43.485 1.531 1.329 230.895 1.609 1.250 2061.480 1.624 1.250 86 4.8% 2.2% 5.8%

Fig. 18. WPDS experiments for §5.2. The columns show the times, in seconds, for ARA-KSWPDS

construction, performing interprocedural dataflow analysis (running post* and “path summary”),
and finding one-vocabulary affine relations at blocks that end with branch instructions, using
three methods: TSL-reinterpretation-based, St̊almarck, and α̂KS; α̂KS has an additional column
that reports the number of WPDS rules for which the α̂KS weight generation timed out (t/o);
the last three columns show the degrees of analysis precision obtained by using (i) St̊almarck-
generated ARA-KS weights versus TSL-generated ones, (ii) α̂KS-generated ARA-KS weights ver-
sus St̊almarck-generated ones, and (iii) α̂KS-generated ARA-KS weights versus TSL-generated
ones. (The precision improvements reported in the columns labeled with “A < B” are measured
as the percentage of basic blocks that (i) end with a branch instruction, and (ii) begin with a
node whose inferred one-vocabulary affine relation via method A was strictly more precise than
via method B.)

an experiment designed to illustrate this trade-off. We ran a flow-sensitive, context-
sensitive, interprocedural ARA-KS analysis on the corpus of Windows utilities listed
in Fig. 17, using the WALi system for weighted pushdown systems (WPDSs), using
ARA-MOS abstract transformers generated by the three methods.
For the Windows utilities listed in Fig. 17, Fig. 18 shows the times for construct-

ing ARA-KS abstract transformers, performing interprocedural dataflow analysis
(running post* and “path summary”), and finding one-vocabulary affine relations
at blocks that end with branch instructions, using the three methods.
Column 11 of Fig. 18 shows the number of WPDS rules for which α̂KS weight-

generation timed out. During WPDS construction, if the SMT solver times out, the
implementation returns a sound over-approximating weight that the α̂KS algorithm
has in hand. Because α̂KS starts with the weight created by the St̊almarck method,
even when there is a timeout, the weight returned by α̂KS is never less precise—
and sometimes more precise—than the St̊almarck weight. The number of rules is
roughly equal to the number of basic blocks plus the number of branches, so a
timeout occurred for about 0.6–4.6% of the rules (geometric mean: 1.4%).
The experiment showed that the cost of constructing transformers via the α̂KS

algorithm is high: creating the ARA-KS weights via α̂KS and the St̊almarck-based
method are, respectively, about 40.9 times and 4.7 times slower than creating
ARA-KS weights using TSL reinterpretation (computed as the geometric mean of
the construction-time ratios).
The experiment showed that the TSL ARA-KS reinterpretation method performs

quite well in terms of precision, compared to the more precise methods. The
precision-improvement numbers show that the α̂KS algorithm is strictly more precise
than Reinterpretation at about 8.1% of the blocks that end with branch instruc-
tions, whereas St̊almarck is strictly more precise than Reinterpretation at about
6.8% of those sites (computed as geometric means).

TSL: A System for Generating Abstract Interpreters · 37

Performance (x86)

Prog. Reinterp. (RE) St̊almarck (ST) α̂KS

WPDS post* WPDS post* WPDS post*

finger 918 1134 7790 537 3998 540
subst 1729 2080 13242 1176 5177 1176
label 1675 2286 10400 1110 5300 1093
chkdsk 2080 1819 10629 1200 4559 1131
convert 2928 4215 14639 1794 10887 1561
route 3634 5775 13943 2273 9306 2142
comp 3466 8425 13972 2437 8151 1995
logoff 4153 7492 15896 2417 10400 2339
setup 7475 3691 24670 1409 17531 1229

Fig. 19. Space usage in WPDS experiments for §5.2. The columns show the amount of memory
used, in KB, for ARA-KS WPDS construction and running post*.

5.2.3 Memory Requirements. Fig. 19 shows the space used for the phases of
ARA-KS WPDS construction and running post*. The columns of the table in Fig. 19
show the amount of memory used in KB.
The space required for “path summary” and for finding one-vocabulary affine

relations at blocks that end with branch instructions is not reported because in all
cases it was negligible.

5.3 Summary and Discussion

Our evaluation of TSL shows that TSL has a number of benefits and relatively few
drawbacks, both for affine-relation analysis and the machine-code abstract inter-
preters used in CodeSurfer/x86.

—TSL can greatly reduce the time to develop the abstract interpreters needed in a
full-fledged analysis tool—perhaps as much as 12-fold (§5.1).

—The abstract transformers obtained via a TSL-generated method for creating
abstract transformers are nearly as precise as best abstract transformers. As
discussed in §5.2.1, the best transformers are more precise for only about 2.5% of
the instruction instances in our corpus of 11,220 instructions. Moreover, it takes
about 19.5 times longer to obtain best transformers, compared to the TSL-based
method.

—When best transformers generated from α̂KS and St̊almarck are used for inter-
procedural dataflow analysis, they allow more precise invariants to be discovered
at a relatively small number of program points (8.1% and 6.8%, respectively,
computed as a geometric mean), although for one example (convert) α̂KS and
St̊almarck obtained more precise invariants at 30.4% of the program points (i.e.,
at blocks that end with branch instructions).

