
October 30, 2003 CCS 2003 - Vinod Ganapathy 1

Buffer Overrun Detection using Linear
Programming and Static Analysis

Vinod Ganapathy, Somesh Jha
{vg,jha}@cs.wisc.edu

University of Wisconsin-Madison

David Chandler, David Melski, David Vitek
{chandler,melski,dvitek}@grammatech.com

Grammatech Inc., Ithaca, New York

October 30, 2003 CCS 2003 - Vinod Ganapathy 2

The Problem: Buffer Overflows

• Highly exploited class of vulnerabilities
– Legacy programs in C are still vulnerable
– “Safe” functions can be used unsafely

• Need:
– Automatic techniques that will assure

code is safe before it is deployed

October 30, 2003 CCS 2003 - Vinod Ganapathy 3

The Solution

• Use static program analysis
• Produce a list of possibly vulnerable

program locations
• Couple buffer overrun warnings with code

understanding techniques

Source
Code

Source
Code

Possible
Buffer

Overruns

Possible
Buffer

Overruns

Static Analysis

Code Understanding

October 30, 2003 CCS 2003 - Vinod Ganapathy 4

Our Contributions

• Program Analysis:
– Incorporated buffer overrun detection

in a program understanding tool
• Program slicing, Data predecessors,…

– Use of procedure summaries to make
buffer overrun analysis context-
sensitive

• Constraint Resolution:
– Use of linear programming to solve a

range analysis problem

October 30, 2003 CCS 2003 - Vinod Ganapathy 5

Roadmap of Talk

• Tool Architecture
– Constraint Generation
– Constraint Resolution
– Producing Warnings

• Adding Context Sensitivity
• Results
• Future work and Conclusions

October 30, 2003 CCS 2003 - Vinod Ganapathy 6

Tool Architecture

C Source
Code

CFGs, PDGs,
SDG

Buffer
Overrun
Warnings

Linear
Constraints

Ranges
for

Variables

Linear
Constraints

CodeSurfer
Constraint
Generator

Taint
Analyzer

Constraint
Solver

Detection
Front-End

October 30, 2003 CCS 2003 - Vinod Ganapathy 7

CodeSurfer

C Source
Code

CFGs, PDGs,
SDG

Buffer
Overrun
Warnings

Linear
Constraints

Ranges
for

Variables

Linear
Constraints

CodeSurfer
Constraint
Generator

Taint
Analyzer

Constraint
Solver

Detection
Front-End

October 30, 2003 CCS 2003 - Vinod Ganapathy 8

CodeSurfer
• Commercial tool from Grammatech Inc.
• Code understanding framework

– Inter-procedural slicing, chopping…
• Internally constructs:

– Control Flow Graph (CFG)
– Program Dependence Graphs (PDG)
– System Dependence Graph (SDG)

• Incorporates results of pointer analysis
– Helps reduce the number of warnings

October 30, 2003 CCS 2003 - Vinod Ganapathy 9

The Role of CodeSurfer
• Program Analysis Framework:

– Use internal data structures to generate
constraints

• Detection Front-end:
– Link each warning to corresponding lines

of source code through the System
Dependence Graph

– Interactive front-end

October 30, 2003 CCS 2003 - Vinod Ganapathy 10

Constraint Generation

C Source
Code

CFGs, PDGs,
SDG

Buffer
Overrun
Warnings

Linear
Constraints

Ranges
for

Variables

Linear
Constraints

CodeSurfer
Constraint
Generator

Taint
Analyzer

Constraint
Solver

Detection
Front-End

October 30, 2003 CCS 2003 - Vinod Ganapathy 11

Constraint Generation

• Four kinds of program points result in
constraints:
– Declarations
– Assignments
– Function Calls
– Function Return

October 30, 2003 CCS 2003 - Vinod Ganapathy 12

Constraint Generation

• Four variables for each string buffer
buf_len_max, buf_len_min

buf_alloc_max, buf_alloc_min

• Operations on a buffer
strcpy (tgt, src)
tgt_len_max ≥ src_len_max

tgt_len_min ≤ src_len_min

October 30, 2003 CCS 2003 - Vinod Ganapathy 13

Constraint Generation
if(…)

strcpy(tgt, srcA)

strcpy(tgt, srcB)

tgt_len_max ≥ srcA_len_max
tgt_len_min ≤ srcA_len_min

tgt_len_max ≥ srcB_len_max
tgt_len_min ≤ srcB_len_min

October 30, 2003 CCS 2003 - Vinod Ganapathy 14

Constraint Generation Methods
• Order of statements:

