
Appears in Second Annual Security-enhanced Linux Symposium, Baltimore, MD, March 2006

Towards Automated Authorization Policy Enforcement

Vinod Ganapathy
Univ. of Wisconsin-Madison

vg@cs.wisc.edu

Trent Jaeger
Pennsylvania State Univ.

tjaeger@cse.psu.edu

Somesh Jha
Univ. of Wisconsin-Madison
jha@cs.wisc.edu

Abstract
In systems with shared resources, authorization pol-

icy enforcement ensures that these resources are acces-
sible only to users who are allowed to do so. Recently,
there is growing interest to (i) extend authorization policy
enforcement mechanisms provided by the operating sys-
tem, and (ii) enable user-space servers to enforce autho-
rization policies on their clients. A popular mechanism
for authorization policy enforcement retrofits the code to
be secured withhooksto a reference monitor. This is the
basis for the Linux security modules (LSM) framework,
and is also the intended usage of the recently-released
security-enhanced Linux policy management framework
for user-space servers. Unfortunately, reference monitor
hooks are currently placed manually in operating sys-
tem and user-space server code. This approach is te-
dious, does not scale, and as prior work has shown in
the context of LSM, is error-prone. Our research is on
techniques to largely automate authorization hook place-
ment. We have devised a technique to do so, and have
tested its effectiveness by applying it to determine hook
placement for the Linux kernel, and cross-validating it
with LSM hook placement. Our initial results are en-
couraging, and we have extended our technique to work
with user-space servers. In particular, we have applied
the technique to determine authorization hook placement
for the X11 server.

1 Motivation

The goal of an authorization framework is to ensure
that security-sensitive operations on system resources are
only performed by users who are permitted to do so by
the site-specific authorization policy. A popular architec-
ture for constructing an authorization framework uses a
reference monitor, which encapsulates the authorization
policy to be enforced. The system to be secured poses
an authorization query to the reference monitor before it
performs a security-sensitive operation—it performs the
operation only if the authorization query succeeds.

This architecture has been adopted by Linux secu-
rity modules (LSM) [7], a flexible framework which al-
lows diverse authorization policies to be enforced by the
Linux kernel. LSM hooks are now available as part of
the Linux-2.6 kernel, and these hooks have also formed
the basis for the implementation of SELinux. In LSM,
the reference monitor is implemented as a loadable ker-
nel module, andauthorization hooksare placed at ap-
propriate locations in the kernel. These hooks define the
interface (the API) of the reference monitor, and each
hook call poses an authorization query to the reference
monitor.

Authorization policy enforcement mechanisms have
traditionally been confined to the operating system.
However, recently, there is growing interest to retrofit
user-space servers with the ability to enforce authoriza-
tion policies via reference monitoring. The reason is that
user-space servers, such as X Windows, web-servers, and
middle-ware, offer shared resources, such as buffers and
caches, to their clients, and manage multiple clients si-
multaneously. Thus, it is paramount to protect these
shared resources from unauthorized access. For exam-
ple, in the X server, the cut-buffer is shared between
X clients. Suppose the X server runs on a machine ca-
pable of enforcing multi-level security (MLS), then the
X clients will also have associated security-labels, such
asTop-SecretandUnclassified. To enforce end-to-end
security, the X server may wish to enforce an authoriza-
tion policy on its X clients; for instance, it may wish to
ensure that a “cut” operation from aTop-Secretwindow
can never be followed by a “paste” operation into anUn-
classifiedwindow. In fact, efforts are underway to se-
cure the X server using a reference monitor-based archi-
tecture [5, 9]. The recent release of the SELinux pol-
icy management server [8] is intended to enable devel-
opment of authorization policies in the SELinux policy
language for any user-space application that would ben-
efit. As with LSM, this policy management server pro-
vides answers to authorization queries, and authorization
hooks are to be placed at appropriate locations within the

1



Appears in Second Annual Security-enhanced Linux Symposium, Baltimore, MD, March 2006

user-space server.
Unfortunately, there is little work on systematic tech-

niques to place authorization hooks. Instead, placement
is often decided manually and informally. This process
suffers from two drawbacks:
• Does not scale.The process of placing hooks for the
Linux kernel (in the context of LSM) was an iterative,
time-consuming process. Clearly, it is tedious to repeat
this process for each user-space server that needs to be
retrofitted for reference monitoring. Automated solu-
tions to determine hook placement are desirable.
• Is prone to security-holes.Prior research has shown se-
curity holes due to improper hook placement in the Linux
kernel. Zhanget al. [10] demonstrate that inadequate
placement of hooks results in security-sensitive opera-
tions being performed without the appropriate authoriza-
tion query being posed to the reference monitor. Jaeger
et al.[4] also demonstrate similar bugs by comparing the
consistency of hook placements along different program
paths. These bugs are potentially exploitable.