—Analysis times proper (i.e., the running times in columns “post*” and “query”)
are not much different when using best transformers, compared to using TSL-
based transformers. However, there can be a 40.9-fold performance penalty, with
respect to the TSL-based approach, for creating best abstract transformers (i.e.,
during WPDS construction).

—The St̊almarck-based approach provides another point in the design space of
trade-offs between time and precision. The transformers obtained using the

38 · J. Lim and T. Reps

St̊almarck-based approach produce program invariants that are more precise than
those found with the TSL-based transformers, but not as precise as those found
with the set of best transformers. Moreover, compared to the method for ob-
taining best abstract transformers, the St̊almarck-based approach has a smaller
penalty in running time with respect to the TSL-based approach (St̊almarck is
4.7 times slower).

6. RELATED WORK

In this section, we discuss work from various domains that relates to TSL.

6.1 Instruction-Set Description Languages

There have been many specification languages for instruction sets and many pur-
poses to which they have been applied. Some were designed for hardware simula-
tion, such as cycle simulation and pipeline simulation [Pees et al. 1999; Mishra et al.
2006]. Others have been used to generate an emulator for compiler-optimization
testing [Davidson and Fraser 1984; Kästner 2003]. TDL [Kästner 2003] is a
hardware-description language that supports the retargeting of back-end phases,
such as analyses and optimizations relevant to instruction scheduling, register as-
signment, and functional-unit binding. The New Jersey machine-code toolkit [Ram-
sey and Ferandez 1994] addresses concrete syntactic issues (instruction decoding,
instruction encoding, etc.).
Siewiorek et al. [1982] proposed an operational hardware specification language,

called ISP (Instruction-Set Processor) notation, for describing the instructions in
a processor and their semantics. The goal of ISP was to automate the generation
of software, the evaluation of computer architectures, and the certification of im-
plementations. They divided a computer system into several levels, including the
program level, which the ISP notation is designed to describe. The design of the
ISP notation was based on two principles:

(1) The components of the program level are a set of memories and a set of oper-
ations. The effect of each instruction can be expressed entirely in terms of the
information held in the current set of memories. The ISP notation is designed
for specifying that a given operation of a processor is performed on a specific
data structure that the set of memories hold.

(2) All data operations can be characterized as working on various data-types; each
data-type requires distinct operations to process the values of a data-type. A
processor can be completely described at the ISP level by giving its instruction
set and its interpreter in terms of its operations, data-types, and memories.

TSL relies on the same principles.
While some of the existing instruction-set description languages would have been

satisfactory for our purposes, their runtime environments were not satisfactory,
which was what motivated us to implement our own system. In particular, to meet
our goals we needed a mechanism to create abstract interpreters of instruction-set
specifications. As discussed in §3.2.1, there are four issues that arise. During the
abstract interpretation of each instruction, the abstract interpreter must be able to

—execute over abstract values and abstract states,

TSL: A System for Generating Abstract Interpreters · 39

—execute both branches of a conditional expression,

—compare abstract states and terminate abstract execution when a fixed point is
reached, and

—apply widening operators, if necessary, to ensure termination.

As far as we know, TSL is the first instruction-set specification language with sup-
port for such mechanisms.

Functional Languages as Instruction-Set Description Language. Harcourt et al.
used ML to specify the semantics of instruction sets [Harcourt et al. 1994]. LISAS

[Cook et al. 1993] is an instruction-set-description language that was subsequently
developed based on their experience using ML. Those two approaches particularly
influenced the design of the TSL language.

λ-RTL. TSL shares some of the same goals as λ-RTL [Ramsey and Davidson 1999]
(i.e., the ability to specify the semantics of an instruction set and to support mul-
tiple clients that make use of a single specification). The two languages were both
influenced by ML, but different choices were made about what aspects of ML to re-
tain: λ-RTL is higher-order, but without datatype constructors and recursion; TSL
is first-order, but supports both datatype constructors and recursion. Recursion
is not often used in specifications, but is needed for handling some loop-iteration
instructions, such as the IA32 string-manipulation instructions and the PowerPC

multiple-word load/store instructions. The choices made in the design and imple-
mentation of TSL were driven by the goal of being able to define multiple abstract
interpretations of an instruction-sets semantics.

6.2 Semantic Reinterpretation

As discussed in §2, semantic reinterpretation involves refactoring the specification
of a language’s concrete semantics into a suitable form by introducing appropriate
combinators that are subsequently redefined to create the different subject-language
interpretations.

