
Published in ICSE’07: Proceedings of the
29th International Conference on Software Engineering, Minneapolis, Minnesota, May 2007

Mining Security-Sensitive Operations in Legacy Code using Concept Analysis

Vinod Ganapathy
University of Wisconsin
vg@cs.wisc.edu

David King Trent Jaeger
Pennsylvania State University

{dhking,tjaeger}@cse.psu.edu

Somesh Jha
University of Wisconsin
jha@cs.wisc.edu

Abstract

This paper presents an approach to statically retrofit legacy servers with mechanisms for authorization pol-
icy enforcement. The approach is based upon the observation that security-sensitive operations performed by
a server are characterized by idiomatic resource manipulations, called fingerprints. Candidate fingerprints are
automatically mined by clustering resource manipulations using concept analysis. These fingerprints are then
used to identify security-sensitive operations performed by the server. Case studies with three real-world servers
show that the approach can be used to identify security-sensitive operations with a few hours of manual effort and
modest domain knowledge.

1 Introduction

Software systems must protect shared resources that they manage from unauthorized access. This is achieved
by formulating and enforcing an appropriate authorization policy (also called access control policy). The policy
specifies the set of security-sensitive operations that a user can perform on a resource. For example, a popular
policy on UNIX-like systems allows only the root to perform the security-sensitive operations Read and Write on
the /etc/passwd file (the resource). Operating systems have historically had mechanisms such as reference mon-
itors [4] to enforce authorization policies. It is also important for user-space servers, such as middleware, web-,
proxy and window-management servers, to implement such mechanisms because they manage shared resources on
behalf of their clients. Unfortunately, economic and practical considerations force developers to choose function-
ality and performance over security. As a result, several legacy servers often completely lack policy enforcement
mechanisms. For example, the X11 server [31] can simultaneously manage multiple X client windows, but was
not built with mechanisms to isolate one X client from another, leading to several published attacks [20].

This paper investigates techniques for retrofitting legacy servers with authorization policy enforcement mecha-
nisms. The main questions to be addressed when retrofitting a server are what are the security-sensitive operations
to be mediated? and where in the server’s source code are these operations performed? In current practice, these
questions are answered manually. A team of software engineers inspects the code of the server to determine
locations where security-sensitive operations are performed, and places appropriate authorization checks guard-
ing these locations. Not surprisingly, this process is time consuming and error prone [18, 32]. For example,
it took almost two years each for the Linux Security Modules (LSM) project [30], where additional authoriza-
tion checks were added to the Linux kernel to enable enforcement of mandatory access control policies, and the
X11/SELinux [20] project, where authorization checks were added to the X11 server. Similar recent efforts have
also been time consuming [13, 17]. In short, there are no automated techniques to aid the process of securing
legacy servers for authorization.

We build on prior work [15] and develop an approach using concept analysis [29] to drastically reduce the
manual effort involved in retrofitting legacy servers. Key to our approach is the observation that security-sensitive

operations performed by a server are associated with idiomatic ways in which resources are manipulated by the
server. Such idioms, which we call fingerprints, are code-level descriptions of the security-sensitive operations that
they represent. Each fingerprint is expressed as a combination of several abstract syntax trees (ASTs), called code
patterns. We use static program analysis in combination with concept analysis to automatically mine candidate
fingerprints. These are then examined and refined manually by a domain expert. After refinement, we statically
match each fingerprint against the code of the server to determine locations where the corresponding security-
sensitive operation is performed. We then weave hooks to a reference monitor at all these locations to authorize that
security-sensitive operation. This ensures that security-sensitive operations performed by the server are mediated
by authorization policy lookups.

Our results demonstrate the effectiveness of our approach. We conducted case studies on three real-world
systems of significant complexity: the ext2 file system, a subset of the X11 window-management server, and
PennMUSH, an online game server [2]. In each case, our approach reduced the analysis of several thousand lines
of code to the analysis of under 115 candidate fingerprints with fewer than 4 code patterns each (on average). For
example, our approach reduced the analysis of PennMUSH, a server with 94, 014 lines of C code, to the analysis of
38 candidate fingerprints, with an average of 1.42 code patterns each. We then refined these candidate fingerprints
manually and determined whether each refined fingerprint indeed denoted a security-sensitive operation or not. It
took just a few hours of manual effort and modest domain knowledge to find security-sensitive operations in each
of our case studies. Without our approach, the entire code base must be examined to find such security-sensitive
operations.

The approach presented in this paper overcomes two important limitations of our prior work [15]. While we
introduced fingerprints in that work, our approach for finding fingerprints (i) required a high-level description
of security-sensitive operations, and (ii) used dynamic program analysis to find fingerprints. Both (i) and (ii)
prevented our approach from easily being applied to a wide variety of servers. In particular, while a high-level
description of security-sensitive operations was available for the case study that we considered (the X server),
this may not be the case with other servers, as indeed was the case with PennMUSH. A dynamic approach to
fingerprint-finding meant that the fingerprints found were restricted to code paths exercised by the manually chosen
inputs to the server. This paper directly addresses both these shortcomings. Concept analysis automatically mines
candidate fingerprints without the need for an a priori description of security-sensitive operations. Further, because
static program analysis ensures better coverage than dynamic analysis, the approach presented here can mine more
fingerprints than our prior work.

In summary, our main technical contributions are:

1. A fully static approach to retrofit policy enforcement into legacy servers. The key observation used by the
approach is that security-sensitive operations performed by a server are associated with idiomatic resource
manipulations, called fingerprints.

2. A novel algorithm using concept analysis to automatically mine fingerprints of security-sensitive operations.
To our knowledge, this is the first application of concept analysis to mine security properties of software.

3. Case studies on three real-world servers of significant complexity. Our case studies demonstrate that our
approach is efficient and effective. Our analysis completed in just over 310 seconds even for the largest of
our benchmarks and produced manageable concept lattices. In each case, we were able to inspect the lattice
and identify security-sensitive operations with a few hours of manual effort and modest domain knowledge.

