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ABSTRACT

We argue that finding vulnerabilities in software components is dif-
ferent from finding exploits against them. Exploits that compro-
mise security often use several low-level details of the component,
such as layouts of stack frames. Existing software analysis tools,
while effective at identifying vulnerabilities, fail to model low-level
details, and are hence unsuitable for exploit-finding.

We study the issues involved in exploit-finding by considering
application programming interface (API) level exploits. A soft-
ware component is vulnerable to an API-level exploit if its se-
curity can be compromised by invoking a sequence of API op-
erations allowed by the component. We present a framework to
model low-level details of APIs, and develop an automatic tech-
nique based on bounded, infinite-state model checking to discover
APl-level exploits.

We present two instantiations of this framework. We show that
format-string exploits can be modeled as API-level exploits, and
demonstrate our technique by finding exploits against vulnerabili-
ties in widely-used software. We also use the framework to model
a cryptographic-key management API (the IBM CCA) and demon-
strate a tool that identifies a previously known exploit.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms: Algorithms, Security, Verification
Keywords: API-level exploit, bounded model checking

1. INTRODUCTION

A vulnerability in a software component is an error in its imple-
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Given the growing concern over security, it is important to find
exploits in a controlled environment before they are found and used
by attackers. An analysis tool that finds a security exploit against
a potential vulnerability in a component not only provides concrete
evidence that the vulnerability exists, but also gives an analyst bet-
ter insight into its consequences. For instance, static analyzers such
as BOON B9] and Percent-S33] would benefit from an analysis
that finds exploits for vulnerabilities they identify. These tools pro-
duce false positives because of imprecision in their analysis, and
the process of classifying warnings as real vulnerabilities or false
positives is typically manual. A security exploit generated against a
vulnerability identified by such tools offers several benefits. First, it
provides evidence that the threat posed by the vulnerability is real.
Second, the exploit can be used as a test case to stress the resilience
of patched versions of the component. Finally, in cases where the
analysis fails to produce a security exploit, the vulnerability can
automatically be classified as a false positive, thus reducing the
manual effort involved in classifying warnings.

Current tools do not adequately address the problem of finding
security exploits in software. Tools based on model checking (e.g.,
[3, 10, 21]) have proved effective at finding control-flow-intensive
vulnerabilities. However, these tools use finite-state abstractions,
which abstract away details such as the layout of the program’s
stack and heap in the interest of keeping the analysis tractable.
These very details are important to produce security exploits; as
a result, counter-examples produced by these tools lack the detail
to generate security exploits. Similarly, type-based analysis tools
[18, 33] and constraint-based analysis tod8][do not keep track
of actual values of program variables. As a result, while these tools
are effective at localizing vulnerabilities, they are not as effective

mentation that can possibly be used to alter the intended behavior ofat generating exploits against them.

the component. An exploit is a sequence of operations that attacks N this paper, we study the issues involved in exploit-finding by
the vulnerability, typically with malicious intent and devastating considering API-level security exploits. A component is vulnerable
consequences. Recent years have witnessed a sharp increase in tf@an API-level exploit if its security can be compromised by invok-
number of security exploits. They are tricky to craft, because they ing an allowed sequence of operations from its API. For instance,
often use several low-level details about the program’s execution. the sequencseteuid(0) followed byexecl(), allowed by UNIX, can

For instance, a typical exploit against a buffer-overrun vulnerabil- be used to obtairoot  privileges [L0].

ity uses details such as the layout of the stack, constraints on buffer We make the following contributions:

sizes, and the architecture of the machine. 1. We present a formal framework to capture low-level details of
API operations. The key idea is to abstract away as few de-
tails as possible, and produce a model that mimics the concrete
system closely. The resulting model, which is typically infinite-
state, is analyzed by model checking to determine if a state that
violates a specified property is reachable. If so, the counter-
example produced is translated into an exploit.

As an instantiation of the above framework, we consider two
real-world APIs of significant complexity. We present a novel
way to analyzeprintf  -family format-string exploits as API-
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level exploits, interpreting a format-string as a sequence of API these ar&S= O = {A, B}, P[A, A] = P[B, B] = {ownreadwrite},
operations. Reasoning about this API critically depends on mod- andP[A, B] = P[B, A] = 0. In other wordsA andB have all possi-
eling the runtime execution stack of the application precisely. ble rights upon themselves, but no rights on each other.

We use the formal framework to model the above API, and  The commands presented by the protection system define the
demonstrate a tool to discover format-string exploits. We have API; each command changes the state of the protection system. We
used the tool to generate exploits against known vulnerabilities restrict ourselves to three types of commands shown below with
in real-world software packages. We also consider the use of their semantics.

our technique to analyze a subset of the IBM Common Crypto- 4 create(s, 0): If s € Sando ¢ O, addso to O, creates a new
graphic Architecture (CCA) API, which is a cryptographic key columno in P and enterewninto P[s, o].

management API. In this case, it is crucial to model how an . .
attacker can enhance his knowledge using operations from the ® COMerreaa(s1, 52, 0): If 51, 52 € Sando € O, enterseadinto
API. Using a tool based on our technique, we discovered a pre- 152 @1 if OWN€ Plsy, o].

viously known exploit. e Conferyyte(s1, 2, 0): Analogous taConfer,.cqa(s1, sz, 0).

3. Because our technique models data more precisely than existing We assume that the protection system allows these operations to
tools [3, 10, 12, 21, 33, it is able to demonstrate the presence 0e applied in any order. Let us assume that we wish to check that
of a vulnerability by producing a security exploit that uses low- the protection system obeys the security policy: “no subject can
level details about the system. We demonstrate this by show- Poth read and write to an object that it does not own”.
ing how our technique can find exploits against the vulnerabil- Checking the API.As explained earlier, to discover security ex-
ities identified by Percent-R§], a format-string vulnerability- ploits, it is important to work with the concrete system. Checking a
finding tool. As discussed earlier, we demonstrate that finding finite-state abstraction often results in the loss of low-level details
exploits can benefit vulnerability-finding tools by automatically ~required to craft a security exploit. As a result, finding a security-
classifying vulnerabilities as real threats or as false positives. ~ exploit corresponds to checking the infinite-state system. For this
The rest of this paper is organized as follows: We first present purpose, we usbounded model checkirig]. An overview of the

an overview of the technique iBection 2 We then present the technique is shown ifigure 1

formal framework inSection 3 and apply it to analyzerintf Safer Violation of safety

(Section 4 and the IBM CCA API Gection 5. We discuss related conditl%ﬂ\ (counter-example)
work in Section 6 and conclude irsection 7 AP
specification Model Checker
2. OVERVIEW OF THE TECHNIQUE 'Eé%%%rr/ No violation
In this section, we describe, using a toy protection system (Har- ! increase bound and terate |
risonet al.[20]), the framework used to specify APIs and the tech- Figure 1: A schematic overview of the method.
nique used to check such a specificati@ection 4on printf - The model checker accepts a description of the API specified in

family format-string attacks shows how the framework and checker g, framework, a safety property, and an integer bound. It system-
can be used to generate security exploits that use low-level details atically explores all allowed sequences of API operations shorter
such as the organization of the program’s runtime stack. in length than the integer bound and determines whether any trace
A protection system is defined by a finite set of rights and com- gaisfies the safety condition. If the model checker finds a violation
mands, and its state is given by a trip O, B, whereSis a set of the safety policy, it terminates with a trace of API operations
of subjects O is a set of objects, anil is an access matrix with @ that demonstrates the vulnerability. For instance, a bound of at
row for each subject and a column for each object. As presented by|east 3 discovers the following API-level vulnerability in the pro-