6.2.1 Semantic Reinterpretation versus Standard Abstract Interpretation. Se-
mantic reinterpretation [Mycroft and Jones 1985; Jones and Mycroft 1986; Nielson
1989; Malmkjær 1993] is a form of abstract interpretation [Cousot and Cousot 1977],
but differs from the way abstract interpretation is normally applied: in standard
abstract interpretation, one reinterprets the constructs of each subject language; in
contrast, with semantic reinterpretation one reinterprets combinators defined using
the meta-language. Standard abstract interpretation helps in creating semantically
sound tools ; semantic reinterpretation helps in creating semantically sound tool
generators. In particular, if you have M subject languages and N analyses, with
semantic reinterpretation you obtain M ×N analyzers by writing just M +N spec-
ifications: concrete semantics for M subject languages and N reinterpretations.
With the standard approach, one must write M ×N abstract semantics.
The MESS compiler generator of Pleban and Lee [1987] aimed to permit the gen-

eration of realistic compilers from specifications in denotational semantics. MESS
was based on an independent discovery of the principle of semantic reinterpretation:
it used a semantic-definition style they called high-level semantics, which involves
separating the semantic definition of a programming language into two distinct

40 · J. Lim and T. Reps

specifications, called macro-semantics and micro-semantics. The macro-semantics
of a language is defined by a collection of semantic functions that map syntac-
tic phrases compositionally to terms of a semantic algebra; the micro-semantics
specifies the meaning of a semantic algebra.
As originally proposed, semantic reinterpretation permits arbitrary refactoring

of a semantic specification so that the desired outcome can be achieved via rein-
terpretation of any combinators introduced. In contrast, although it is possible to
introduce combinators in TSL and reinterpret them, the primary mechanism in TSL
is to reinterpret the base-types, map-types, and operators of the meta-language.
TSL’s approach is particularly convenient for a system to generate multiple analysis
components from a single specification of a language’s concrete semantics.

6.2.2 Semantic Reinterpretation versus Translation to a Universal Assembly
Language. The mapping of subject-language constructs to meta-language opera-
tions that one defines as part of the semantic-reinterpretation approach resembles
in some ways two other approaches to obtaining “systematic” reinterpretations of
subject-language programs, namely,

(1) implementing a translator from subject-language programs to a common inter-
mediate form (CIF) data structure, and then creating various interpreters that
implement different abstract interpretations of the CIF node types.

(2) implementing a translator from subject-language programs to a universal as-
sembly language (UAL), and then writing different abstract interpreters of the
UAL.

An example of a CIF is the Program Intermediate Format of the SUIF compiler
infrastructure [Wilson et al. 1994, §2.1]. Recent examples of UALs include Vine
[Song et al. 2008, §3], REIL [Dullien and Porst 2009], and BAP [Brumley et al. 2011].
Both approaches can be used to create tools that can be applied to multiple subject
languages: each CIF (UAL) abstract interpreter can be applied to the translation of
a program written in any subject language L for which one has defined an L-to-CIF
(L-to-UAL) translator.
Because UAL programs can be considered to be linearizations of CIF trees, we

will confine ourselves to comparing the TSL approach with the UAL approach.
There are four main high-level differences between the semantic-reinterpretation

approach used in TSL and the UAL approach. First, there is a difference that
affects the activities of instruction-set specifiers: the UAL approach is based on
a translational semantics, whereas the TSL approach is based on an operational
semantics. With the UAL approach an instruction-set specifier has to write a
function that walks over the abstract-syntax tree of an instruction I of instruction
set IS and constructs an appropriate UAL program fragment whose meaning, when
interpreted in the concrete semantics, is the desired semantics for instruction I. In
contrast, with TSL one just writes an interpreter that specifies the meaning of an IS
instruction. (Fig. 6(a), discussed in §3.1.1, shows a fragment of such an interpreter.)
The second and third differences are best explained using Fig. 20.

—The λ expression in Fig. 20(a) formulates the concept underlying the TSL ap-
proach. However, in the TSL implementation, the different λ applications are
performed in a sequence of phases. Given IS, the definition of a subject lan-

TSL: A System for Generating Abstract Interpreters · 41

CIRIS = TSL(IS)
↓

TSL = λ IS:instruction-set. λ I:interpretation.

abstract-transformer generator
︷ ︸︸ ︷
λ instruction:IS. λ abs-state:Istate. ...(output abs-state)...

︸ ︷︷ ︸
abstract transformer

(a) TSL

IR: Translated Code
↓

UAL = λ IS:instruction-set. λ instruction:IS. λ I:interpretation. λ abs-state:Istate. ...(output abs-state)...

(b) UAL

Fig. 20. A comparison of the UAL approach and TSL. (Note the use of dependent-type notation:
“instruction:IS” means that instruction is an element of the language IS, and “abs-state:Istate” means
that abs-state is a state element in the space of values defined by interpretation I.)

guage’s syntax, TSL produces an explicit CIRIS artifact as a C++ template. The
application of CIRIS to an interpretation I is then performed by the C++ compiler,
via template instantiation.
Thus, TSL takes instruction set IS and an interpretation I, and produces TSLIS,I

(e.g., TSLx86,VSA, TSLx86,QFBV, or TSLx86,ARA). In some applications, such as ARA,
TSLIS,ARA is used as an abstract-transformer generator: given an instruction instr,
it produces an ARA abstract-state transformer for instr. In other applications,
such as VSA, TSLIS,VSA is used to compute output abstract states; it is given an
instruction and an input abstract state and returns an output abstract state.