Note that our approach to retrofit legacy servers follows the aspect-oriented paradigm. In particular, each
fingerprint denotes a region of code before which a reference monitor hook must be placed, and thus helps identify
join points [5, 19]. The reference monitor query that executes as a result of the hook call is the body of the advice
at that join point. Fingerprint-mining is thus aspect mining to find join points relevant to security.

C
Resource types
Legacy server Candidate fingerprints

Constraints
Fingerprints of security

sensitive operations Retrofitted serverBA
Step Description Techniques used

A Extraction of candidate fingerprints from source code. Static analysis and concept analysis.

B Refinement of candidate fingerprints using constraints. Application of constraints and interpretation of finger-
prints.

C Authorization hook placement using fingerprints. Pattern (fingerprint) matching and weaving hook calls.

Figure 1. Steps to retrofit policy enforcement, and the techniques used in each step.

2 Approach overview

We give a high-level overview of our approach, depicted in Figure 1. Using a running example, we show how
a software engineer would use our approach to mine fingerprints of security-sensitive operations and place hooks.
We have currently implemented our analysis to work with C programs, but the underlying principles apply to
servers written in other languages as well.

2.1 Running example

We use a subset of ext2, a Linux file system, and one of the case studies in Section 5 as our running example. In
particular, ext2 is responsible for laying out and interpreting disk blocks as belonging to specific files or directories.
It represents metadata information using several internal data structures. This metadata is used to retrieve files and
directories from raw disk blocks.

File systems on Linux are pluggable, and must thus export a standard API to the kernel. A system call that ma-
nipulates files or directories ultimately resolves to one or more calls to this API. The relevant file system functions
then serve this request. Thus a file system is a server that manages files and directories. For ext2, we considered 10
API functions related to manipulation of directories (e.g., ext2 rmdir, ext2 mkdir and ext2 readdir). We show
how our approach can identify security-sensitive operations that ext2 performs on directories.

2.2 Step A: From source code to candidate fingerprints

In the first step, we employ static source code analysis and identify different ways in which ext2 accesses shared
resources in response to client requests. This analysis is based upon two assumptions.

First, we assume that it suffices to examine accesses to internal data structures that ext2 uses to represent files
and directories. These data structures are specified by a domain expert, and for ext2 they are variables of type
inode, ext2 dirent, ext2 dir entry 2 and address space, each of which is a C struct. Second, we assume that
a client accesses server resources only via the server’s API. With ext2, this is indeed the case, and as mentioned
earlier ext2 exports a well-defined API to the kernel. The inputs to our static analyzer are thus the source code
of ext2, and two files, specifying, respectively, the types of critical data structures to be tracked, and a set of API
functions.

The static analyzer identifies how these tracked data structures are manipulated by the ext2 API. It does so by
distilling each statement of ext2 source code into a (possibly empty) set of code patterns. A code pattern is either a
Read, Write or a Call and is expressed in terms of abstract syntax trees (see Figure 2). For example, the C statement
de->file type = 0, where de is a variable of type ext2 dirent is distilled to Write 0 To ext2 dirent->file type.
Note in particular that this transformation ignores specific variable names and focuses instead on types of variables.
As a result, we identify generic resource manipulations but not the specific instance of the resource (e.g., the
instance de) that they happen on. Statements that do not manipulate tracked data structures are ignored. Call code
patterns correspond to calls via unresolved function pointers. For each function ext2 api in the ext2 API, the
static analyzer then aggregates code patterns of all statements potentially reachable via a call to ext2 api. Thus, at

the end of this step each ext2 API function ext2 api is associated with a set of code patterns CodePats(ext2 api).
Intuitively, CodePats(ext2 api) denotes all possible ways in which ext2 api can potentially manipulate tracked
resources.

Code-pattern := Call AST | Read AST
| Write Value to AST

Value := constant | AST | ⊥ (unknown)
AST := (type-name->)∗field

Figure 2. Grammar for code patterns.

The next step is to identify idiomatic resource manipulations by the ext2 API. The goal here is to find sets of
code patterns that always appear together during server execution. That is, if one code pattern from a set of code
patterns appears in an execution of ext2, then all the other code patterns from that set appear in that execution as
well. Note that we can have sets {pat} with singleton code patterns as well, denoting that no other code pattern
always appears together with {pat}. Each set of such code patterns denotes an idiomatic way in which a resource is
manipulated by ext2, and potentially indicates a security-sensitive operation. We call each such set a fingerprint.

We identify candidate fingerprints using concept analysis [29], a well-known hierarchical clustering technique.
At a high-level (details are presented in Section 3), concept analysis identifies candidate fingerprints, as well as the
API functions whose code pattern sets contain these candidate fingerprints. We use the term candidate fingerprints
because as described in Step B, imprecisions introduced in the program analysis step means that each candidate
fingerprint may contain multiple fingerprints.

For example, concept analysis inferred that the set of six code patterns shown in Figure 3 is a candidate finger-
print, and that it appears in CodePats(ext2 rename), CodePats(ext2 rmdir) and CodePats(ext2 unlink).

(1) Read address space->host
(2) Read ext2 dir entry 2->rec len
(3) Write 0 To ext2 dir entry 2->inode
(4) Read inode->i mtime
(5) Read inode->u->ext2 inode info->i dir start lookup
(6) Write ⊥ To inode->u->ext2 inode info->i dir start lookup

Figure 3. One of the candidate fingerprints that concept analysis identifies for ext2.

For ext2, we identified 18 such candidate fingerprints, each denoting a unique way in which ext2 manipu-
lates files and directories. While concept analysis is asymptotically inefficient—its complexity is exponential in
maxi(|CodePats(ext2 apii)|)—our experiments showed that it is efficient in practice. In particular, our analysis
completed in about 2 seconds for ext2, and in just over 310 seconds even for the largest of our case studies.

2.3 Step B: Refining candidate fingerprints

In the second step, a domain expert (i) refines candidate fingerprints obtained from Step A and (ii) post refine-
ment, determines, for each fingerprint, whether it embodies a security-sensitive operation that must be mediated
by an authorization policy lookup.