Harrisonet al, each subject is also an object, anq we hayve O. . tection systemCreate(A, file ) — Confer,c.q(A, B, file ) —
The entryP[§, o] of the access matrix is a set of n_ghts that subject Conferurie(A, B, file ). This sequence of API operations adds
s has on ob_Jecb. We restrict ourselves to three rightayn, read, (B, file , read), and 8, file , write) to P, but does not addg
andwrite, with their natural meanings. file ,own). This violates the safety condition, becaisdoes not

Specifying the APL.The first step in the analysis involves speci- gwnfile . but canreadandwrite it.

fying the APl in the formal framework, and specifying the safety |t the model checker terminates without a counter-example, we
property to be checked. The framework we use has four ingredi- st increase the bound and iterate.Skection 3 we note that it
ents: (1) a set of variables that describe the state of the compo-js yndecidable to check if an arbitrary system is vulnerable to API-
nent that implements the API, (2) the initial state of the compo- |eye| exploits. Thus, in general, the iterative process could go on
nent, (3) the set of API operations and the semantics of these op-forever. Our procedure sound butincomplete Thus, any vulner-
erations in terms of how they change the state of the component, gjjities found will indeed be exploitable in the model; however,
and (4) a representation of the set of sequences of API operationsy is not always possible to discover all vulnerabilities. In certain

to be checked. The fourth component helps to encode restrictionscases, including the study Bection 4it is possible to derive val-
on the ordering of APl commands. Such restrictions can be useful ;a5 of the bound for which the procedure is complete.

to exclude sequences of APl commands that are inconsequential

when analyzing the system, either because they can never arise i

the execution of the system, or because the environment in which - FORMAL FRAMEWORK

the system operates never generates such a sequence of API calls. We present a formal framework to model and analyze APIs. An

When the set of sequences forms a regular language, this compoAPI is the interface that a component (the system to be analyzed)

nent can be expressed as a finite-state automaton. presents to client modules. Each command in the API changes the
As discussed earlier, the state of the protection system is de-state of the component in a predefined way and hencestate

scribed by the triple§, O, B. The initial state of the protection  transformer A sequence of API operations defines a state trans-

system is given by the initial values & O, andP. Assume that former obtained by composing the state transformers of the individ-



ual API operations. We focus on such sequences of AP| operations,

and how they affect the security of the underlying component.
Formally, acomponens is defined by ¥, Init , 3, £):

¢ V denotes a finite set of variablés:, vo, ..., v,} wherev; €

D, for some (possibly infinite) domain of valug®;,. The value

of the vectorZ = (v1, ve, . . ., vy) is thestateof the componens.

Note thatt € D=D; X ... xD,.

e Init : D — BooL is a predicate that characterizes the initial

states of the component. Each sta@tsuch thatnit (%) holds is a

possible initial state of the component.

e ¥ denotes a finite set of API operatiofisp,,op,,...,0p,,}-

Each operatiop, may also take some input parameters, denoted

by the vectow;, from some domait;. Eachop, defines a family

of relations:op,(@;) C D x D. The semantics adp,(d;) is given

by predicates that define its pre- and post-conditi&me,;(a;): D

— BooL andPost ;(a;): DxD — Bool, as: op,(d@:)(Z, ¥) =

Pre ;(@;)(¥) A Post ;(a;)(Z, ), whereZ and ¢ denote, respec-

tively, the state ofS before and after the application of,(a;). If

Pre ;(@;)(Z) does not hold, theop,(@;) aborts.

e £ C ¥* is alanguage of API operations. It plays two roles:

1. It encodes temporal restrictions on API operations that are in-

herent in the implementation of the componéntThis could,
for example, be specified using a reference monitor.

. It formalizes the notion of “usage patterns”, i.e., API operation
sequences that could be invoked by a clienSofFor instance,

suppose the API in question is the set of system calls supported
by an operating system, and that we wish to verify that an appli- 3.1
cation that uses system calls conforms to a safety property and

does not launch an API-level exploit on the operating system.

Rather than considering all possible sequences of system calls

it is sufficient to restrict our attention to call sequences that can
be generated by the applicatiosf].

Formally, £ can be viewed as the intersection of two languages
of API operations, one that plays the first role, and one that plays
the second. The two-fold use df is conceptually similar to the
“optimistic” approach to interface desighd).

A language recognizéR for £ is a machine that accepts a string
of API operations and determines whether it is a membet of
not. In general, a recognizer need not existforWe restrict our-
selves to cases where a recogniieexists, for instance, whef
is regular or context-free. For the case studgettion 4 we con-
sider a special case of the framework presented above, in which
will be a regular language, and its recognizer will be a finite-state
machine called thAPIl-automaton

In addition, a predicatBad: D — BooL defines the set of error
states; each stafésuch thaBad(Z) holds is a state that the com-
ponent should never enteBad is defined based on the security
properties required faf.

In verifying thatS never enters a state satisfyiBgd, we restrict
our attention only to sequences of API operation&.iiT his avoids

1.

An API-level exploiton the componens is defined as a se-
quence of API operationsp,, ,op;,, .- -,0p,, , Whereop,, - op,, -
...-0p;, € L, thatviolates API-safety & for some predicatBad.

Not surprisingly, for an arbitrary compone&t and predicate
Bad, checking ifS is safe with respect to staiéis undecidable.
The proof of undecidability follows easily from a similar theorem
for protection systems2[].

Our approach to the API-safety problem is basedonnded,
infinite-state model checkingTo restrict attention to sequences
of API operations inC, we first construct the product of the lan-
guage recognizer of (e.g., the APl-automaton) with the infinite-
state system defined by (Init , 33). The safety property:-Bad
is then checked on the resulting infinite-state syst&m using
bounded model checkinghe bounded model checker explores all
API operation sequences of length up to an integer balnith
Stot, Cchecking, for each state reached in that sequendadfis
satisfied. If so, it generatescancrete error tracei.e., a sequence
of states leading to the error state in which each variaplgets a
value from the domairD;. An exploit is extracted from this con-
crete error trace.

While recent advances in SAT solvingd, 34] have made bounded
model checking practical for analyzing finite-state systems, they
have also led to the development of efficient SAT-based decision
procedures for expressive, decidable first-order logics (8gL4]
35]). This, in turn, has fueled progress in infinite-state bounded
model checking, and is a key reason for our use of this technique.

lllustrative Example

We illustrate the concepts developed above using the protection
system example fron®ection 2 Recall that in the example, we
initially had two subjects and objectd,andB. In our framework,
we haveS = (V, nit , X, £), where:

e Vis{S, O, B. Note that all three variables are set-valued, be-
cause the matri® can also be viewed as a set of triples d,

r), wherer denotes a right.

Init is (S=0={A, B}) A (P[A, A] = P[B, B] = {own, read
write}) A (P[A, B] = P[B, A] = 0).