—The UAL method can be formulated (roughly) as UAL in Fig. 20(b). Conceptu-
ally, UAL takes IS, the definition of a subject language’s syntax, and instruction,
and produces UALlang,instr (e.g., UALx86,ADD). UALlang,instr takes an interpretation
and an abstract state, and produces an output abstract state.

Thus, the second—and perhaps the most enlightening—difference between the UAL
and TSL approaches is the order in which the two parameters I:interpretation and
instruction:IS are processed. In the TSL approach, I:interpretation is supplied before
instruction:IS; with the UAL approach, they are supplied in the opposite order.
The third difference is due to the fact that, in the implementations of the UAL

approach that we are aware of, the parameters IS and instruction:IS are processed
first, and an intermediate representation IR consisting of the translated UAL code
for instruction:IS is emitted as an explicit data object (see Fig. 20(b)). The final
stages—e.g., the processing of interpretation I—involve interpreting a UAL code
object. In contrast, with the semantic-reinterpretation approach used in TSL there
is no explicit UAL program to be interpreted. In essence, with the semantic-
reinterpretation approach as implemented in TSL, a level of interpretation is re-
moved, and hence generated abstract interpreters should run faster.
The fourth difference has to do with the resource costs for the processing carried

out by the two methods:

42 · J. Lim and T. Reps

(1) With the UAL method, the size of the IR for a given program P is
∑

instr∈P

(size of translation of instr) ≈ |P | × (avg. size of translated instruction).

In contrast, the size of the TSL CIR is

#interpretations× |OpSemL|,

where OpSemL is the operational semantics of language L, and
“#interpretations” refers to the number of interpretations in use. In other
words, the size of the TSL CIR is constant, independent of the size of the
subject-language program, whereas the UAL IR is roughly linear in the size of
the subject-language program.

(2) The TSL CIR is a C++ template that is instantiated with a reinterpretation to
generate an abstract-transformer generator. Thus, one of the disadvantages of
the TSLmethod is that it is necessary to invoke the C++ compiler to instantiate
the CIR. With the UAL method, one only has to recompile the reinterpretation
itself, which should generally give faster turnaround time during development.

As discussed in [Lim et al. 2011], although the original target for TSL was the
reinterpretation of the semantics of instruction sets, we were able to use TSL to
reinterpret the semantics of a logic. That is, using the existing facilities of TSL, it
was easy to define (i) the abstract syntax of the formulas of a logic, (ii) the logic’s
standard semantics, and (iii) an abstract interpretation of the logic by reinterpret-
ing TSL’s basetypes, map-types, and operators. In this case, we used TSL as the
function

TSL = λ L:logic. λ I:semantics. λ formula:L. λ structure. ...(meaning)...

For machine-code analysis, the appropriate logic was quantifier-free bit-vector arith-
metic (QFBV; see §4.1.5). Lim et al. [2011] describes the non-standard semantics
for logic that we used as the second argument, and how that allowed us to create
a pre-image operation for machine-code instruction sets.
Although it is no doubt possible to duplicate what we did using the UAL ap-

proach, it would not be straightforward because existing UAL-based systems appear
to be less flexible in the languages that can be defined. In contrast, to apply TSL
to a logic, we merely had to define a grammar for QFBV abstract-syntax trees,
write an interpreter for the standard semantics of QFBV, and define the relevant
reinterpretation of TSL’s basetypes, map-types, and operators [Lim et al. 2011].

6.3 Systems for Generating Analyzers

Some systems for representing and analyzing programs are (mainly) targeted for
a single language. For instance, SOOT [SOOT] is a powerful and flexible anal-
ysis/optimization framework that supports analysis and transformation of Java
bytecode.
WALA [WALA] is similar to SOOT, but emphasizes a common intermediate

form (Common Abstract Syntax Trees), from which multiple additional IRs can be
generated (e.g., CFGs and SSA-form). Multiple analyses can then be performed
that use these IRs. Several front-ends have been written for WALA, including Java,

TSL: A System for Generating Abstract Interpreters · 43

Javascript, X10, PHP, Java bytecode, and .NET bytecode. LLVM [Lattner and
Adve 2004] is another multi-lingual framework that is similar to WALA. LLVM
support a different common intermediate form (LLVM intermediate representation).
Languages supported by LLVM include Ada, C, C++, D, Fortran, and Objective-C.
One method to support the retargeting of analyses to different languages is to

create a package that supports a family of program analyses that different front-
ends can use to create analysis components. Examples include BDDBDDB [Whaley
et al. 2005], Banshee [Kodumal and Aiken 2005], APRON [APRON], WPDS++
[WPDS++ 2004], and WALi [WALi 2007]. The writer of each client front-end needs
to encode the semantics of his language by creating appropriate transformers for
each statement and condition in the subject language’s intermediate representation,
using the package’s API (or input language).
To use such packages in conjunction with TSL, a reinterpretation designer need

only use the package to implement the appropriate abstract operations so as to
over-approximate the semantics of the operations of the TSL meta-language. Any
of the aforementioned packages could be used for creating TSL-based analyses; to
date, WALi [WALi 2007] has been used for all of the TC-style analyzers (§4.1.2)
that have been developed for use with TSL.
As mentioned in §1, there have been a number of past efforts to create gener-