Our research is ontechniques to largely automate
placement of authorization hooks. We have developed
a program analysis-based technique to do so, and have
conducted two case studies. Our first study was to study
the effectiveness of our algorithms by reproducing hook
placement in LSM [1]. Because the (manual) hook
placement in LSM has been extensively-verified, this en-
ables us to evaluate the effectiveness of our technique.
As we will show, our results with this study were encour-
aging. In recent work we have enhanced our technique,
and have used it to determine authorization hook place-
ment for the X11 server [2].

2 Benefits to the SELinux Community

We believe that our technique benefits the SELinux com-
munity in two ways:
• Enables hook placement in user-space servers.Our
technique uses a combination of static and dynamic pro-
gram analysis to determine where a user-space server
performs security-sensitive operations. These locations
are then retrofitted with hooks to a reference monitor.
Because our technique is largely automated, it can sig-
nificantly reduce the turnaround time of hook placement.
For example, it took us about a week to use our tech-
nique to reconstruct the placement of file-system and net-
working hooks for the LSM framework (with fairly good
precision). We have further refined the basic technique,
and with these refinements, we were able to determine
placement of hooks to protectWindow operations in the
X server in a few hours.
• Can be used for verification.While the focus of our
work is to develop techniques to determine authorization
hook placement for user-space servers, our technique can
be adapted for verification as well. Thus, for code with
authorization hooks placed, such as LSM, our technique

can be used to verify existing placement by comparing it
against the placement produced by our technique.

3 Overview of our Technique

We present a high-level, informal overview of our tech-
nique, and refer the interested reader to [1, 2] for de-
tails. Our technique proceeds in six steps, as shown in
Fig. 1. Where applicable, we illustrate the technique us-
ing an examples from the X server and the Linux kernel.
In the discussion below, we will denote the server to be
retrofitted with authorization hooks byX (if the kernel is
being retrofitted, thenX refers to the kernel).
Step 1: Find security-sensitive operations to be pro-
tected.The first step is to determine the set of resources
of the serverX accesses to which must be controlled by
an authorization policy. We refer to the operations that
can be performed on these resources assecurity-sensitive
operations. In our work so far, we have relied on man-
ual identification of security-sensitive operations. In cur-
rent work, we are investigating heuristics to automati-
cally identify security-sensitive operations as well.

Manual identification of security-sensitive operations
proceeds typically by considering a wide range of poli-
cies thatX must enforce, and determining the set of
security-sensitive operations based upon these policies.

For instance, about500 security-sensitive operations
were manually identified for the Linux kernel [6], and
59 security-sensitive operations were manually identi-
fied for the X server [5]. In the rest of this paper, we
will represent these operations usingsans-serif font
as Resource Operation. For example, in the case
of Linux, shared resources included files, directories,
sockets, and so on, and the security-sensitive operations
identified for Linux includedFile Write, File Read,
File Execute, Dir Rmdir, Dir Mkdir, Socket Create
and Socket Listen, each with their intuitive mean-
ings. Similarly, for the X server, shared resources in-
cludeWindows, Fonts andDrawables, and include
security-sensitive operations such asWindow Create,
Window Map, andWindow Enumerate.

In the case of both the Linux kernel and the X server,
a design team (at NSA) manually identified the set of
security-sensitive operations. These security-sensitive
operations are often only accompanied by an infor-
mal English-language description of their meaning (as
in [6, 5]), and a precise code-level description is often
not given.

One of our main contributions is in formalizing
security-sensitive operations using code-level descrip-
tions. That is, we characterize security-sensitive op-
erations by the actual code-templates (also referred to
as code-patterns), that are responsible for the security-
sensitive operation. This is formalized in step 2.
Step 2: Infer root-cause of security-sensitive oper-
ations. The second step is to identify theroot-cause

2



Appears in Second Annual Security-enhanced Linux Symposium, Baltimore, MD, March 2006

Generate
reference
monitor

Security−sensitive

protected
operations to be

monitor code
Reference

1 2 3 4

5

6

operations
sec−sens.
Locate

root−causes
Find locs

sens.
sec.

causes
Root

server
Instr.Identify

sec.−sens.
operations

Instrument
legacy code monitor

reference
Link with Retrofitted

ALPENAID

.