Refinement of candidate fingerprints is necessary for two reasons. The first reason is because code analysis
employed in Step A is imprecise. As a result, multiple fingerprints may be combined into a single candidate
fingerprint. There are two ways in which precision is lost:

1. Code analysis is flow-insensitive. A candidate fingerprint may contain a pair of code patterns pat1, pat2 that
do not always appear together in all executions of the server.

2. We ignore specific instances of resources that are manipulated and focus instead on their types. Thus, a
candidate fingerprint may contain manipulations of multiple, possibly unrelated, resources.

We employ precision constraints to identify such cases and enable refinement of each candidate fingerprint,
separating the code patterns that it contains into several fingerprints. Intuitively, a precision constraint is a rule that
determines the set of code patterns that can be grouped together in a fingerprint. The second reason why refinement
is necessary is because a domain expert may deem that a set of code patterns is irrelevant for the authorization
policies to be enforced for the server, or may wish to separate (or group together) a pair of code patterns in a
fingerprint of a security-sensitive operation. Such domain-specific constraints further refine candidate fingerprints.

For example, consider the candidate fingerprint shown in Figure 3. Using the output of our static analysis tool,
we were able to determine that the code patterns (1)-(4) appear together in each successful invocation of the ext2
function ext2 delete entry and that the code patterns (5) and (6) appear together in each successful invocation of
the function ext2 find entry. Each of the three API functions, ext2 rename, ext2 rmdir and ext2 unlink, that
contain this candidate fingerprint call both these functions. Both ext2 rmdir and ext2 unlink call these functions
on the same resource instance, namely the directory being removed (or unlinked). However, as Figure 4 shows,
while ext2 rename calls both these functions on the instances old dir and old dentry,1 it calls ext2 find entry
only on the instances new dir and new dentry when a certain predicate new inode is satisfied.

1 int ext2 rename (inode *old dir, dentry *old dentry,
2 inode *new dir, dentry *new dentry) {

3 /* declarations of old page,new page,old de and new de */
4 new inode = new dentry->d inode;...

5 old de = ext2 find entry(old dir,old dentry,&old page);

6 if (new inode) { ...

7 new de = ext2 find entry(new dir,new dentry,&new page);

8 } else { ...

9 /* no call to ext find entry */
10 };...

11 ext2 delete entry(old de,old page); ...

12 }

Figure 4. Example showing the need for precision constraints.

Because ext2 rename performs the resource manipulations corresponding to code patterns (5) and (6) on addi-
tional resource instances as compared to the code patterns (1)-(4), code patterns (1)-(4) and (5)-(6) likely represent
different security-sensitive operations. Imposing the constraint that code patterns on different resource instances
must be part of separate fingerprints, the candidate fingerprint shown in Figure 3 is split into two fingerprints, as
shown in Figure 5. Additional examples of the use of precision constraints appear in Section 4. Note that such
constraints can potentially be avoided with sophisticated program analyses, that we plan to explore in future work.
However, in our case studies we found that more than 50% of the candidate fingerprints did not require refinement.
Thus our current approach provides a good tradeoff between precision of results and simplicity of the code analysis
algorithm.

Domain-specific constraints encode rules that are formulated by a domain-expert. In particular, whether the
resource manipulation embodied by a fingerprint is security-sensitive depends on the set of policies that must be
enforced on clients. For example, it may only be necessary to protect the integrity of directories, and not their
confidentiality. In this case, fingerprints that embody a write operation on directories are security-sensitive, while
fingerprints that embody a read operation are not. Fingerprints expose possible operations on resources, and let
an administrator decide whether an operation is security-sensitive or not. For example, an analyst may decide that
Fingerprint (2) in Figure 5, which corresponds to a directory lookup, is not interesting for a specific set of policies
to be enforced.

After refinement, the domain expert assigns semantics to each fingerprint, associating it with a security-sensitive
operation. For example, Fingerprint (1) in Figure 5 embodies the directory removal operation, while Fingerprint (2)
embodies the lookup operation. The LSM project [30] has identified a comprehensive set of security-sensitive op-
erations for Linux by considering a wide range of policies to be enforced, including security-sensitive operations

1The variable old de, which ext2 delete entry is invoked with on line 11 is derived from old dir and old dentry.

Fingerprint (1)
(1) Read address space->host
(2) Read ext2 dir entry 2->rec len
(3) Write 0 To ext2 dir entry 2->inode
(4) Read inode->i mtime
Fingerprint (2)
(5) Read inode->u->ext2 inode info->i dir start lookup
(6) Write ⊥ To inode->u->ext2 inode info->i dir start lookup

Figure 5. Fingerprints obtained after refinement with precision constraints.

on the file system. It turns out that Fingerprint (1) embodies the LSM operation Dir Remove Name, while Finger-
print (2) embodies the LSM operation Dir Search. Thus, at the end of the second step, we have a set of fingerprints,
each of which is associated with a security-sensitive operation.

2.4 Step C: From fingerprints to hooks

The final step is to place reference monitor hooks and implement the appropriate policy lookups for each hook
(i.e., the advice at each join point). We discuss this step in brief here and refer the reader to prior work [15] for
details.

Each fingerprint is a set of code patterns that can be matched against the server’s source code. Each code
fragment that matches a fingerprint is deemed as performing the security-sensitive operation associated with that
fingerprint. In prior work [15], we had presented an approach to place hooks at the granularity of function calls,
i.e., for each fingerprint that matched the set of code patterns in a function, we would place a reference monitor
hook to guard calls to this function with the appropriate security-sensitive operation. For example, using the
fingerprints from our running example, we would place a hook guarding the call to ext2 find entry on line (5)
of Figure 4 to check that the LSM operation Dir Search is authorized as follows:

if (check policy(current process, old dir, Dir Search))
{ ext2 find entry(old dir, old dentry,

&old page); }

else { Notify current process of failed authorization check }

A similar hook will also be placed for the call on line (7). The call to ext2 delete entry on line (11) will be
protected with a hook that checks that the client is authorized to perform the LSM operation Dir Remove Name on
the directory being removed. Several optimizations are possible to this hook placement technique, e.g., placing
hooks so as to minimize the number of reference monitor queries executed at runtime. We leave such optimizations
for future work.