3 is {Create, Confer,.qq4, Confer,, it }. The predicatére (s,

o) for Create(s, o) asserts that such an entry does not already
exist in P, while Post (s, o) asserts that an entry,(o) is cre-
ated inP andown € P[s, o]. The predicatéPre (s1, s2, o) for
Confer,..qq(s1, $2, 0) asserts thadwn e P[s1, o], andPost (s1,

s2, 0) asserts thatade P[s2, o]. The predicates fa€onfer ,,.;¢e

are similar.

e LisXY™. Thatis, all possible interleavings of the APl operations
are permitted in this example.
To verify that “no subject can both read and write to an object

that it does not own”, we use the predic&ad = 3s,0. (s € §
A (o0 € O) A (read, writee P[s, o]) A (own¢ P[s, o]). The API-

wasteful exploration of the state space during verification, and also @utomaton forZ is a single-state finite-state machine with three

reduces false alarms. Formally, we check for the following notion
of API-safety

DEFINITION 1 (API-SAFETY). For a predicat8ad, a com-

ponentS is safe with respect t@ if there is no satisfying assign-
ment to the following formula for any finite value &f

30p;,, 0P, -+, 0P, @1, 02, - - -, G-
Init  (Z) A (op;, - op,, Ce..opg, eL) A
(op;, (@1) o op;,(@2) o .. 0 op;, (ax)) (Z, %) A Bad(y)

‘" denotes concatenation and ‘denotes relational composition,
i.e., (R o R)(Z, 2) =37. Ri(Z, ) A Ra(7, 2).

transitions, one for each of the API operations3in Bounded
model checking for this case is equivalent to “unrolling” this API-
automaton a finite number of times and checking that the property
holds. When presented with a bound of at least 3, a bounded model
checker discovers the expldteate — Confer,..,q — Confery,ize-

4. FORMAT-STRING VULNERABILITIES

Format-string vulnerabilities2, 30] are a dangerous class of
bugs that allow an attacker to execute arbitrary code on the victim
machine.printf  is a variable-argument C function that treats its
first argument as Bormat-string While we restrict our discussion



toprintf , the concepts discussed apply to otpentf  -family
functions as well, e.gsyslog , sprintf . A format-string con-
tainsconversion specificationsvhich are instructions that specify
the types that this call oprintf  expects for its arguments, and
instructions on how to format the output. For instance, the conver-
sion specificatiori%s" instructsprintf  to look for a pointer to
achar value as its next argument, and print the value at that loca-
tion as a string. Whearg does not contain conversion specifiers,
the statementprintf  ("%s" , arg ) andprintf  (arg ) have the
same effect. However, frintf  (arg ) is used in an application,
and a user can control the value passeattp, then the application
may be susceptible to a format-string vulnerability. A possible fix
for such vulnerabilities is to do a source-to-source transformation
that replaces all occurrencegwfntf  (arg ) with printf  ("%s",

arg ), but this may not always be possible, for instance when the
source code of the application is not available, or when the appli-
cation generates format-strings dynamically.

Shankaeet al.[33] have built a tool, Percent-S, to analyze source
code and identify “tainted” format-strings that can be controlled by
an attacker. Potentially vulneralyeintf  locations can also be
identified in binary executableg%]. However, the aforementioned
techniques do not produce format-strings that exploit the vulnera-
bilities they identify.

We present a novel way to analyze and understamuatf -

stack, the return address and frame pointer are saved, and space
is allocated for the local variables pfintf , as shown irFig-

ure JA). In this caseprintf  is called with a pointer tdmt ,
which is a local character buffer fioo . This pointer is shown as
the darkly shaded region Figure 3A).

As mentioned earlieprintf  assigns special meaning to the
first argument passed to it, and treats it as a format-string. Any
other arguments passeddantf  appear at higher addresses than
the format-string on the runtime stack. In our case, dmiy was

passed as an argument, and hence there are no other arguments on

the runtime stack.

Theprintf  implementation internally maintains two pointers
to the stack; we refer to these pointersrasTPTR and ARGPTR
The purpose ofMTPTRIS to track the current formatting character
being scanned from the format-string, whileGPTRkeeps track of
the location on the stack from where to read the next argument. Be-
foreprintf  begins to read any argumenis)TPTRIs positioned
at the beginning of the format-string aneGPTRIs positioned just
after the pointer to the format-strirfignt , as shown irFigure 3A).

Whenprintf  begins to execute, it movemTPTRalong format-
string fmt . Advancing a pointer makes it move towards higher
addresses in memory, hene®TPTR moves in the direction op-
posite to which the stack growsrintf  can be in one of two
“modes”. Inprinting mode, it reads bytes off the format-string and

family format-string vulnerabilities. The format-string can be viewed prints them. Inargument-capturanode, it reads arguments from

as a sequence of commands that instrpatstf  to look for dif- the stack from the location pointed to BRGPTR The type of the
ferent types of arguments on the application’s runtime stack. We argument, and thus the number of bytes by wmelePTR has to

have built a tool that can analyze potentially vulnerable call sites be advanced as it reads the argument, is determined by the contents
to printf  and determine if an exploit is possible. If an exploit of the location pointed to bgMTPTR. AS FMTPTR and ARGPTR

is possible, our tool produces a format-string that demonstrates themove toward higher addresses, they reach intermediate configura-
exploit. Our technique does not require the source code of the ap-tions, as shown ifrigure IB). Note thatARGPTR advances only

plication and can analyze potentially vulneraptentf  locations

if the contents ofmt cause9rintf  to enter argument-capture

from binary executables. We have also used the tool in conjunction mode at least once.

with Percent-S to generate format-strings that exploit the vulnera-
bilities identified (se&ection 4.5 Our discussion and implemen-
tation make the following platform-specific assumptions, although
the technique applies to other platforms as well:

1. We work with the x86 architecture. In particular, the runtime
stack of an application grows from higher addresses to lower
addresses, and the machine is assumed to be little-endian.

. The arguments to a function are placed on the stack from right
to left. A call tofoo (arg 1, arg 2) first placesarg » on the
stack, followed byarg ;. This is a popular C calling convention
implemented by several compilers.

We analyzerintf  from theglibc-2.3
4.1 Understandingprintf

3. library.

(1) int foo (char *usrinp) {
char fmt[LEN];

3) int a, b;

(4) strncpy(fmt, usrinp, LEN - 1);
(5) fmt[LEN - 1] = "\0;

(6)  printf(fmt);

Figure 2: A procedure with a vulnerable call to printf

This section reviews howrintf ~ works. Consider the code
fragment shown irFigure 2 Procedurdoo accepts user input,
which is copied into the local variabfent , a local array ofLEN
charactersprintf  is then called witifimt as its argument. Be-
cause the first argument gointf  can be controlled by the user,
this program can potentially be exploited. Whamtf  is called
on line (6), the arguments passedpontf  are placed on the

FMTPTR

FMTPTR

foo stack frame

! ARGPTR
DIS!

other local
variables of f oo

other local
variables of f 0o ;

ARGPTR
-

return address,
frame pointer.

return address,
frame pointer.

local variables

local variables
of printf of printf

printf stack frame

Direction of stack growth

® ®)
Figure 3: Runtime execution stack for the program inFigure 2.

To take a concrete example, suppose fimt is "Hi%d" when
printf  is called inFigure 2 printf  starts off in printing mode,
and advancesMTPTR, printing Hi to stdout as a result. When
FMTPTRencounters the bytés" , it enters argument-capture mode.
WhenFMTPTRis advanced, it points to the bytd" — which in-
structsprintf  to read four bytes from the location pointed to by
ARGPTRand print the resulting value to the terminal as an integer.
This also results inRGPTRbeing advanced by four bytes, the size
of an integer. Note that no integer arguments were explicitly passed
to printf  in Figure 2 hence instead of reading a legitimate inte-
ger value off the stack, in this cagerGPTR reads the values of
local variables in the stack frame fofo . As a result, it is possible
to read the contents of the stack, which may possibly contain values
of interest to an attacker, such as return addresses.