Legacy code

code

Figure 1: Steps involved in retrofitting a server for authori zation policy enforcement.

of each security-sensitive operation. The root-cause of
a security-sensitive operation is defined as the code-
level constructs thatmustbe executed for the security-
sensitive operation to be performed. Formally, each
root-cause is expressed as a conjunction of severalcode-
patterns, which represent code-level constructs in terms
of their abstract-syntax-trees (ASTs). Instead of pre-
senting a formal definition of code-patterns and root-
causes (which can be found in [2]), we present a two
examples—further examples are available in [3]:
• The security-sensitive operationDir Write in the
Linux kernel denotes a write operation to a directory. Its
root-cause is identified asSET inode->i ctime ∧
CALL address space ops->prepare write().
The intuition is that writing to a directory usually in-
volves adding new content to the data structures
that store directory content (achieved via the call to
prepare write()), followed by setting the change
time (fieldi ctime of the directory’s inode).
• The operationWindow Map in the X server, corre-
sponding to mapping an X client window to the screen, is
characterized bySET xEvent->union->type TO
MapRequest ∧ SET xEvent->union->type TO
MapNotify. This intuitively corresponds to an X client
request to the X server for mapping a window, followed
by a notification by the server that the operation was suc-
cessful.

For our initial case study, that of placing authoriza-
tion hooks in Linux, we wrote these root-causes manu-
ally. While it was fairly easy to write root-causes—we
wrote about100 in a week corresponding to security-
sensitive operations related to the file-system and net-
working subsystem—it was clear that that an automated
technique was needed if this approach is to scale for user-
space servers. The key challenge is to automatically re-
cover the association between security-sensitive opera-
tions, and the code-patterns that are their root-causes.

A key observation helps us achieve this goal. It is that
each security-sensitive operation is typically associated
with a tangible side-effect. For example, the security-

sensitive operationDir Write in the Linux kernel typi-
cally corresponds to changed directory contents. Simi-
larly, the security-sensitive operationWindow Map i n
the X server results in an X client window being mapped
to the screen. Thus, if we induce the server to perform the
tangible side-effect associated with a security-sensitive
operation, and trace the server as we do so, the code-
patterns that characterize the security-sensitive operation
mustbe in the trace.

However, program traces are typically long, and it is
still challenging to identify the code-patterns that char-
acterize a security-sensitive operation from several thou-
sand entries in the program trace. We have developed a
technique (the details of which are in [2]) to compare
program traces corresponding to different side-effects,
and reduce the portion of the trace that must be exam-
ined to determine root-causes.

Using this technique identifying root-causes reduces
to studying fewer than10 entries, on average, in a
program trace. We have applied this technique to
determine root-causes of security-sensitive operations
on the Window data structure in the X server, and
have automatically and precisely identified the root-
causes of these operations. For example, the root-cause
of Window Map, discussed earlier, was automatically
identified by our technique.

Step 3: Find all locations which are security-
sensitive. Finding root-causes of security-sensitive op-
erations alone does not suffice—we must also find
all locations in the code of the server where these
operations may potentially be performed. The third
step uses the results of root-cause analysis to stati-
cally identify all locations in the server where code-
patterns that characterize a security-sensitive operation
occurs; each of these locations performs the opera-
tion. Consider Fig. 2, which shows a snippet of code
from MapSubWindows, a function in the X server.
It contains writes ofMapRequest and MapNotify
to event.u.u.type, as well as a traversal of the
children of the window pointerpParent. A call

3



Appears in Second Annual Security-enhanced Linux Symposium, Baltimore, MD, March 2006

to the functionMapSubWindows performs, in addi-
tion to Window Map, the security-sensitive operation
Window Enumerate, corresponding to enumeration of
child windows. We automatically identify the set of
security-sensitive operations performed by each function
call using a static analysis algorithm, which searches the
code of the server for the code-patterns in the root-cause
of a security-sensitive operation.

MapSubWindows(pParent, pClient) {
pWin = pParent->firstChild;
for (;pWin; pWin = pWin->nextSib)
{ event.u.u.type = MapRequest;...
event.u.u.type = MapNotify;...