Note that fingerprints are useful even when hook placements have been decided in advance. For example, if a
team of software engineers decides to place just one hook guarding calls to ext2 rename (as was done in LSM),
then fingerprints determine the security-sensitive operations that must be authorized by that hook. In this case,
the hook must authorize Dir Remove Name on the old directory (instance old dir) and Dir Search on both the
old (old dir) and new directories (new dir). Indeed, these security-sensitive operations are authorized in the
implementation of the hook in the LSM implementation of security-enhanced Linux (SELinux) [22].2

2SELinux authorizes more security-sensitive operations, corresponding to fingerprints that match code fragments that were omitted
from Figure 4.

3 Extracting candidate fingerprints from code

This section discusses Step A in detail. We discuss the use of static analysis to identify resource manipulations
potentially performed by each API function, and concept analysis to find candidate fingerprints.

3.1 Static analysis

Algorithm 1 describes the static code analysis that we have implemented (in CIL [23]). Lines 1-5 employ a
simple flow-insensitive analysis to extract for each function a set of code patterns describing how the function
manipulates tracked data structures. While this step sacrifices precision, it simplifies the rest of the analysis by
making the output amenable to concept analysis. As described earlier, we recover some of the precision lost in this
step by applying precision constraints. While we intend to explore in future work how a flow-sensitive program
analysis can interact with concept analysis, we have found that our current implementation offers a reasonable
tradeoff between simplicity of analysis and precision of the results obtained. Lines 6-9 compute CodePats(apii),
the set of resource manipulations performed by apii, for each API function apii of the server by finding functions
in the call-graph reachable from apii. We resolve calls through function pointers using a simple pointer analysis:
each function pointer can resolve to any function whose address is taken and whose type signature matches that of
the function pointer. This analysis is conservative in the absence of type-casts, but may miss potential targets in
the presence of type-casts.

Recall that CodePats(apii) is the set of resource manipulations that a client can perform by invoking API
function apii. However, we would like to identify idiomatic resource manipulations. Each such idiom is a set of
code patterns FP={pat1,. . .,patm} satisfying the following property: if one of the code patterns pati∈FP appears
in any valid execution trace of the server, then all the patterns in FP appear in that trace. Each such idiom is
called a fingerprint and denotes a potential security-sensitive operation performed on the resource. Note that the
above property implies that each fingerprint FP is such that FP⊆CodePats(apii) or FP∩CodePats(apii)=∅, for
each API function apii. As described below, we use concept analysis to identify a set of candidate fingerprints.
Each candidate fingerprint may possibly contain multiple fingerprints, and must be refined to yield the actual
fingerprints.

Algorithm : E C-P(Server, API, RSC)
Input : (i) Server: source code of server, (ii) API={api1,. . .,apin}: set of API functions of Server, and (iii) RSC: data types of sensitive

resources.
Output : CodePats(api1),. . .,CodePats(apin), for api1,. . .,apin ∈ API.
foreach (function f in Server) do1

Summary(f) := ∅;2
foreach (statement s ∈ f that affects a data structure of type ∈ RSC) do3

CP := Breakdown of s into code patterns (see Figure 2);4
Summary(f) := Summary(f) ∪ CP;5

foreach (apii ∈ API) do6
CodePats(apii) := ∅;7
foreach (function f reachable from apii) do8

CodePats(apii) := CodePats(apii) ∪ Summary(f);9

return CodePats(api1),. . .,CodePats(apin)10

Algorithm 1: Static analysis algorithm to extract resource manipulations.

3.2 Background on concept analysis

Concept analysis is a well-known hierarchical clustering technique that has found use in software engineer-
ing [3, 8, 9, 21, 24, 25, 26, 27, 28]. We give a brief overview of concept analysis and describe how we adapt it to
find candidate fingerprints.

(a) The relation CodePats
CodePats pat1 pat2 pat3 pat4
api1 3 3

api2 3 3 3

api3 3 3 3

api4 3

(b) Concept lattice (c) Nodes in the concept lattice

*B

D

E

G

F

C

A

*
*

*

A : 〈{api1,api2,api3,api4}, ∅〉
B : 〈{api1,api2,api3}, {pat1}〉
C : 〈{api3,api4}, {pat4}〉
D : 〈{api2,api3}, {pat1,pat3}〉
E : 〈{api1,api2}, {pat1,pat2}〉
F : 〈{api3}, {pat1,pat3,pat4}〉
G : 〈∅, {pat1,pat2,pat3,pat4}〉

Figure 6. Concept analysis example.

The inputs to concept analysis are (i) a set of instances I, (ii) a set of features F, and (iii) a binary relation
R : I → F that associates instances with features. It produces a concept lattice as output. Intuitively, each node
in the concept lattice pairs a set of instances X with a set of features Y , such that Y is the largest set of features
in common to all of the instances in X. Formally, each node is a pair 〈X, Y〉, where X ∈ I and Y ∈ F, such that
α(X)=Y and γ(Y)=X, where α(X) = { f ∈ F|∀x ∈ X (x, f) ∈ R}, and γ(Y) = {i ∈ I|∀y ∈ Y (i,y) ∈ R}. A node 〈X, Y〉
appears as an ancestor of a node 〈P, Q〉 in the concept lattice if P ⊂ X. In fact, this ordering also implies Y ⊂ Q.
This is because a smaller set of instances will share a larger set of features in common. Thus, the root node shows
the set of features common to all instances in I, while the leaf node shows the set of instances that share all features
in F.