ator tools that support abstract interpretation, including MUG2 [Wilhelm 1981],
SPARE [Venkatesh 1989; Venkatesh and Fischer 1992], Steffen’s work on harness-
ing model checking for dataflow analysis [Steffen 1991; 1993], Sharlit [Tjiang and
Hennessy 1992], Z [Yi and Harrison, III 1993], PAG [Alt and Martin 1995], and
OPTIMIX [Assmann 2000]. In contrast with TSL, in those systems the user speci-
fies the abstract semantics of the language to be analyzed, rather than the concrete
semantics.
Steffen [1991] [Steffen 1993] uses CTL as a specification language for dataflow-

analysis algorithms. An advantage of this approach is that it is declarative: a
specification concerns the program property under consideration, rather than spe-
cific details of the analysis algorithm or information about how the properties of
interest are determined. However, Steffen’s approach does not start from the con-
crete operational semantics of the language; instead, it starts from an abstraction
of the program, which consists of a labeled transition system annotated with a set
of atomic propositions. The set of atomic propositions defines the abstract domain
in use. Later developments stemming from Steffen’s approach include work by
Schmidt [1998], Cousot and Cousot [2000], and Lacey et al. [2004].
There are two analysis systems, TVLA [Lev-Ami and Sagiv 2000; Reps et al. 2010]

and RHODIUM [Scherpelz et al. 2007], in which sound analysis transformers are
generated automatically from a concrete operational semantics, plus a specification
of an abstraction (either via the abstraction function (TVLA) or the concretization
function (RHODIUM)).

—RHODIUM uses a heuristic method for creating sound abstract transformers for
parameterized predicate abstraction [Cousot 2003]. Suppose that the meaning of
dataflow fact x, when expressed in logic, is some formula γ̂(x), and that the goal
is to create the abstract transformer for statement S. The RHODIUM method
involves two steps:

44 · J. Lim and T. Reps

—Create the formula ϕx = WLP(S, γ̂(x)), where WLP is the weakest-liberal-
precondition operator.

—Find a Boolean combination ψ[γ̂(D)] of pre-state dataflow facts D that under-
approximates ϕx. That is, if ψ[γ̂(D)] holds in the pre-state, then ϕx must also
hold in the pre-state, and hence γ̂(x) must hold in the post-state.
The abstract transformer is a function that sets the value of x in the post-

state according to whether ψ[γ̂(D)] holds in the pre-state.

—The method for automatically generating abstract transformers used in TVLA

[Reps et al. 2010] is based on finite-differencing of formulas. In TVLA, the ab-
straction in use is defined by a set of so-called “instrumentation predicates”. An
instrumentation predicate captures a property that may be possessed by some
components of a state and thus distinguishes them from other components of
the state. In other words, the set of instrumentation predicates characterizes the
distinctions among elements that are observable in the abstraction.
The problem addressed by Reps et al. [2010] is how to establish the values

of post-state instrumentation predicates after the execution of a statement S.
Instrumentation predicates are defined by formulas, so the defining formula for
a post-state instrumentation predicate p could always be evaluated in the post-
state. However, TVLA is based on three-valued logic, in which a third truth
value, denoted by 1/2, is introduced to indicate uncertainty (or the absence of
information). Evaluating p’s defining formula in the post-state often results in
1/2 values, even for values that were “definite” in the pre-state—i.e., either true
(1) or false (0)—and could not have been affected by S.
To overcome such loss of precision, TVLA uses an incremental-updating ap-

proach: it copies the pre-state values of an instrumentation predicate to the
post-state, and only updates entries that are in the “footprint” of S (which is
generally small). In essence, the role of finite differencing in the TVLA approach
is to identify the effect of S on S’s footprint.

HOIST [Regehr and Reid 2004] also generates abstract transformers from the
concrete semantics of a machine-code language. However, the construction of an
abstract transformer by HOIST is not done by processing the specification sym-
bolically, as in TVLA and RHODIUM. Instead, HOIST accesses the CPU—either a
physical CPU or an emulated one—and runs the instruction on specially selected
inputs; from the results of these tests, an abstract transformer is obtained—first
in the form of a BDD and then as C code. The paper on HOIST reports that it
is “limited to eight-bit machines due to costs exponential in the word size of the
target architecture”.
The use of semantic reinterpretation in TSL as the basis for generating abstract

transformers is what distinguishes our work from TVLA, RHODIUM, and HOIST.
In TSL, we rely on the analysis developer to supply sound reinterpretations of the
basetypes, map-types, and operators of the TSL meta-language. While this require-
ment places an additional burden on developers, once an analysis is developed it
can be used with each instruction set specified in TSL. Moreover,

—the analyses that we support are much more efficient than those that can be
created with TVLA and apply to our intended domain of application (abstract
interpretation of machine code).

TSL: A System for Generating Abstract Interpreters · 45

—some of the analyses that we use, such as ARA-MOS [Müller-Olm and Seidl 2005]
and ARA-KS [Elder et al. 2011], appear to be beyond the power of the transformer-
generation methods developed for use in TVLA, RHODIUM, and HOIST.