} }

Figure 2: MapSubWindows

In addition to identifying the locations where security-
sensitive operations occur, in this step we also use heuris-
tics to identify the subject and object associated with
the operation. To do so, we identify the variables cor-
responding to subject and object data types (such as
Client andWindow) in scope. In most cases, this
heuristic precisely identifies the subject and the object.
In Fig. 2, the subject is the client requesting the oper-
ation (pClient), and the object is the window whose
children are to be mapped (pParent), both of which
are parameters ofMapSubWindows, and are in scope.

Steps 2 and 3 together identify all locations where the
server performs security-sensitive operations, and at each
location, also help identify the subject and object associ-
ated with the operation. We have implemented a proto-
type tool, called AID, that performs these steps.
Step 4: Instrument the server. Having identified all
locations where security-sensitive operations are per-
formed, the server can be retrofitted by inserting calls to a
reference monitor at these locations, to achieve complete
mediation. Note that if AID determines that a statement
Stmt is security-sensitive, it also identifies thesecurity-
eventthat it generates. A security-event is a triple〈sub,
obj, op〉, denoting the subjectsub requesting operation
op to be performed on objectobj. A statementStmt
that generates the security event〈sub, obj, op〉 is instru-
mented as shown below.

if (query refmon(〈sub, obj, op〉) == False)
then handle failure; else Stmt;

The statementhandle failure can be used by the
server to take suitable action against the offending client,
either by terminating the client, or by auditing the failed
request. Authorization policies are typically expressed in
terms of security-labels of subjects and objects. Security-
labels can be stored in a table within the reference mon-
itor (generated in step 5), or alternately, with data struc-
tures used by the server to represent subjects and objects.
The latter technique is used by LSM, which adds fields

to kernel data structures such asinodes andsockets
to store security-labels. The same technique can also
be used with user-space servers. For example, in the
X server, extra fields can be added to theClient and
Window data structures to store security-labels. Because
we pass both the subject and the object to the reference
monitor usingquery refmon, the reference monitor
can lookup the corresponding security-labels, and con-
sult the policy.
Step 5: Generate reference monitor code.This step
generates code for thequery refmon function. We
generate a template for this function, omitting two details
that must be filled-in manually by a developer. First, the
developer must specify how the policy is to be consulted.
We do not constrain the authorization policy language to
be used, and the developer can choose a policy language
and a policy management framework of his choice. For
example, the Tresys SELinux policy management frame-
work can be used [8].

Second, he must specify how the security-labels of
subjects and objects change in response to an autho-
rization request. For example, in the X server, when
a security-event〈pClient, pWin, Window Create〉
succeeds, corresponding to creation of a new window,
the security-label ofpWin, the newly-created window,
must be initialized appropriately. Similarly, a security-
event which copies data frompWin1 to pWin2 may en-
tail updating the security-label ofpWin2.

Because security-labels are either stored as a table
within the reference monitor, or as fields of subject or
object data structures, as described earlier, the developer
must modify these data structures appropriately to update
security-labels. Note that while steps 2-4 are policy inde-
pendent, step 5 requires knowledge that depends on the
specific policy to be enforced. Steps 4 and 5 together en-
sure complete mediation of security-sensitive operations
identified by AID: we have prototyped these steps in a
tool called ALPEN (see Fig. 1). While we have not yet
designed ALPEN to generate code that can be used with
Tresys’ SELinux policy management server, we intend
to do so in the near future.
Step 6: Link the modified server and reference mon-
itor. The last step involves linking the retrofitted server
and the reference monitor code to create an executable
that can enforce authorization policies.

A noteworthy feature of our approach is its modular-
ity. In particular, alternate implementations of root-cause
analysis and instrumentation can be used in place of AID

and ALPEN, respectively. Thus, our technique benefits
directly from improved algorithms for these tasks.