Figure 6 shows an example of a concept lattice, as applied to our problem. Each API function api1, api2, api3

and api4 is considered an instance, and each code pattern pat1, pat2, pat3, pat4 is considered a feature. They are
related by CodePats, which is obtained from static analysis, depicted in Figure 6(a) as a table. Each node 〈X, Y〉
is such that all the code patterns in Y appears in each CodePats(apii) for apii∈X. This lattice shows, for example,
that (i) there are no code patterns in common to all API functions (node A in the lattice), (ii) Both pat1 and pat3
appear in both CodePats(api2) and CodePats(api3), and these are the only such API functions (node D), and that
(iii) No API functions have all code patterns (node G).

3.3 Using concept analysis

We compute candidate fingerprints using Algorithm 2. It first invokes concept analysis (line 1) on the set of
API functions and the set of code patterns to obtain a concept lattice as shown in Figure 6. It then finds candidate
fingerprints, in lines 2-7, by finding nodes in the lattice where new code patterns are introduced. Each such node
is marked, and the set of new code patterns introduced in that node is considered as a candidate fingerprint.

For the example in Figure 6, the nodes B, C, D, and E are marked because these nodes introduce the code
patterns pat1, pat4, pat3 and pat2—i.e., any node containing one of these patterns must have the corresponding
node as an ancestor. Each of these code patterns is classified as a candidate fingerprint.

Intuitively, Algorithm 2 works because each fingerprint FP satisfies FP⊆CodePats(apii) or FP∩CodePats(apii)=∅,
for each API function apii. Concept analysis ensures that the node of the concept lattice in which a new code pat-
tern pati∈FP is introduced will introduce all of the code patterns in FP. Line 7 identifies and marks nodes where a
new code pattern pat is introduced into the lattice. Because of the property above, all the code patterns that appear

in the same fingerprint as pat appear in that node. Note however, that code patterns from other fingerprints may
also be introduced in the same node. Thus, Algorithm 2 only computes candidate fingerprints: each candidate
fingerprint may contain multiple fingerprints that must be obtained via refinement (in Step B).

Algorithm : F C F(CodePats,API)
Input : (i) CodePats: The relation obtained from Algorithm 1, and (ii) API= {api1,. . .,apin}, set of API functions of the server.
Output : CFP1,. . .,CFPk , a set of candidate fingerprints.
Run concept analysis with the set of instances I=API, the set of features F=∪i∈[1..n]CodePats(apii), and the relation R=CodePats;1
count := 1;2
foreach (node 〈X, Y〉 in the concept lattice) do3

Let {〈X j, Y j〉} be the set of parents of 〈X, Y〉 in the concept lattice;4
Diff := Y - ∪ jY j;5
if (Diff , ∅) then6

CFPcount := Diff; count := count + 1; Mark the node 〈X, Y〉;7

return CFP1,. . .,CFPcount /* Note: k is the value of count in this line. */8

Algorithm 2: Finding candidate fingerprints.

It can be shown that the number of candidate fingerprints identified by Algorithm 2 has an upper bound of
| ∪i∈[1..n] CodePats(apii)|. Note that while the concept lattice can be exponentially large in the number of API
functions (because asymptotically, it is a lattice on the power set of API functions), this upper bound places a
restriction on the number of nodes that will be marked in line 7 of Algorithm 2. This is key, because these nodes
introduce candidate fingerprints, and as discussed in Section 2, they must be manually examined for refinement in
Step B.

Several algorithms have been proposed in the literature to compute concept lattices. We chose to implement
the incremental algorithm by Godin et al. [16] because it has been shown to work well in practice [3]. While this
algorithm is asymptotically exponential—its complexity is O(22p|I|), where p is an upper bound on the number of
features of any instance in I—the algorithm scaled well in our case studies.

4 Refining fingerprints with constraints

As described in Section 2.2, candidate fingerprints obtained from concept analysis are imprecise for two reasons.
First, because of flow-insensitivity, a pair of code patterns pat1 and pat2 that are not part of the same fingerprint
may appear in the same candidate fingerprint. Second, the resource manipulations in a candidate fingerprint may
be associated with multiple, possibly unrelated resource instances. Thus, candidate fingerprints must be refined
using precision constraints. Domain-specific constraints can additionally be applied to refine constraints with
domain-specific requirements.

This section presents a unified framework to express constraints and refine candidate fingerprints (Step B of our
approach). Both precision constraints and domain-specific constraints can be expressed in this framework.

As Figure 7 shows, each constraint is either a Separate(X, Y), an Ignore(X) or a Combine(X, Y), where X and Y
are sets of code patterns. Separate(X, Y) refines candidate fingerprints by separating code pattern sets X and Y into
separate fingerprints. Ignore(X) refines candidate fingerprints by discarding the code pattern set X from candidate
fingerprints. Combine(X, Y), for which we have only felt occasional need, combines code pattern sets X and Y in
two candidate fingerprints into a single fingerprint, thus coarsening the results of concept analysis. For example,
the constraint Separate({1,2,3,4}, {5,6}) refines the candidate fingerprint in Figure 3 to yield the fingerprints in
Figure 5. We now discuss precision and domain-specific constraints in this framework.

Constraint := Separate(PatSet, PatSet) | Ignore(PatSet)
| Combine(PatSet, PatSet)

PatSet := Set of code patterns (as defined in Figure 2)

Figure 7. Grammar for constraints.

Analysis Concept lattice Num. of Avg. size of Refinement
Benchmark LOC time (secs) # Nodes # Edges cand. fings. cand. fings. needed for

ext2 4, 476 2.1 21 32 18 3.67 9 (50%)
X server/dix 30, 096 58.1 329 978 115 3.76 24 (20.87%)
PennMUSH 94, 014 318.9 127 301 38 1.42 4 (10.53%)

Figure 8. Results for each of our case studies. Concept lattices are also available online [1].