In the format-string exploits discussed in this paper, the goal of  andprintf  enters printing mode (corresponds to printing a
the attacker is to control the contents of the format-string in such ~ "%" to stdout ). Formally, [MODE = printing) — (FMTPTR

a way thatARGPTR advances along the stack until it enters the = FMTPTR + 1) A (MODE’ = argument-capture)} [(MODE =
format-string itself. By doing so, the attacker can control the ar- argument-capture}» (FMTPTR = FMTPTR + 1) A (DONE =
guments read bgrintf . Section 4.3evelops this point further. DONE + 1) A (MODE’ = printing)], where primed variables de-

- . note next-state values of the corresponding variables.
4.2 Formally SpeCIfymg thEprmtf API e We setl to be the language of all legal format-strings, which

~ The key observation is that each byte in the format-string is an  turns out to be a regular language. We extracted an API-automaton
instruction toprintf  to moverMTPTRandARGPTRby an appro- that recognizes all legal format-strings from the control-flow
priate amount. These bytes also instrpdhtf  as to the types graph of the implementation @fintf

of the arguments passed to it. Hence, in our formulation, each
byte in the format-string is treated as an APl commangriitf
and thus the format-string specifies a sequence of API operations
Our goal is to discover possibly malicious sequences, which corre-
sponds to finding format-strings that can be used for an exploit.
Eachprintf  call is characterized by two parameters, namely
the values DIS and LEN shown Figure 3 The format-string vul-
nerabilities we consider occur when the format-string that can be
controlled by the attacker is a buffer on the runtime stack. LEN
denotes the length of this buffer. DIS denotes the number of bytes

that separate the pointer to the format-string from the format-string tect format-string exploits. The tool encodmintf s described

itself. Figure 3shows a simple scenario where the stack frame above, and is parameterized by the values of DIS, LEN, and the

containing the format-string and the stack framepdhtf  are - - .
adjacent. In general, they can be separated by stack frames of sevpredlcateBad. Our choice of a bounded model checker was in-

eral intermediate functions, resulting in larger values of DIS. Note g?a‘ebnoiifezybtglgvl\?glc needed to express our moderioff , as
that the values of DIS and LEN are sufficient to capture the relevant ' ] ] ] )
details of the problem. Moreover, the values of DIS and LEN for 1. We need to model certain values in the stack precisely. In partic-

There are several possibilities 8Bad, each of which determines
an attack that exploits format-string vulnerabilities. We present a
‘few possibilities forBad in Section 4.3 In general, this predicate
can be expressed as a formula on the elementsinfa decidable
logic that includes quantifier-free Presburger arithmetic, uninter-
preted functions, and a theory of memories (arrays). (A formula
in quantifier-free Presburger arithmetic consists of a set of linear
constraints over integer variables combined using the Boolean op-
erators—, A, andV.)
We implemented a tool to examine the above system and de-

eachprintf  call can be obtained by disassembling the binary ex- ular, we need to track the contents of the format-string because

ecutable of the application that cafisintf , and examining the it serves as a concrete counter-exampRal is satisfied. This

call graph and the sizes of various functions’ stack frames. necessitates the use of a theory of memories and uninterpreted
Formally,printf  is described bys = (V, Init , 3, £), where: functions.

e V denotes the set of local variables in the implementation of 2. printf  uses integer and Boolean variables, where the integer
printf  that capture the current state. We identified 24 local variables are modified using linear-arithmetic operations (addi-

variables (or “flags”) with integer and Boolean valtibg exam- tion and multiplication by a constant). To express formulas over
ining the source code and manualspointf . While our im- these variables, we need quantifier-free Presburger arithmetic.
plementation considers all these flags, for purposes of explana- Based on these requirements, we chose to use the bounded model
tion we restrict ourselves to just four flagsTPTR, ARGPTR, checking capabilities of the UCLID verifier. The details of how

DONE, andIS_LONGLONG. FMTPTR andARGPTRare pointers UCLID works are outside the scope of this paper, and may be found
whose functionality was discussed earlier. We shall treat these elsewhere§, 32]. The description oprintf  (S) can be encoded

as integer valuesDONE is an integer that counts the number as an UCLID model in a straightforward manner.Bid is satis-

of bytes printed, antS_LONGLONG is a Boolean variable that  fied, then UCLID produces a counter-example that can be directly

determines whether the argument on the stackasg@ long translated to a format-string that demonstrates the exploit. At each
value or not (dong long int is 8 bytes in length). call-site toprintf , we only need to examine format-strings of

e Init : The initial state ofprintf  is determined by the ini-  length less than or equal to LEN (we exclude the terminating
tial values of the flags in’. We assume that all addressing is * \0" ). Hence, abound of LEN1 suffices to make bounded model
relative to the initial location oRRGPTR and hencenit s checkingcompleteat that call-site; i.e., printf  location deemed
defined asARGPTR= 0) A (FMTPTR = DIS) A (DONE = 0) A safe using our tool with the bound LEN will indeed be safe with

(IS_LLONGLONG = FALSE) for the four variables discussed here. ~ respect to the property checked.

e X: As explained, each byte in the format-string is interpreted 4.3 Checking theprintf API
as an instruction trintf . HenceX is [0..255], i.e., all '

possible byte values. The values®fe andPost for each
operation are based on how it changes the staterioff
and were obtained by examining the source codprwitf

For instance;%" € X hasPre = TRUE, andPost captures
the following semantics: iprintf  is in printing mode (deter-
mined by a variableioDE in V), thenFMTPTRis incremented,
andprintf  enters argument-capture mode.ptintf  isin
argument-capture mode, them TPTRandDONE are incremented,

In exploits that we consider, the goal of the attacker is to ma-
nipulate the contents of the format-string so as to foxe&PTR
to move into the format-string. HenceRGPTR has to move by
at least DIS bytes by the tinevMTPTR moves LEN-1 bytes. Be-
cause the attacker controls the value of the format-string, he can
control the value of the arguments th@intf  reads from the
stack. As demonstrated below, this vulnerability can be used to
read data from, or write data to, nearly any location in memory.
Reading from an arbitrary location.One of the ways an attacker
in the actual implementation gfrintf , the flags are C integer and pointer data  can print the contents of memory at addresssaz a1, whereay is

types, i.e., finite-precision bit-vectors. In our model, flags that just take two values, 0 the most-significant byte is to construct a format-string that moves
and 1, are treated as Boolean, while the rest are treated as (unbounded) integers. While 5

this approach achieves efficiency by raising the level of abstraction, it does not model FMTPTR andAR_GPTRSUCh tha_t W_herp”ntf Isin p“nt'ng_ mode
integer overflow, and may lead to imprecision. andFMTPTR points to the beginning of ®s" , ARGPTRpoINtS to




(A) Bad for Read Exploit
[FMTPTR < DIS + (LEN — 1) — 1]
A [ARGPTR > DIS]

A [ARGPTR< DIS + (LEN — 1) — 4]
A [*FMTPTR = ‘%’ ]

A [*(FMTPTR+ 1) ='s’ ]

A [*ARGPTR = a1

A [*(ARGPTR+ 1) = ag]

A [*(ARGPTR+ 2) = as]

A [*(ARGPTR+ 3) = a4]

A [MODE = printing]

(B) Bad for Write Exploit
[FMTPTR < DIS + (LEN — 1) — 1]
ARGPTR > DIS]

ARGPTR < DIS + (LEN — 1) — 4]
*FMTPTR = ‘%’ |

#*(FMTPTR+ 1) ='n’ |
*ARGPTR = a1

#(ARGPTR+ 1) = a2]
#(ARGPTR+ 2) = as]
#(ARGPTR+ 3) = a4]

DONE = WRITEVAL]

MODE = printing]

A
A
A
A
A
A
A
A
A

A

Figure 4: The predicate Bad used for (A) Read exploit and (B)
Write exploit.

the beginning of a sequence of 4 bytes, whose value as a pointe
is asasasar.? Then, wherprintf  reads thé'%s" , it interprets

the argument ahRGPTR as a pointer and prints the contents of
the memory location specified by the pointer as a string, which
would let the attacker achieve his goal. This is formalized using
the predicat®ad shown inFigure 4A). Also, note that:

1. The little-endianness of the machine is reflected in the formula-
tion of Bad: bytes are arranged from most-significant to least-
significant as addresses decrease; for exampleppears at a
lower address that,.