7. CONCLUSION

Although essentially all program-analysis techniques described in the literature
are language-independent, analysis implementations are often tied to a particu-
lar language-specific compiler infrastructure. Unlike the situation in source-code
analysis, which can be addressed by developing relatively small common interme-
diate representations, machine-code analysis suffers from the fact that instruction
sets typically have hundreds of instructions and a variety of architecture-specific
features that are incompatible with other architectures. With future computing
platforms based on multi-core architectures and transactional memory, future run-
time environments using just-in-time compiling, future systems providing cloud
computing and autonomic computing, plus cell phones, PDAs, wearable comput-
ers, and autonomous vehicles all entering the fray, both (i) interest in establishing
that security and reliability properties hold for machine code, and (ii) the variety
of computing platforms to analyze will only increase.
To help address these concerns, we have developed improved infrastructure for

analyzing machine code. Our work is embodied in the TSL language—a language
for describing the semantics of an instruction set—as well as in the TSL run-time
system, which supports the creation of a multiplicity of static-analysis, dynamic-
analysis, and symbolic-analysis components.
Using TSL, we developed several applications for analyzing machine-code, in-

cluding a revised version of CodeSurfer/x86 in which all analysis components are
generated from a TSL specification of the IA32 instruction set. The analogous com-
ponents for a CodeSurfer/ppc32 system were generated from a TSL specification of
the PowerPC32 instruction set.
In addition, we were able to create mutually-consistent, correct-by-construction

implementations of symbolic primitives—in particular, quantifier-free, first-order-
logic formulas for (i) symbolic evaluation of a single command, (ii) pre-image with
respect to a single command, and (iii) symbolic composition for a class of formulas
that express state transformations. Using the symbolic-analysis primitives, to-
gether with other TSL-generated abstract-interpretation components, we developed
two analysis tools—MCVETO and BCE—that use logic-based search procedures to
establish properties of machine-code programs.
Our evaluation of TSL in §5 shows that TSL has a number of benefits and relatively

few drawbacks.

Acknowledgments. We are grateful to our collaborators currently or formerly at
Wisconsin—T. Andersen, G. Balakrishnan, E. Driscoll, M. Elder, N. Kidd, A. Lal,
T. Sharma, and A. Thakur—and at GrammaTech, Inc.—T. Teitelbaum, S. Yong,
D. Melski, T. Johnson, D. Gopan, and A. Loginov—for their many contributions
to the project.

REFERENCES

Alt, M. and Martin, F. 1995. Generation of efficient interprocedural analyzers with PAG. In
Static Analysis Symp.

46 · J. Lim and T. Reps

Alur, R. and Madhusudan, P. 2006. Adding nesting structure to words. In Developments in

Lang. Theory.

APRON. APRON numerical abstract domain library. apron.cri.ensmp.fr.

Assmann, U. 2000. Graph rewrite systems for program optimization. Trans. on Prog. Lang. and
Syst. 22, 4.

Balakrishnan, G. 2007. WYSINWYX: What You See Is Not What You eXecute. Ph.D. thesis,
Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI. Tech. Rep. 1603.

Balakrishnan, G., Gruian, R., Reps, T., and Teitelbaum, T. 2005. Codesurfer/x86 – A
platform for analyzing x86 executables, (tool demonstration paper). In Comp. Construct.

Balakrishnan, G. and Reps, T. 2004. Analyzing memory accesses in x86 executables. In Comp.
Construct. 5–23.

Balakrishnan, G. and Reps, T. 2007. DIVINE: DIscovering Variables IN Executables. In Verif.,
Model Checking, and Abs. Interp.

Balakrishnan, G. and Reps, T. 2010. WYSINWYX: What You See Is Not What You eXecute.
Trans. on Prog. Lang. and Syst. 32, 6.

Beckman, N., Nori, A., Rajamani, S., and Simmons, R. 2008. Proofs from tests. In Int. Symp.
on Softw. Testing and Analysis.

Bouajjani, A., Esparza, J., and Touili, T. 2003. A generic approach to the static analysis of
concurrent programs with procedures. In Princ. of Prog. Lang. 62–73.

Brumley, D., Jager, I., Avgerinos, T., and Schwartz, E. 2011. BAP: A binary analysis
platform. In Computer Aided Verif.

Cook, T. A., Franzon, P. D., Harcourt, E. A., and Miller, T. K. 1993. System-level speci-

fication of instruction sets. In DAC.

Cooper, K. and Kennedy, K. 1988. Interprocedural side-effect analysis in linear time. In Prog.
Lang. Design and Impl. 57–66.

Cousot, P. 2003. Verification by abstract interpretation. In Verification: Theory and Practice.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Princ. of Prog. Lang.
238–252.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. In POPL.

Cousot, P. and Cousot, R. 2000. Temporal abstract interpretation. In Princ. of Prog. Lang.
12–25.

Davidson, J. W. and Fraser, C. W. 1984. Code selection through object code optimization. In
TPLS.

Driscoll, E., Thakur, A., and Reps, T. 2012. OpenNWA: A nested-word-automaton library
(tool paper). In Computer Aided Verif.