Precision constraints are Separate(X, Y) constraints and as discussed in Section 2, they serve two goals. The
first goal is to refine candidate fingerprints based upon resource instances manipulated. Separate({1,2,3,4}, {5,6}),
the use of which was illustrated earlier, serves this goal. Formally, each set of code patterns can be associated with
one or more resource instances that it manipulates. We use a constraint Separate(X, Y) to separate code pattern
sets X and Y that manipulate different sets of resource instances. For example, consider the code patterns (1)-(4)
in Figure 3, that appear in the function ext2 delete entry, and the code patterns (5) and (6), that appear in the
function ext2 find entry. Because of the way these functions are invoked in ext2 rename (see Figure 4), code
patterns (5) and (6) are associated with the resource instances old dir, old dentry, new dir and new dentry,
while code patterns (1)-(4) are associated with resource instances old dir and old dentry. Because the code
patterns (5) and (6) are applied to additional resource instances, they are separated out using the constraint above.
We currently manually identify resource instances associated with a set of code patterns. However, this can
potentially be automated using a program analysis that is sensitive to resource instances manipulated.

The second goal of precision constraints is to identify and remove imprecision introduced because of flow-
insensitive program analysis. In particular, a pair of code patterns pat1 and pat2 may appear together in a candidate
fingerprint, but may not appear together in all executions of the server. In such cases, a Separate(pat1,pat2)
constraint separates these code patterns into different fingerprints. For example, one of the candidate fingerprints
that we obtained in the analysis of ext2 is shown below; it appeared in CodePats(ext2 ioctl).

(1) Write ⊥ To inode->i flags
(2) Write ⊥ To inode->i generation

However, ext2 ioctl either performs the resource manipulation corresponding to code pattern (1) or (2), but not
both, in each execution, based upon the value of a flag that it is invoked with. Thus, a constraint Separate({1},{2})
is used to refine the candidate fingerprint above.

Note that precision constraints are not necessary if more precise program analysis is employed. Algorithm 1
currently lacks flow-sensitivity and data-flow information that can potentially avoid the imprecisions reported
above. However, in each of our case studies we needed precision constraints for fewer than 50% of the candidate
fingerprints mined—9/18 for ext2, 24/115 for X server, and 4/38 for PennMUSH. Thus, we believe that our current
approach strikes a good balance between simplicity and precision of candidate fingerprints.

Domain-specific constraints encode domain knowledge to further refine fingerprints. A domain specific con-
straint that we have found useful is Ignore(Pat), using which we can eliminate certain code patterns that we deem
irrelevant for security from the set of fingerprints. For example, in the X server, which is an event-based server,
each request from an X client is converted into a one or more events that are processed by the server. It may only be
necessary to enforce an authorization policy governing the set of events that an X client can request on a resource.
In such cases, all code patterns except those related to event-processing can be filtered out from fingerprints using
Ignore constraints.

The use of Combine constraints is relatively infrequent, and may be used if the fingerprints mined by concept
analysis are at too fine a granularity. For example, in PennMUSH, we found that 30 of the 38 candidate fingerprints
contained only one code pattern. An administrator may wish to write authorization policies at a higher level of
granularity—where the fingerprint of each security-sensitive operation contains multiple code patterns. Combine
constraints can be used to group together code patterns to get such fingerprints.

5 Case studies

We conducted case studies on three complex systems, each of which has been in development for several years.
We used (i) the ext2 file system from Linux kernel distribution 2.4.21, (ii) a subset of the X server (X11R6.8), and
(iii) PennMUSH, an online game server (v1.8.1p9).

We evaluated our approach using four criteria. First, we measured the number and size of candidate fingerprints
extracted from source code. Because an analyst must examine these candidate fingerprints to identify security-
sensitive operations, these metrics indicate the amount of manual effort needed to supplement our approach. Note
that without our approach, the analyst must examine the entire code base to find security-sensitive operations.
Second, we measured the number of candidate fingerprints that had to be refined with constraints. This metric
shows the effect of imprecise static analysis and the effort needed to refine candidate fingerprints. Third, we
evaluated the quality of fingerprints by manually interpreting the operation embodied by each fingerprint. Last, for
ext2 and the X server, we correlated the fingerprints extracted by our approach with security-sensitive operations
that were identified independently for these servers [20, 30].

Figure 8 presents statistics on the time taken by the analysis and the size of concept lattices produced. It
also shows the number and size of candidate fingerprints and the number of candidate fingerprints that needed
refinement. As these results show, our analysis is effective at distilling several thousand lines of code into concept
lattices of manageable size (see [1]). There were under 115 candidate fingerprints of average size under 4 across
all our benchmarks, fewer than 50% of which had to be refined. Identifying security-sensitive operations reduces
to refining and interpreting these candidate fingerprints, instead of having to analyze several thousand lines of
code, thus drastically cutting the manual effort required. In our case studies, this required a few hours, with
modest domain knowledge. As Figure 8 also shows, our analysis is efficient in practice, completing in just over
310 seconds even for PennMUSH, our largest benchmark (on a 1GHz AMD Athlon processor with 1GB RAM).
Sections 5.1-5.3 present each case study in detail, including our experience interpreting fingerprints and correlating
these fingerprints against independently identified security-sensitive operations.

5.1 The ext2 file system

As discussed in Section 2, we focused on how directories are manipulated by the ext2 file system. Concept
analysis produced 18 candidate fingerprints containing an average of 3.67 code patterns, of which we had to refine
9 with precision constraints. We then determined the resource manipulation embodied by each fingerprint and tried
to associate it with a security-sensitive operation. Section 2 presented two such examples. Two more examples are
discussed below.

1. The fingerprint {Write 0 To inode->i blocks, Write 1 To inode->u->ext2 inode info->i new inode, Write
4096 To inode->i blksize} appears in CodePats(ext2 create), CodePats(ext2 mkdir), CodePats(ext2 mknod)
and CodePats(ext2 symlink). The code patterns in this fingerprint were all extracted from the function
called ext2 new inode and embody creation and initialization of a new inode.

2. The fingerprint {Write 0 To inode->i size} appears in CodePats(ext2 rmdir). This code pattern embodies
a key step in directory removal.

The LSM project has identified a set of 11 operations on directories. These operations are used to write SELinux
policies governing how processes can manipulate directories. We were able to identify at least one fingerprint for
each of these LSM operations from the fingerprints that we mined. For example, the fingerprints presented in
Section 2 were for the LSM operations Dir Remove Name and Dir Search, while the examples above correspond
to the File Create3 and Dir Rmdir operations, respectively.