2. Symbolic values of different stack locations, such as those at
FMTPTR and ARGPTR, appear inBad, and show the need to
track stack contents precisely.

Figure 5shows some results produced by the tool for various val-
ues of DIS and LEN. For instance, line (3) shows that the format-
string" a1aza3a4%d%s"can be used to read the contents of mem-
ory atasasazar When DIS and LEN are 4 and 16, respectively.
The exploit proceeds as follows: initiallyMmTPTR points to the
format-string, andaRGPTRis 4 smaller tharFMTPTR. printf
starts execution in printing mode; it advaneasTPTR and prints
the bytesa1, az, as, andas to stdout . When printf reads
the'%’ , it advancesMTPTR by one and enters argument-capture
mode. Whenitreadd’ ,itadvancesMTPTRby one, reads an in-
teger (4 bytes) from the location pointed to ARGPTR, prints this
integer tostdout , and returns to printing mode. As a resaiRG-

PTR points to the beginning of the format-string, aRATPTR is
positioned at the beginning of the sequetfds" . Whenprintf
processes th&bs" , the contents of memory at locatienasaza:
are printed testdout . A few more observations drigure 5

1. In line (2), the tool is able to infer that an exploit is not possi-
ble. Intuitively, this is because the format-string is too small to
contain a sequence of commands that carry out the exploit.

. Lines (3) and (4) present two format-strings for the same pa-

rameters. We achieved this by first observing case (3), and run-

ning the tool again, appending a suitable terrB&al to exclude

I,

counts the number of bytes that have been output by this call on
printf . Figure 4B) shows the case where an attacker writes the
integerwRITEVAL to the addresgsasaza;.

Figure 5shows some format-strings obtained by the tool to write
the integer234 to memory addresgsasaza1. Consider line (5)
for instance; for the value$ and 16 for DIS and LEN, respec-
tively, the tool inferred the format-strina:az2asa4%230g%n".
Whenprintf  starts execution, it is in printing mode, an&G-
PTRis 8 bytes belowrMTPTR on the stack. AFMTPTR moves
along the format-stringg1, a2, as, andas (4 bytes) are printed
to stdout , thus incrementingpoONE by 4. The next byte¢'%"
incrementsMTPTR by 1 byte and forceprintf  into argument-
capture mode. The next 3 byté®, ,‘3’ and'0’ are treated as
a width parameter, angrintf  stores the valug30 in an internal
flagwIDTH (part of V for printf ). Whenprintf ~ processes the
next byte,'g’ , it advances\RGPTRby 8 bytes, reads double
value from the stack, prints this value (appropriately formatted) to
stdout , increment®ONE by the value ofwIDTH, and returns to
printing mode. At this pointARGPTR poaints to the beginning of
the format-string, whose first four bytes contaifuzasas, DONE
is 234, andFMTPTR points to the beginning of the sequeriéén” .
Whenprintf  processe$%n", the value ofDONE is written to
asasaza1, completing the exploit.

The execution times shown Figure Swere obtained on a ma-
chine with an Intel Pentium-4 processor running at 2GHz, with
1GB of RAM, running Redhat Linux-7.2. All runs completed within
a few minutes. As a general trend, the time taken increases as
LEN increases, although not monotonically. The reason is that
for larger values of LEN, it is necessary to run the bounded model
checker UCLID for more steps, leading to a larger formula for it to
check; the largest formulas were Boolean combinations of several
thousand linear constraints over about a hundred integer variables.
UCLID translates the problem into one of checking the validity of
a Boolean formula, which we checked using a SAT solver called
Siege B4]. Note also that the time taken for finding read exploits
is much lower than that for finding write exploits. This is because
finding a write exploit involves solving a more constrained problem
than for the read exploit: In addition to finding a sequence of con-
version specifications that move®GpPTR into the format-string,
one needs to find associated width values that add up to the desired
value @34 in Figure 5. Furthermore, the length of this sequence
can be at most LEN1.

4.4 Optimizations

In our model ofprintf  , each bytan the format-string is con-
sidered as an API operation. As an optimization we cancaypie-
gated API operation$o ¥, i.e., treat certain sequences of “primi-
tive” API operations as a single operation. For example, we could
create the aggregated API operatiéblLg” , which movesMTPTR

case (3). This technique can be iterated to infer as many variantsby 3 bytes,ARGPTR by 12 bytes, and reads lang double

of this exploit as desired.

Writing to an arbitrary location. Another kind of format-string
exploit allows an attacker to write a value of his choice at a location
in memory chosen by him. To do so, he makes use of'the"
feature provided byrintf . Whenprintf  is in printing mode
and encounters ‘&on" in the format-string, it reads an argument
off the stack, which it interprets to be a pointer to an integer. It then
writes the value of the fla@oNE to this location, wheredONE

2The only constraintom 1, a2, as, a4 is that they must be non-zero, because a zero
value is interpreted ds\0’ , and terminates the format-string. For ease of explanation,
we impose the additional restriction thaf # "%", fori € {1, 2,3,4}. If a; =

value. Similarly, we can use conservative width specifiers to form
such an aggregate API operatide;g.,"%60Lg" increment®ONE

by 60 in addition to changing the other flags as described above.
AugmentingX: in this way does not affect soundness because all
the format-strings that UCLID could previously generate can still
be generated. It is an optimization because longer strings can po-
tentially be found with fewer iterations of bounded model checking.

4.5 Comparison with Existing Tools

To demonstrate the effectiveness of our tool, we compared it
with Percent-S 33], a tool that analyzes source code using type-

"%", the address can contain (parts of) a conversion specifier. However, our tool can 3The number of bytes printed is the maximum of the width specifier and that needed

also discover exploits where the addressisaza; contains'%" .

to precisely represent the output; so the width specifier must be conservatively large.



Slno. | DIS | LEN Read exploit Write exploit

Exploit string discovered Time (sec.) | Exploit string discovered Time (sec.)
1) 0 7 | "arazazas%s" 0.2 | No exploit possible. 0.3
2) 4 7 | No exploit possible. 0.3 | No exploit possible. 0.3
(3) 4 16 "aq a2a3a4%d%s" 0.4 "%234Lg%na1 asasay" 4.8
(4) 4 16 | "%Lx%ld%sa;azaszas"” 1.0 | "aia2a3a4%%%229X%nN" 13.1
(5) 8 16 | "aiazazas%LX%Ss" 0.9 | "ajaz2a3a4%2309%nN" 22.2
(6) 16 16 | "%Lg%Lg%siiazazas" 1.1 | "ai1a2a3a4%1379%93g%n" 106.5
) 20 20 | "ajazazas%lLg%g%s” 5.3 | "aiaza3a4%210Lg%20g%n" 148.7
(8) 24 20 "“aq a2a3a4%Lg%Lg%S" 2.1 "“aq a2a3a4%Gng%169Lg%n" 204.2
9) 32 24 | " ajasasas%g%Lg%Lg%s” 13.5 | "ajasa3a4%78Lg%80g%72Lg%n" 3435

Figure 5: Some exploits generated by our tool. For the write exploit, we chose to write the integéB4 to the memory location with a
specific addressisazazas.