Dullien, T. and Porst, S. 2009. REIL: A platform-independent intermediate representation of
disassembled code for static code analysis. In CanSecWest.

Elder, M., Lim, J., Sharma, T., Andersen, T., and Reps, T. 2011. Abstract domains of affine
relations. In Static Analysis Symp.

Ferrante, J., Ottenstein, K., and Warren, J. 1987. The program dependence graph and its
use in optimization. Trans. on Prog. Lang. and Syst. 3, 9, 319–349.

Godefroid, P., Klarlund, N., and Sen, K. 2005. DART: Directed automated random testing.
In Prog. Lang. Design and Impl.

Graf, S. and Säıdi, H. 1997. Construction of abstract state graphs with PVS. In Computer
Aided Verif. Lec. Notes in Comp. Sci., vol. 1254. 72–83.

Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., and Rajamani, S. 2006. SYNERGY: A
new algorithm for property checking. In Found. of Softw. Eng.

Harcourt, E., Mauney, J., and Cook, T. 1994. Functional specification and simulation of
instruction set architectures. In PLC.

IA32. IA-32 Intel Architecture Software Developer’s Manual. devel-
oper.intel.com/design/pentiumii/manuals/243191.htm.

TSL: A System for Generating Abstract Interpreters · 47

Johnson, S. 1975. YACC: Yet another compiler-compiler. Tech. Rep. Comp. Sci. Tech. Rep. 32,

Bell Laboratories.

Jones, N., Gomard, C., and Sestoft, P. 1993. Partial Evaluation and Automatic Program
Generation. Prentice-Hall International.

Jones, N. and Mycroft, A. 1986. Data flow analysis of applicative programs using minimal
function graphs. In Princ. of Prog. Lang. 296–306.

Jones, N. and Nielson, F. 1995. Abstract interpretation: A semantics-based tool for program

analysis. In Handbook of Logic in Computer Science, S. Abramsky, D. Gabbay, and T. Maibaum,
Eds. Vol. 4. Oxford Univ. Press, 527–636.

Kästner, D. 2003. TDL: a hardware description language for retargetable postpass optimizations
and analyses. In GPCE.

King, A. and Søndergaard, H. 2010. Automatic abstraction for congruences. In Verif., Model
Checking, and Abs. Interp.

Kodumal, J. and Aiken, A. 2005. Banshee: A scalable constraint-based analysis toolkit. In Static
Analysis Symp.

Lacey, D., Jones, N., Van Wyk, E., and Frederiksen, C. 2004. Compiler optimization cor-
rectness by temporal logic. Higher-Order and Symbolic Computation 17, 3.

Lattner, C. and Adve, V. 2004. LLVM: A compilation framework for lifelong program analysis
& transformation. In Int. Symp. on Code Generation and Optimization.

Lev-Ami, T. and Sagiv, M. 2000. TVLA: A system for implementing static analyses. In Static
Analysis Symp. 280–301.

Lim, J. 2011. Transformer Specification Language: A system for generating analyzers and its
applications. Ph.D. thesis, Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI. Tech. Rep.
1689.

Lim, J., Lal, A., and Reps, T. 2009. Symbolic analysis via semantic reinterpretation. In Spin
Workshop.

Lim, J., Lal, A., and Reps, T. 2011. Symbolic analysis via semantic reinterpretation. Softw.
Tools for Tech. Transfer 13, 1, 61–87.

Lim, J. and Reps, T. 2008. A system for generating static analyzers for machine instructions. In
Comp. Construct.

Lim, J. and Reps, T. 2010. BCE: Extracting botnet commands from bot executables. Tech. Rep.
TR-1668.

Linn, C. and Debray, S. 2003. Obfuscation of executable code to improve resistance to static
disassembly. In CCCS.

Malmkjær, K. 1993. Abstract interpretation of partial-evaluation algorithms. Ph.D. thesis, Dept.
of Comp. and Inf. Sci., Kansas State Univ., Manhattan, Kansas.

Mauborgne, L. and Rival, X. 2005. Trace partitioning in abstract interpretation based static
analyzers. In ESOP.

Mishra, P., Shrivastava, A., and Dutt, N. 2006. Architecture description language: driven
software toolkit generation for architectural exploration of programmable SOCs. TODAES .

Müller-Olm, M. and Seidl, H. 2005. Analysis of modular arithmetic. In European Symp. on
Programming.

Mycroft, A. and Jones, N. 1985. A relational framework for abstract interpretation. In Programs
as Data Objects.

Nielson, F. 1989. Two-level semantics and abstract interpretation. Theor. Comp. Sci. 69, 117–
242.

Nielson, F. and Nielson, H. 1992. Two-Level Functional Languages. Cambridge Univ. Press.

Pees, S.,Hoffmann, A., Zivojnovic, V., andMeyr, H. 1999. LISA machine description language
for cycle-accurate models of programmable DSP architectures. In DAC.

Pettersson, M. 1992. A term pattern-match compiler inspired by finite automata theory. In
CC.