– Flow-Sensitive Analysis:
• Respects program order

– Flow-Insensitive Analysis:
• Does not respect program order

• Function Calls:
– Context-Sensitive modeling of functions:

• Respects the call-return semantics
– Context-Insensitive modeling of functions:

• Ignores call-return semantics => imprecise

October 30, 2003 CCS 2003 - Vinod Ganapathy 15

Constraint Generation

• Constraints generated by our tool:
– Flow-insensitive
– Context-sensitive for some library functions
– Partly Context-sensitive for user defined

function
• Procedure summaries

October 30, 2003 CCS 2003 - Vinod Ganapathy 16

Taint Analysis

C Source
Code

CFGs, PDGs,
SDG

Buffer
Overrun
Warnings

Linear
Constraints

Ranges
for

Variables

Linear
Constraints

CodeSurfer
Constraint
Generator

Taint
Analyzer

Constraint
Solver

Detection
Front-End

October 30, 2003 CCS 2003 - Vinod Ganapathy 17

Taint Analysis

• Removes un-initialized constraint
variables
– Un-modeled library calls
– Un-initialized program variables

• Required for solvers to function
correctly

October 30, 2003 CCS 2003 - Vinod Ganapathy 18

Constraint Solvers

C Source
Code

CFGs, PDGs,
SDG

Buffer
Overrun
Warnings

Linear
Constraints

Ranges
for

Variables

Linear
Constraints

CodeSurfer
Constraint
Generator

Taint
Analyzer

Constraint
Solver

Detection
Front-End

October 30, 2003 CCS 2003 - Vinod Ganapathy 19

Constraint Solvers

• Abstract problem:
– Given a set of constraints on max and
min variables

– Get tightest possible fit satisfying all
the constraints

• Our approach:
– Model and solve as a linear program

October 30, 2003 CCS 2003 - Vinod Ganapathy 20

Constraint Solvers

• We have developed two solvers:
– Vanilla solver
– Hierarchical solver

Speed of
Analysis

Precision of results

slow

fast

low high

Vanilla

Hierarchical

October 30, 2003 CCS 2003 - Vinod Ganapathy 21

Linear Programming

• An objective function F
• Subject to: A set of constraints C
• Example:

Maximize: x

Subject to:
X <= 3

October 30, 2003 CCS 2003 - Vinod Ganapathy 22

Why Linear Programming?

• Can support arbitrary linear constraints
• Commercial linear program solvers are

highly optimized and fast
• Use of linear programming duality for

diagnostics
– Can be used to produce a “witness” trace

leading to the statement causing the
buffer overrun

October 30, 2003 CCS 2003 - Vinod Ganapathy 23

Vanilla Constraint Solver
• Goal: Obtain values for buffer bounds
• Modeling as a Linear Program

Minimize: max variable
Subject to:

Set of Constraints

And
Maximize: min variable
Subject to:

Set of Constraints

Least Upper Bound

Greatest Lower Bound

Tightest possible fit

October 30, 2003 CCS 2003 - Vinod Ganapathy 24

Vanilla Constraint Solver

• However, it can be shown that:
Min: Σ (max vars) – Σ(min vars)
Subject to: Set of Constraints

yields the same solution for each variable

• Solve just one Linear Program and get
values for all variables!

October 30, 2003 CCS 2003 - Vinod Ganapathy 25

Vanilla Constraint Solver

• Why is this method imprecise?
– Infeasible linear programs
– Why do such linear programs arise?

• Deals with infeasibility using an
approximation algorithm

• See paper for details

October 30, 2003 CCS 2003 - Vinod Ganapathy 26

Detection Front-End

C Source
Code

CFGs, PDGs,
SDG

Buffer
Overrun
Warnings

Linear
Constraints

Ranges
for

Variables

Linear
Constraints

CodeSurfer
Constraint
Generator

Taint
Analyzer

Constraint
Solver

Detection
Front-End

October 30, 2003 CCS 2003 - Vinod Ganapathy 27

Detection Front-End

0 1

buf_alloc_min

buf_len_max

Scenario I: ‘’Possible’’ buffer overflow

October 30, 2003 CCS 2003 - Vinod Ganapathy 28

Detection Front-End

0 1

buf_alloc_min

buf_len_max

Scenario II: Sure buffer overflow

October 30, 2003 CCS 2003 - Vinod Ganapathy 29

Roadmap of Talk

• Tool Architecture
– Constraint Generation
– Constraint Resolution
– Producing Warnings