Sl.no. Software DIS | LEN | Exploit Exploit string discovered
("?" represents a non-zero n@ASCII character)
@ php-3.0.16 [17 24 | 1024 | Write Oxbfffécc3 to Oxbfff88c3  (asazazay) " a1 aza3a4%36000Lg%31Lg%nN" +
Assume thabybzboby = asazasa; + 2. "? by bab3bs%13000Lg%111g%n"
) gpopper-2.53  [31] | 2120 | 1024 | Read contents &xbfff88c3  (asasazai) ("%Lg" )?T0 + ("2 )52 + "%Ld%Ld%d%d%s, asasas”
3) | wu-ftpd-2.6.0 [37] | 9364 | 4096 | Write Oxbfffocab  to Oxbfff88c3  (asaszasay) "a1a2a3a4%99gb1 bab3zby” +
Assume thabybsbaby = agasasa; + 2. ("%60Lg" )77® +"%9129%600Lg%n%852X%n"

Figure 6: Exploits generated against known vulnerabilities in some real-world software packages.

qualifiers [Lg] to identify “tainted” (i.e., user-controlled) inputs that Because the values of DIS and LEN are quite large, we had to

could potentially be used as format-strings. We report on two ex- use the optimizations described $ection 4.4 We were able to

periments here: the first showing how we can reduce the false alarminfer, in aboutl0 minutes, a format-string that is the concatenation

rate, and the second showing how we can confirm a true vulnera-of the following three strings: A prefiXa;azaza4%99gh1 b2bsbs"

bility by generating an exploit. a middle par{"%60Lg" )”"® consisting of778 repetitions of an ag-
Consider the program iRigure 2 When compiled on our ma-  gregated API operation, and a suff#912g%600Lg%n%852X%n;’

chine, the value of DIS is 28 bytes. Irrespective of the value of whereasasaza, is0xbfff88c3  andbsbsbabi = asasasaqr + 2. It

LEN, the size of the buffeimt , Percent-S reports that thentf can be verified that this string writes the desired value to the desired

statement on line (6) is exploitable. Clearly, small values of LEN location. One write is performed by eatfn": the first writes

preclude the possibility of attack. As a result, Percent-S producesOxbcab t0 asasaza; and the second writexbfff  t0 babsb2b1.

false alarms, because it does not account for the values of the pa- Existing format-string exploit generators attempt to construct for-

rameters DIS and LEN. mat strings from fixed conversion specifiers. For instance, Thuem-
On the other hand, using our modelmintf , we were able mel [37] constructs format-strings with th®6.8x" conversion

to infer that a read-exploit (similar to the one reported earlier) is specifier as the only building block. As a result, these techniques

not possible unless LEN is at leaki bytes, and a write-exploit lack soundness: there may be exploit strings outside the space of

(to write the integer234) is not possible unless LEN is at least strings explored by these tools. By doing an exhaustive search

20 bytes. In each of these cases, our analysis produces a formatof the state space, our technique guarantees soundness within our

string that demonstrates the exploit, while Percent-S does not. model ofprintf . In addition, existing tools are incapable of find-
We also used the tool to analyze known format-string vulner- ing variants of an exploit. As demonstrated in lines (3) and (4) of

abilities real-world software packageBjgure 6has the details. Figure 5 our technique can be used to discover variants of an ex-

php-3.0.16 is a language-processor for the widely-used web- ploit for the same values of DIS and LEN.

scripting languag@hp, qpopper-2.53  is a POP3 mail server,

andwu-ftpd-2.6.0 is a popular file-transfer daemon. Weex- 5. THE IBM CCA API

plain in detail the exploit againatu-ftpd-2.6.0  ; the others are We present a second case study: the IBM CCA API. The CCA
Z'.m”a.r' Per(f:ter;t-zs 6c8rrectlyt:d;ez§gled tthe Igcatlon ]?f thetvutlnera- API [24] is a cryptographic-key management API used with secure
dl iy In :Nut'. P t;1  oxol 't’T# ! | no fplchJSucedaLEol\rlr?a 'ti.”ng hardware devices (coprocessors) such as the IBM 4758. The copro-
emlons ra£§64 € eéi(;)glé eva Fe (I) h'ak? bto'r clisbex- cessor provides cryptographic services, such as key-management,
ample wer an » fespectively, which we oblain€d by~ 1he post computer. Each IBM 4758 is loaded with a distinct,

disassembling the binary executable. For these values of DIS and c p

.~ “secretmaster keydenoted byMK), which is safeguarded by the
LEN, .V\{e checked whether the attacker could perform the followw_lg physical security of the device. The security of the host relies on
exploit: The attacker uses the buffer that stores the format-string the secrecy ofIK

to additionally store malicious code, and then overwrites the re-
turn address in the stack frame mfintf  using a write exploit 51 Background on CCA

(Section 4..’,8 S0 as to point to the beginning of the malicious code CCA s often used with the IBM 4758 for key-management. The
sequence instead. We assumed that the return address to be ovef; computer issues commands from the API, which are commu-
written is at the stack locatiobxbfff88c3 , and that the malicious .

de is | d he add b b nicated by CCA to the coprocessor. A noteworthy feature of CCA
code Is located at the addreeffibcab , 13288 bytes above is the ability to assign “types” (callecbntrol vectord27]) to keys.

(and hence located within the _buffer that stores the fc_;rmat-stnng). The control vector of a key determines a subset of the operations
Th?se addres_s valges are easily read off the stack using anc_Jther ®from the API accessible to it. CCA defines control vectors for sev-
ploit, as explained irSection 4.1 Because the value to be written o | ¢jasses of keys, such as those to compute message authentica-
is fairly large, we used a variant of the predicaiad that allows tion codes, PIN numbers, and so on. Control vectors are used by
for writing to a single address using multiple, slightly misaligned ~-a 1o implement role-based access control (RBAC] [

ertebs c;f sm:l_ler (\)/asl)ues. (Details on doing such misaligned writes  gocqyse it is important to preserve the integrity of cryptographic
can be found in30, 37].) keys, clear values of keys should never be stored on the host com-



puter. Similarly, to preserve the integrity of RBAC, a key should
be tightly coupled with its control vector. The IBM 4758 achieves
both these objectives by storing each key on the hard disk of the
host computer as apperational key-tokenFor the discussion in
this paper, we restrict ourselves to two components of the key-
token, denoted as (kgcv, (K), CVk). Here® denotes bit-wise
exclusive-or, and ({P) denotes the symmetric-key encryption (us-
ing an algorithm such as 3DES) Bfusing keyK. Thus, the first
component is the encrypted valuekafand the clear value @&Vy.
When presented with this key token, the IBM 4758 can @%&

from the second component, and use it to decrypt the first compo-
nent to retrievéK. Of course, this clear value should not be revealed
outside the IBM 4758. Observe that the valuekofannot be re-
trieved if the second component of the key-token is modified. Also
note that this key-token will not function with another IBM 4758
because the master keys will be different.