Pleban, U. and Lee, P. 1987. High-level semantics. In Workshop on Mathematical Foundations
of Programming Language Semantics.

48 · J. Lim and T. Reps

PowerPC32. The PowerPC User Instruction Set Architecture.

doi.ieeecs.org/10.1109/MM.1994.363069.

Ramalingam, G., Field, J., and Tip, F. 1999. Aggregate structure identification and its appli-
cation to program analysis. In POPL.

Ramsey, N. and Davidson, J. 1999. Specifying instructions’ semantics using λ-RTL. Unpublished

manuscript.

Ramsey, N. and Ferandez, M. F. 1994. New Jersey machine-code toolkit arch. spec. technical
report. Tech. Rep. TR-470-94.

Regehr, J. and Reid, A. 2004. HOIST: A system for automatically deriving static analyzers for
embedded systems. In Architectural Support for Prog. Lang. and Op. Syst.

Reps, T., Balakrishnan, G., and Lim, J. 2006. Intermediate-representation recovery from low-
level code. In Part. Eval. and Semantics-Based Prog. Manip.

Reps, T., Lim, J., Thakur, A., Balakrishnan, G., and Lal, A. 2010. There’s plenty of room
at the bottom: Analyzing and verifying machine code. In Computer Aided Verif.

Reps, T., Sagiv, M., and Loginov, A. 2010. Finite differencing of logical formulas for static
analysis. Trans. on Prog. Lang. and Syst. 6, 32.

Reps, T., Sagiv, M., and Yorsh, G. 2004. Symbolic implementation of the best transformer. In
Verif., Model Checking, and Abs. Interp. 252–266.

Reps, T., Schwoon, S., Jha, S., and Melski, D. 2005. Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. of Comp. Prog. 58, 1–2 (Oct.), 206–263.

Scherpelz, E., Lerner, S., and Chambers, C. 2007. Automatic inference of optimizer flow
functions from semantics meanings. In PLDI.

Schmidt, D. 1986. Denotational Semantics. Allyn and Bacon, Inc., Boston, MA.

Schmidt, D. 1998. Data-flow analysis is model checking of abstract interpretations. In Princ. of
Prog. Lang. 38–48.

Sharir, M. and Pnueli, A. 1981. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications. Prentice-Hall.

Siewiorek, D., Bell, G., and Newell, A. 1982. Computer Structures: Principles and Examples.
Springer-Verlag.

Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M., Liang, Z., Newsome,

J., Poosankam, P., and Saxena, P. 2008. BitBlaze: A new approach to computer security via
binary analysis. In ICISS.

SOOT. SOOT: A Java optimization framework. www.sable.mcgill.ca/soot/.

Steffen, B. 1991. Data flow analysis as model checking. In Theor. Aspects of Comp. Softw. Lec.
Notes in Comp. Sci., vol. 526. Springer-Verlag, 346–365.

Steffen, B. 1993. Generating data flow analysis algorithms from modal specifications. Sci. of
Comp. Prog. 21, 2, 115–139.

Thakur, A., Elder, M., and Reps, T. 2012. Bilateral algorithms for symbolic abstraction. In
Static Analysis Symp.

Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T., and Reps,

T. 2010. Directed proof generation for machine code. In Computer Aided Verif.

Thakur, A. and Reps, T. 2012. A method for symbolic computation of abstract operations. In
Computer Aided Verif.

Tjiang, S. and Hennessy, J. 1992. Sharlit: A tool for building optimizers. In Prog. Lang. Design
and Impl.

Venkatesh, G. 1989. A framework for construction and evaluation of high-level specifications for
program analysis techniques. In Prog. Lang. Design and Impl.

Venkatesh, G. and Fischer, C. 1992. SPARE: A development environment for program analysis
algorithms. Trans. on Softw. Eng. 18, 4.

Wadler, P. 1987. Efficient compilation of pattern-matching. The Impl. of Func. Prog. Lang..

WALA. WALA. wala.sourceforge.net/wiki/index.php/.

WALi 2007. WALi: The Weighted Automaton Library.
www.cs.wisc.edu/wpis/wpds/download.php.

TSL: A System for Generating Abstract Interpreters · 49

Whaley, J., Avots, D., Carbin, M., and Lam, M. 2005. Using Datalog with Binary Decision

Diagrams for program analysis. In Asian Symp. on Prog. Lang. and Systems.

Wilhelm, R. 1981. Global flow analysis and optimization in MUG2 the compiler generating
system. In Program Flow Analysis: Theory and Applications. Prentice-Hall.

Wilson, R., French, R., Wilson, C., Amarasinghe, S., Anderson, J.-A., Tjiang, S., Liao,
S.-W., Tseng, C.-W., Hall, M., Lam, M., and Hennessy, J. 1994. SUIF: An infrastructure
for research on parallelizing and optimizing compilers. SIGPLAN Notices 29, 12.

WPDS++ 2004. WPDS++: A C++ library for Weighted Pushdown Systems.
“http://www.cs.wisc.edu/wpis/wpds++”.

Yi, K. and Harrison, III, W. 1993. Automatic generation and management of interprocedural
program analyses. In Princ. of Prog. Lang.