• Adding Context Sensitivity
• Results
• Future work and Conclusions

October 30, 2003 CCS 2003 - Vinod Ganapathy 30

Context-Insensitive Analysis

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

October 30, 2003 CCS 2003 - Vinod Ganapathy 31

Context-Insensitive Analysis

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

October 30, 2003 CCS 2003 - Vinod Ganapathy 32

Context-Insensitive Analysis

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

October 30, 2003 CCS 2003 - Vinod Ganapathy 33

Context-Insensitive Analysis

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}
False Path

Result: x = y = [6..31]

October 30, 2003 CCS 2003 - Vinod Ganapathy 34

Adding Context Sensitivity

• Make user functions context-sensitive
– e.g. wrappers around library calls

• Inefficient method: Constraint inlining
☺ Can separate calling contexts
/ Large number of constraint variables
/ Cannot support recursion

October 30, 2003 CCS 2003 - Vinod Ganapathy 35

Adding Context Sensitivity

• Efficient method: Procedure summaries
• Basic Idea:

– Summarize the called procedure
– Insert the summary at the call-site in

the caller
– Remove false paths

October 30, 2003 CCS 2003 - Vinod Ganapathy 36

Adding Context Sensitivity

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

October 30, 2003 CCS 2003 - Vinod Ganapathy 37

Adding Context Sensitivity

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}
Summary: i = z + 1

x = 5 + 1 y = 30 + 1

October 30, 2003 CCS 2003 - Vinod Ganapathy 38

Adding Context Sensitivity

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

Jump Functions

October 30, 2003 CCS 2003 - Vinod Ganapathy 39

Adding Context Sensitivity

foo () { bar () {
int x; int y;
x = foobar(5); y = foobar(30);

} }

int foobar (int z) {
int i;
i = z + 1;
return i;

}

No false paths ☺
x = [6..6]

y = [31..31]
i = [6..31]

October 30, 2003 CCS 2003 - Vinod Ganapathy 40

Adding Context Sensitivity

• Computing procedure summaries:
– In most cases, reduces to a shortest

path problem
– Other cases, Fourier-Motzkin variable

elimination

October 30, 2003 CCS 2003 - Vinod Ganapathy 41

Roadmap of Talk

• Tool Architecture
– Constraint Generation
– Constraint Resolution
– Producing Warnings

• Adding Context Sensitivity
• Results
• Future work and Conclusions

October 30, 2003 CCS 2003 - Vinod Ganapathy 42

Results: Overruns Identified

453

295

178

139

Warnings

Yes, but…CA-2003-0768000Sendmail-8.11.6

YesIdentified by
Wagner et al.38000Sendmail-8.7.6

14 NewNone18000WU-FTPD-2.6.2

YesCA-1999-1316000WU-FTPD-2.5.0

Detected?VulnerabilityLOCApplication

October 30, 2003 CCS 2003 - Vinod Ganapathy 43

Results: Context Sensitivity

• WU-FTPD-2.6.2: 7310 ranges identified
• Constraint Inlining:

– 5.8x number of constraints
– 8.7x number of constraint variables
– 406 ranges refined in at least one calling

context
• Function Summaries:

– 72 ranges refined

October 30, 2003 CCS 2003 - Vinod Ganapathy 44

Roadmap of Talk

• Tool Architecture
– Constraint Generation
– Constraint Resolution
– Producing Warnings

• Adding Context Sensitivity
• Results
• Future work and Conclusions

October 30, 2003 CCS 2003 - Vinod Ganapathy 45

Conclusions
• Built a tool to detect buffer overruns
• Incorporated in a program understanding

framework
• Current work:

– Adding Flow Sensitivity
– Reducing the number of false warnings while

still maintaining scalability

October 30, 2003 CCS 2003 - Vinod Ganapathy 46

Buffer Overrun Detection using Linear
Programming and Static Analysis

Vinod Ganapathy, Somesh Jha
{vg,jha}@cs.wisc.edu

University of Wisconsin-Madison

David Chandler, David Melski, David Vitek
{chandler,melski,dvitek}@grammatech.com

Grammatech Inc., Ithaca, New York