It is often necessary for two hosts to share cryptographic-keys,
for instance, to establish session-keys for communication. We dis-
cuss communication between two hoatandB, each of which has
an IBM 4758 (with keysMK, and MKg, respectively), and uses
the CCA API for key management. One of the supported methods
for communication involves establishing a secure communication
channel betweeA andB, using a symmetrikey-encrypting key
which is used to encrypt all CCA-managed keys transported over
the channel. The key-encrypting key, whose clear value we de-
note asKEK, is itself a CCA key, and is associated with a control
vector CViek. It is stored atA andB as operational key-tokens
(Emk,dcvier (KEK), CViek) and (Bukg ocvye (KEK), CVkex), re-
spectively. One of the techniques supported by CCA for installing
key-encrypting keys works as follows: One of the parties, Aay
generates two (or moréey parts KP; andKP-, such thatKEK
= KP; @ KP;. These key parts are transported (in the clear) sep-
arately toB, where they are entered usikgy_Part_Import, a CCA
APIl-operation (seéigure 7). The result of this APl-operation is
an operational key-token f&¢EK. The idea is that the clear value
of KEK cannot be retrieved unless all the key-part holders collude.

Consider a situation whefehas a key (with control vect@ V)
stored as a key-token (f,acv, (K), CVk), that it wants to share
with B. Clearly, this key-token cannot directly be used Bype-
cause the clear value &f is encrypted withMK,. To allow key-
sharing between two IBM 4758s, CCA provides an APIl-operation
Key_Export (shown inFigure 7 which makes the key-token “device-
independent”. This APl-operation uses the operational key-tokens
corresponding t&EK andK and to produce the token (Ecgcv, (K),
CVk). This export key-tokeris device-independent. Intuitively,
the key-token (Rk,scv. (KEK), CVkex) is used to retrieve the
value KEK within the IBM 4758, which is then used to produce
KEK®CVk, whereCV is retrieved from key-token (fx, s.cv, (K),
CVk). The IBM 4758 can also use (j, scv, (K), CVk) to retrieve
the valueK. These values are used to produce the export key-token.

The export key-token can be transported over the network to
B, where it is referred to as amport key-token At B, an API-
operationkey_Import (see specification ifrigure 7 is used to con-
vert this key-token into an operational key-token BarThe first
input to this APl-operation is the operational key-tokenkdK,
while the second input is the value of the key-token received over
the communication channel. As witey_Export, Key_Import first
retrieves the clear value fEK, and uses this value with the value
of CVx from the second input to produ¢€EKHCVk. This value
is used to retrievék by decrypting kekgcv, (K). The clear value
of K and the value o€V are then used to produce an operational
key-token (Eukgacvy (K), CVk), which can be used &.

5.2 Formally Specifying the API

We formalize the CCA API using the framework developed in
Section 3 Our focus is on the security of the CCA API, and hence
we will restrict our attention to the sequence of API operations
that can be issued on jushecoprocessor. We make the follow-
ing assumptions: (1) The host we analy2e,can communicate
with other hosts, such &. (2) To do soA andB establish a se-
cure communication channel for key-exchange, protected by a key-
encrypting keyKEK. We assume tha initiates the communica-
tion, and the key-encrypting key is storedads (Bykg ecvye (KEK),
CVkek)- (3) The API-operatiorkey_Part_Import is used to install
key-encrypting keys.

Using the framework itsection 3S = (V, Init  , 3, £), where,

e V denotes a single set-valued varialkleytokens, which de-
notes the set of all key-tokens knownAo

e Init : keytokens = (), the empty set.

e X = {Key_Part_Import, Key_Import, Key_Export}, i.e., the subset
of the CCA API that we analyze.
o L=3%"

Intuitively, we keep track of the set of key-tokens available on the
IBM 4758 using the variablgeytokens, and assume that this set is
initially empty. We assume that APl-operations can be interleaved
arbitrarily, denoted byC = ¥*. The operations it accept two
arguments each, arte andPost are defined as follows:

1. Key_Part_Import(c, 3): Pre («, 8) is TRUEwhile Post («a, 3) is
(Emk@cviex (@@ 8), CVkex) € keytokens.

Key_Import(a, 8): Pre («, 8) asserts that andg have the struc-
ture of key-tokens. Let®" and«a® denote the first half and
second half, respectively, of key-token and similarly forg.
Post (o, 3) asserts that f, ¢ gev(Key) € keytokens, where
Key is such thaz®"® = E,, 5w (Key), andVal is such that®"™

= EMKAEBDLCV (VaI)

3. Key_Export: Analogous taKey_Import.

Intuitively, Val denotes the clear value of the key-encrypting key,
retrieved froma, and this value is used to retrieve the vaKey
from 3. This value is then used to produce an operational key-
token, which is required blRost to be inkeytokens.

The safety property that we verify is the integrity of RBAC, i.e.,
the operational key-token obtained Atusing Key_Import should
be associated with the same control vector as the control vector
associated with the export key-token senBbyrhat is, if the value
sent byB over the communication channel isgkgcv, (K), CVk),
then the operational key-tokenAmust be (i, acv, (K), CVk).

Bad is defined as (Fk,acvmes (K), CVnew) € keytokens, where
CVnew# CVg, for some keyK sent byB.

To study the security provided by the CCA API, we assume that
an attacker has complete control o¥erin particular, the attacker
can observe and manipulate messages sent across the communica-
tion channel. In addition, he can manipulate any key-token stored
on the host computer &, and invoke CCA API operations on the
IBM 4758 atA with arguments of his choice. These assumptions
follow the standard Dolev-Yao attacker mod&b]. A formal state-
ment of the attacker’s abilities is shownkigure 8 In the figure,

I" is used to denote the set of terms known to the attacker, and the
rules capture how the attacker can enhance his knowledge using the
set of terms that he knows. For instance, the first rule says that if
the attacker knows two terngsandb, he also knows & b.

5.3 Checking the API

We built a Prolog-based bounded model checker to analyze the
above specification. We chose Prolog because the inference rules,

2.



API operation Expected Input 1

Expected Input 2

Output

Key_Part_Import KP; (clear)

KP2 (clear)

(Emkacvygy (KP1®KP2), CViex)

Key_Export (Emkaocvygy (KEK), CVkek)

(Emkacvy (K), CVk)

(Exekacvy (K), CVk)

Key_Import (Emkacvygy (KEK), CVkek)

(Exexacv (K), CVk)

(Emkacyy (K), CVk)

Figure 7: Some API operations from the IBM CCA. MK denotes the master key of the coprocessor CCA operates witkEK denotes
the clear value of the key-encrypting keyK denotes the clear value of a CCA keyCVk denotes the control vector associated witk,

and CVgex denotes the control vector for key-encrypting keys.

F'Fa TESb TFakb THED
@ rU|es I' - adhb I'ka
; 'k Tkp 'k TFELD
(En/De)cryption B, () 5
iri Pka TFD L F (ab)
(Un)pairing T  (a,b) TrFa TFDb

Figure 8: Knowledge enhancement rules. Associativity and
commutativity rules for @ are not shown.

such as those presentedrigure 8§ and the API operations could

such as those ifrigure 8 We note that such rules are often em-
ployed by security-protocol verifiers (e.g2d]), and the CCA API
can potentially be analyzed by a security-protocol verifier as well.

6. RELATED WORK

Model Checking. Several software model checking tools (e.g.,
[3, 10, 11, 16, 21]) have been proposed in recent years. These

easily be encoded as Prolog rules. We refer the reader to an accomtools check software for violations of user-defined assertions or of

panying technical reportLp] for details on the model checker.

temporal-ordering rules on events. They use finite-state abstrac-

For the API specification discussed, the model checker producestions to model data values, and have been successful at verifying

the counter-example trace shown in Fig@QreThis is the “chosen-
difference” exploit on control vectors, first discovered by Boéid [

(1) Key_Part_Import:

Input 1: KP;

Input 2: KP2 SCVBCVhew

output: (B, @ cvyey (KEKBCV@CView), CVkek)
(2) Key_Import:

Input 1: (Buk, &cvyey (KEKBCVk B CVnew), CVkex)

Input 2: (Bcekgycvy (K), CVnew)

Output: (EMKA@CVneW (K), CVnew)

Figure 9: Counter-example trace showing exploit.
The exploit works as follows: Suppose that the attacker knows
KP2, whereKP; & KP,; = KEK. This happens, for instance, when
the attacker is the holder &€P>. In statement (1) ofigure 9

control-flow-intensive properties.