4 Case Studies

To understand the effectiveness of our approach, we have
conducted two case studies. Our first case study was per-
formed with the Linux-2.4 kernel. Our goal here was to

4



Appears in Second Annual Security-enhanced Linux Symposium, Baltimore, MD, March 2006

Hook Cat. Num. Locs. False Pos. False Neg.
inode (26) 40 13 4
socket (12) 12 4 0

Figure 3: Results of hook placement using
our technique. False positives count locations
where our technique places an extra hook, while
false negatives count locations with missing
hooks.

reproduce, as closely as possible, the hook placement in
LSM. The reason we chose version2.4 of the kernel (in-
stead of version2.6) was because hooks are not placed
by default in version2.4, thus allowing us to objectively
evaluate the precision of our technique. As mentioned
earlier, for this study, we wrote root-causes for security-
sensitive operations manually. However, we soon real-
ized that this approach would not scale to user-space ap-
plications. Thus, we designed an automated technique to
identify root-causes, as discussed in step 3 of§3. Our
second case study used automated root-cause finding to
determine hook placement for the X11 server. We dis-
cuss preliminary results from both case studies below.

4.1 Placing hooks in the Linux kernel

To study the effectiveness of our technique, we evaluated
the precision with which it determines hook placement
in the file system and the networking subsystem of the
Linux-2.4 kernel. Fig. 3 presents the results of our study.

The LSM framework places149 distinct hooks at248

locations in the Linux-2.4 kernel. Of these,26 are in-
ode hooks placed40 locations in the kernel, while12

are socket hooks, and are placed at12 locations in the
kernel. Fig. 3 compares the results produced by our au-
tomated technique against manually placed hooks in the
LSM framework. It shows bothfalse positivesas well
asfalse negativesthat were generated by our technique.
A false positive corresponds to a location in the kernel
where our technique places an extra authorization hook
as compared to the LSM hook placement. False posi-
tives are undesirable because they result in extra autho-
rization, potentially (wrongly) denying a user access to a
resource. False negatives result in missed authorization
checks, and are potentially causes of security holes. Our
technique produced13 false positives and4 false neg-
atives for inode hooks and4 false positives for socket
hooks.

As mentioned earlier, we wrote root-causes manually
for security-sensitive operations in the Linux kernel. We
are encouraged by the results in Fig. 3 because they were
obtained using about100 root-causes that we wrote in
just a week. We have since enhanced our technique to
automate the process of writing root-causes.

4.2 Placing hooks in the X server

Our second case study was to place hooks in the X server.
Note that others [5, 9] have also made similar efforts.
However, our goal was to automate the process as much
as possible. We have so far focused on placing hooks for
security-sensitive operations on theWindow data struc-
ture. The NSA [5] has identified59 security-sensitive
operations for the X server, of which22 are related to
Windows. We were able to precisely identify the root-
causes for18 of the22 security-sensitive operations us-
ing our automated root-cause-finding algorithm.

Using AID and ALPEN we have placed hooks to pro-
tect security-sensitiveWindow operations. We have
tested the efficacy of our technique by writing policies
to prevent a few attacks. For example, we have written
a policy to prevent an unauthorized X client from setting
properties belonging to another X client. Similarly, we
have also written a policy to prevent information leakage
via an unauthorized “cut-and-paste” operation.

As mentioned earlier, our policies are not yet written
in the SELinux policy language. In future work, we in-
tend to integrate our technique to work with the SELinux
policy management server, thus enabling enforcement of
policies written in the SELinux policy language.

References

[1] V. Ganapathy, T. Jaeger, and S. Jha. Automatic place-
ment of authorization hooks in the Linux security mod-
ules framework. In12th ACM CCS, Nov 2005.

[2] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy
code for authorization policy enforcement. Technical Re-
port 1544, Univ. of Wisconsin, Nov 2005.

[3] www.cs.wisc.edu/∼vg/papers/ccs2005a/idioms.html.

[4] T. Jaeger, A. Edwards, and X. Zhang. Consistency analy-
sis of authorization hook placement in the Linux security
modules framework.ACM TISSEC, May 2004.

[5] D. Kilpatrick, W. Salamon, and C. Vance. Securing the X
Window system with SELinux. NAI/TR03-006.

[6] S. Smalley, C. Vance, and W. Salamon. Implementing
SELinux as a Linux security module. Technical report,
NAI Labs/TR01-043, December 2001.

[7] C. Wrightet al. Linux security modules: General security
support for the Linux kernel. In11th USENIX Security,
August 2002.

[8] Tresys technology, SELinux policy management server.
http://sepolicy-server.sourceforge.net.

[9] E. Walsh. Integrating XFree86 with security-enhanced
Linux, 2004. Manuscript.

[10] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for
static analysis of authorization hook placement. In11th

USENIX Security, August 2002.

5