3Note that some LSM directory operations have the File prefix.

5.2 The X11 server

The X server is a popular window-management server. X clients can connect to the X server, which manages
resources such as windows and fonts on behalf of these X clients. The X server has historically lacked mechanisms
to isolate X clients from each other, and has been the subject of several attacks. Such attacks can be prevented
with an authorization policy enforcement, that determines the set of security-sensitive operations that an X client
can perform on a resource. Indeed, there have been several efforts to secure the X server [7, 10, 20].

We focused on a subset of the X server, its main dispatch loop (called dix) that contains code to accept client
requests and translate them to lower layers of the server. We focused on this subset because it contains the bulk of
code that processes client windows, represented by the Window data structure, the resource on which we wanted to
identify security-sensitive operations. In addition to Window, we also included the xEvent data structure, because
the X server uses it extensively to process client requests. The API that we used contains 274 functions that the X
server exposes to clients.

Concept analysis produced 115 candidate fingerprints with 3.76 code patterns, on average, of which 24 had to
be refined with precision constraints. The interpretation of two of these fingerprints is discussed below.

1. The fingerprint {Write 20 To xEvent->u->type, Write ⊥ To xEvent->u->mapRequest->window}, contained
in CodePats of 5 API functions, embodies an X client request to map a Window on the screen, and potentially
represents a security-sensitive operation.

2. The fingerprint {Write 0 To Window->mapped, Write 18 To xEvent->u->type, contained in CodePats of 7 API
functions embodies unmapping a visible X client window from the screen, also a potential security-sensitive
operation.

There have been efforts to secure the X server in the context of the X11/SELinux project [20], which identified
22 operations on the Window resource. As with ext2, we were able to identify at least one fingerprint for each
of these security-sensitive operations from those that we mined. For instance, the fingerprints presented above
correspond to the Map and Unmap operations on a Window, respectively.

We had previously identified fingerprints for 11 security-sensitive operations on the Window resource [15]. How-
ever, as discussed in Section 1, that work used dynamic analysis, and could only identify fingerprints along paths
exercised by manually-chosen test inputs to the server. Further, that work could automate fingerprint-finding only
up to the granularity of function calls; these were then manually refined to the granularity of code patterns. Con-
cept analysis not only identified the fingerprints from prior work at the granularity of code patterns, but did so
automatically.

5.3 The PennMUSH server

PennMUSH is an open-source online game server. Clients connecting to a PennMUSH server assume the role
of a virtual character, as in other popular massively-multiplayer online roleplaying games. For this work, it suffices
to think of PennMUSH as a collaborative database of objects that clients can modify. Objects are shared resources,
and an authorization policy must govern the set of security-sensitive operations that a client can perform on each
object.

Clients interact with PennMUSH by entering commands to a text server, which activates one or more of 603
internal functions, that we used as the API of PennMUSH. Most of these API functions modify a database of
objects. Thus, we tracked how the PennMUSH API manipulates resources of type object. Concept analysis
produced 38 candidate fingerprints. Most of them had only one or two code patterns, so we only had to refine 4 of
these candidate fingerprints using precision constraints. Two of these fingerprints are discussed below.

1. The fingerprint Write ⊥ To object->name potentially modifies an object name, and was contained in Code-
Pats of 16 API functions, representing creation, destruction and modification of objects. Unauthorized

clients must be disallowed from changing the name of an object, indicating that this is a fingerprint of a
security-sensitive operation.

2. The fingerprint {Write 8 To object->type, Write 0 To object->modification time, Write 1118743 To
object->warnings} appears in CodePats(cmd pcreate) and CodePats(fun pcreate), both of which are API
functions associated with creation of a “character” object.

Here, the number 1118743 represents a flag that signifies that a character should be warned about problems
with the objects that they own, and the number 8 written to the field type indicates that the newly created
object is a character. These code patterns represent necessary steps in character creation in PennMUSH, and
thus indicate that this is fingerprint of a security-sensitive operation.

In PennMUSH, the object data structure has just 18 fields, while the API contains 603 functions. Each security-
sensitive operation is performed at the granularity of accesses to just one or two of the fields of object. This
explains the smaller number and size of candidate fingerprints extracted by concept analysis (as compared to X
server).

6 Limitations

An important limitation of our approach is that it cannot guarantee that all fingerprints have been mined. Our
approach can thus have false negatives, i.e., it can fail to identify a security-sensitive operation, as a result of
which insufficient authorization checks will be placed in the retrofitted server. This is because the static analyzer
can potentially miss resource manipulations. For example, if a C struct representing a shared resource is read
from/written to using pointer arithmetic, the analysis described in Section 3.1 will miss this resource access, thus
leading to a missed (or erroneous) fingerprint. Further research is necessary to develop a provably complete
approach to fingerprint-finding.

A second limitation of our approach is that it currently constrains fingerprints to be conjunctions of code pat-
terns; temporal relationships between code patterns cannot be mined by our approach. As a result, interpretation of
some of the fingerprints identified by the approach was tedious and time-consuming. To overcome this limitation,
we plan to explore a more expressive fingerprint language (e.g., automata over an alphabet of code patterns) and
algorithms to extract such fingerprints.

7 Related work

This paper overcomes two important shortcomings that we had identified in prior work [15]. The need for an a
priori description of security-sensitive operations hindered the application of the techniques developed there to a
wide variety of servers. Further, a dynamic trace-based approach to fingerprint-finding meant that only code paths
exercised by test inputs to the legacy server would be analyzed, thus leaving large portions of the legacy server
unanalyzed.

As discussed in Section 1, our approach follows the aspect-oriented paradigm. Several other tools, such as
PoET/PSLang [11], Naccio [12], Polymer [6] and our own prior work on Tahoe [14] also follow an aspect-oriented
approach to enforce authorization policies on legacy code. In all these tools, a security analyst provides a descrip-
tion of locations to be protected (join points) as well as the policy check at each location (advice). These tools
then weave calls to a reference monitor at each of these locations. However, when legacy servers manage their
own resources, identifying locations where policy checks must be weaved becomes a challenge. The techniques
developed in this paper can benefit the above tools by reducing the manual effort involved in identifying locations
for reference monitoring, as well as the advice to be integrated at these locations.