As discussed earlier, an API-level exploit is a concrete trace in
the model that satisfiedBad. The key difference between an API-
level exploit and concrete counter-examples produced by the above
tools is that an exploit uses several low-level details. Unlike the
aforementioned tools, our technique is capable of finding exploits
because it permits modeling low-level details, such as the layout of
the program’s runtime stack.

The strategy we employ for finding exploits is based on bounded,
infinite-state model checking. The use of the UCLID verifier in
the printf  case study was driven by the need to reason about
quantifier-free Presburger arithmetic, and a bounideifi—1 guar-
antees completeness. In general, the choice of an analysis tool
would depend on the logic needed to reason about the system; e.g.,

the attacker installs a key of his choice as the key-encrypting key if the underlying logic is first-order relational logic, the Alloy ana-

at A. Because the attacker can manipulate key &4, he can
produceKP>@®CVi@®CVnew, WhereCVy is the control vector of
the key transported over the network, &new is another control
vector, chosen by the attacker. Whiésy_Part_Import is executed

lyzer [23] could be used. Similarlynboundedinfinite-state model
checking techniques (e.g9]] can also be potentially used.

Test GenerationFormal specifications of software have been used
to generate test cases, using bounded exhaustive te&tB@.[The

with the modified key part as the second argument, the key-token specifications are typically in the form of pre- and post-conditions,

(Emk, @ cviek (KEKBCVK@CVhew), CVkek) results, andA thinks
that this is the key-token for the shared key-encrypting key. In-
put 2 of Statement (2) of Figur@ corresponds to a step in which
the attacker first uses the unpairing and pairing ruldsguire 8to
obtain (Eekgcvy (K), CVnew) from (Exexgcv, (K), CVk), a value
that he knows. Second, he invokesy_Import with this modi-
fied key-token and the key-token of the shared key obtained in
the first step of the attackkey_Import producedMK,®CVyex US-

ing the value ofCVkex from Input 1, which is then used to re-
trieve KEK®CV®CVyew from the first half of Input 1. Under
normal operation this would have retrieved the vafiEEK instead.
Key_Import then extract€CVyew from Input 2, and xor’s this with
KEK®CVK@®CVhew to 0btainKEK®CVk. This value is used to
retrieveK from the portion kexgcv, (K) of Input 2. In the pro-
cess,A has been fooled into thinking that the key is associated
with the control vectoiCVy,ew. Hence,Key_Import terminates by
producing an operational key-tokenyk acvne, (K), CVnew). This
violates the integrity of RBAC, and completes the exploit; Ba®id [

and these tools exhaustively generate input data structures, upto
a given size, that satisfy these conditions. Counterexamples pro-
duced by model checking toold][have also been used to generate
test cases. Our analysis can also be viewed as a form of test gener-
ation. The API-level exploits generated can be used to test patched
versions of the component that implements the API.

Ad-hoc TechniquesThere is some prior work on security-exploit
generators, including generators of format-string expld B0,

37]. However, as noted isection 4.5 the techniques proposed
are typically ad-hoc, and provide no soundness guarantees: they
search only for specific attack patterns (e.g., format-strings using
only a fixed conversion or width specifier), and hence might miss
other kinds of attacks. In addition, these techniques are incapable
of generating variants of an exploit. Thus, our paper presents a
more general and formal framework that can generate exploits that
previous exploit-generation tools cannot find.

Type- and Constraint-based AnalysisStatic analyzers for spe-
cial classes of vulnerabilities, such as buffer overruns (e3§]) [

demonstrates how this can be used to learn sensitive values, suctand format-string vulnerabilities (e.g.33]) have also been pro-

as PIN-encrypting keys.
It is worth noting that analyzing different APIs requires model-
ing different kinds of low-level details. For instance,3ection 4

posed. As demonstrated Bection 4 our analysis complements
such tools. An exploit generated against a vulnerability identified
by these tools provides evidence that the vulnerability is real. On

we considered the layout of stack frames to discover format-string the other hand, if an exploit cannot be generated, the vulnerability

exploits. On the other hand, for the CCA API, we considered how

can automatically be classified as a false alarm.

an adversary could increase his knowledge using standard rules)nterface Synthesis. Complementary to the analysis of finding



API-level exploits is the problem of synthesizing correct usage rules [5]
for APIs. Several techniques have been proposed to synthesize in-
terfaces, including techniques that mine execution tra2earid
techniques based on model checkidg) [The output from these
techniques, typically a finite-state machine over API operations,
can be used as the APl-automaton in our formal framework.
Superoptimizers.A code generator that produces code optimized
with respect to certain criteria (e.g., number of instructions) is called
a superoptimizerd6]. Recent work 5] has explored the use of
SAT solvers and theorem-provers (using a technique similar to the
one presented iBection 3 to produce superoptimized code. The [10]
space of possible code sequences is explored using a propositional
Boolean formula, while the theorem prover is used to identify code
sequences that satisfy the optimization criterion. Superoptimizers [12]
also model low-level instruction semantics; consequently, they of-

ten generate intricate, but compact, code sequeégs [

(6]

8]

B

[13]

7. CONCLUSIONS

The main message of this paper is that it is necessary to model
low-level details of a software component’s implementation in or-
der to find exploits against it. We demonstrated this by considering [16]
API-level exploits, and presented a framework to model and ana-
lyze APIs for exploits. We also showed the use of the framework
by considering two real-world APIs of significant complexity. We
briefly discuss some difficulties we encountered while modeling [18]
and analyzing APIs:

Modeling low-level details. As demonstrated by our case studies,
different APIs can be exploited in different ways. Thus, the main
problem is to identify the low-level details to model for each API.
One possible solution is to model each API operation at the bit-level
[11, 40Q), i.e., how each bit in the system is affected by applying
the API operation. While this approach may solve the problem of [22]
identifying appropriate low-details for each API, it may not scale.

We expect that, as with each of our case studies, the use of domain{23]
specific expertise is the best solution to identify appropriate low- [24]
level details for each API.

Constructing the predicat8ad. ConsiderFigure 4 We used the
fact that @%s" can be used to read from a memory location. Con-
sequently, the exploits found by our tool followed this blueprint.
While this covers a large class of exploits, there may be other ways
to read from memory, which our tool will miss. As before, domain-
specific expertise is needed to construct an appropriate predicatgzg)
Bad that covers a large class of exploits.

Automating model constructionThe models oprintf  and the
IBM CCA API were constructed manually by examining source
code, and studying their manuals. This is clearly a tedious and
error-prone process. Modern software model checlgl] auto-
matically construct finite-state models using predicate abstraction. [32]
In our case, the main obstacles to automatic model construction are
twofold: (1) low-level details to be modeled are domain-specific,
and (2) the resulting model is often infinite-state (eSg¢tion 3.

In future work, we intend to investigate techniques, that, given the [34]
set of low-level details to be modeled, automatically extract models [35]
amenable for exploit-analysis.

[14]

[15]

[17]

[29]

[20]

[21]

[25]
[26]

[27]

[29]

[30]
[31]

[36]
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