Concept analysis has previously been used in software engineering, including aspect mining (Ceccato et al.
present a survey of such techniques [8]) and software modularization. For example, concept analysis has been

used on identifier names to find methods and classes that implement similar functionality [27]. Dynamic analysis
in conjunction with concept analysis has been used to find methods that implement a particular feature [9, 26].
The idea here is to run an instrumented version of the program under different use-cases and label the traces
with these use cases. Each trace contains information about the methods executed. Traces are then clustered
using concept analysis to find crosscutting concerns, and thus identify aspects. Concept analysis has also found
use to identify modular structure in legacy programs [21, 24, 25, 28]. The modular structure so identified can
be used to refactor legacy software (e.g., convert non-object-oriented programs into object-oriented ones [24]).
Another recent use of concept analysis is in the context of debugging mined specifications [3]. Automatically
mined temporal specifications may often be buggy, and the problem here is for an analyst to classify each mined
specification as correct or buggy. Similar traces can be clustered using concept analysis, so the analyst can decide
en-masse whether an entire cluster is buggy.

8 Summary

We presented an approach to reduce the manual effort involved in mining security-sensitive operations in legacy
servers. Our approach uses concept analysis to mine fingerprints, which are code-level descriptions of security-
sensitive behavior. Our experiments with three complex real-world servers show that our approach is efficient and
effective at finding security-sensitive operations.

Acknowledgments. We thank the anonymous reviewers for their insightful comments.

References

[1] http://www.cs.wisc.edu/∼vg/papers/icse2007.
[2] PennMUSH multi-user dungeon. http://pennmush.org.
[3] G. Ammons, D. Mandelin, R. Bodı́k, and J. R. Larus. Debugging temporal specifications with concept analysis. In

PLDI, 2003.
[4] J. P. Anderson. Computer security technology planning study, volume II. Technical Report ESD-TR-73-51, Deputy for

Command & Mgmt. Systems, Bedford, MA, 1972.
[5] Aspect-oriented software development glossary. http://aosd.net/wiki/index.php?title=Glossary.
[6] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with Polymer. In PLDI, 2005.
[7] J. Berger, J. Picciotto, J. Woodward, and P. Cummings. Compartmented mode workstation: Prototype highlights. IEEE

TSE, 16(6), 1990.
[8] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwe. A quantitative comparison of three aspect

mining techniques. In 13th Wkshp. Prog. Comprehension, 2005.
[9] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code. IEEE TSE, 29(3), 2003.

[10] J. Epstein, J. McHugh, H. Orman, R. Pascale, A.-M. Squires, B. Danner, C. Martin, M. Branstad, G. Benson, and
D. Rothnie. A high assurance window system prototype. Jour. Computer Security, 2(2-3), 1993.

[11] U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement. PhD thesis, Cornell, 2004.
[12] D. Evans and A. Twyman. Flexible policy-directed code safety. In IEEE Symp. on Security & Privacy, 1999.
[13] B. Fletcher. Case study: Open source and commercial applications in a Java-based SELinux cross-domain solution. In

2nd Security-enhanced Linux Symp., 2006.
[14] V. Ganapathy, T. Jaeger, and S. Jha. Automatic placement of authorization hooks in the Linux security modules

framework. In ACM Conf. Comp. & Comm. Security, 2005.
[15] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy code for authorization policy enforcement. In IEEE Symp. on

Security & Privacy, 2006.
[16] R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms based on Galois (concept) lattices.

Computational Intelligence, 11(2), 1995.
[17] M. Hocking, K. Macmillan, and D. Shankar. Case study: Enhancing IBM Websphere with SELinux. In 2nd Security-

enhanced Linux Symp., 2006.

[18] T. Jaeger, A. Edwards, and X. Zhang. Consistency analysis of authorization hook placement in the Linux security
modules framework. ACM TISSEC, 7(2), 2004.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented program-
ming. In ECOOP, 1997.

[20] D. Kilpatrick, W. Salamon, and C. Vance. Securing the X Window system with SELinux. Technical Report 03-006,
NAI Labs, 2003.

[21] C. Lindig and G. Snelting. Assesing modular structure of legacy code based on mathematical concept analysis. In
ICSE, 1997.

[22] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux operating system. In
USENIX Annual Technical Conf. (FREENIX), 2001.

[23] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools for analysis and transfor-
mation of C programs. In Conf. Compiler Construction, 2002.

[24] M. Siff. Techniques for Software Renovation. PhD thesis, University of Wisconsin-Madison, 1998.
[25] G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. In ACM SIGSOFT FSE, 1998.
[26] P. Tonella and M. Ceccato. Aspect mining through the formal concept analysis of execution traces. In 11th Conf. on

Reverse Engineering, 2004.
[27] T. Tourwe and K. Mens. Mining aspectual views using formal concept analysis. In 4th Wkshp. on Source code Analysis

& Manipulation, 2004.
[28] A. van Duersen and T. Kuipers. Identifying objects using cluster and concept analysis. In ICSE, 1999.
[29] R. Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. Ordered Sets, 1982.
[30] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux security modules: General security support

for the Linux kernel. In USENIX Security Symp., 2002.
[31] The X11 Server, version X11R6.8 (X.Org Foundation).
[32] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static analysis of authorization hook placement. In USENIX

Security Symp., 2002.

	Introduction
	Approach overview
	Running example
	Step A: From source code to candidate fingerprints
	Step B: Refining candidate fingerprints
	Step C: From fingerprints to hooks

	Extracting candidate fingerprints from code
	Static analysis
	Background on concept analysis
	Using concept analysis

	Refining fingerprints with constraints
	Case studies
	The ext2 file system
	The X11 server
	The PennMUSH server

	Limitations
	Related work
	Summary

