
Model Checking x86 Executables
with CodeSurfer/x86 and WPDS++

G. Balakrishnan
�
, T. Reps

��� �
, N. Kidd

�
, A. Lal

�
, J. Lim

�
,

D. Melski
�
, R. Gruian

�
, S. Yong

�
, C.-H. Chen, and T. Teitelbaum

�
�

Comp. Sci. Dept., University of Wisconsin;
�
bgogul,reps,kidd,akash,junghee � @cs.wisc.edu�

GrammaTech, Inc.;
�
melski,radu,suan,chi-hua,tt � @grammatech.com

Abstract. This paper presents a toolset for model checking x86 executables. The members
of the toolset are CodeSurfer/x86, WPDS++, and the Path Inspector. CodeSurfer/x86 is
used to extract a model from an executable in the form of a weighted pushdown system.
WPDS++ is a library for answering generalized reachability queries on weighted pushdown
systems. The Path Inspector is a software model checker built on top of CodeSurfer and
WPDS++ that supports safety queries about the program’s possible control configurations.

1 Introduction
This paper presents a toolset for model checking x86 executables. The toolset builds
on (i) recent advances in static analysis of program executables [1], and (ii) new tech-
niques for software model checking and dataflow analysis [14, 10]. In our approach,
CodeSurfer/x86 is used to extract a model from an x86 executable, and the reachabil-
ity algorithms of the WPDS++ library [9] are used to check properties of the model.
The Path Inspector is a software model checker that automates this process for safety
queries involving the program’s possible control configurations (but not the data state).
The tools are capable of answering more queries than are currently supported by the
Path Inspector (and involve data state); we illustrate this by describing two custom
analyses that analyze an executable’s use of the run-time stack.

Our work has three distinguishing features:

– The program model is extracted from the executable code that is run on the ma-
chine. This means that it automatically takes into account platform-specific aspects
of the code, such as memory-layout details (i.e., offsets of variables in the run-time
stack’s activation records and padding between fields of a struct), register usage,
execution order, optimizations, and artifacts of compiler bugs. Such information
is hidden from tools that work on intermediate representations (IRs) that are built
directly from the source code.

– The entire program is analyzed—including libraries that are linked to the program.
– The IR-construction and model-extraction processes do not assume that they have

access to symbol-table or debugging information.

Because of the first two properties, our approach provides a “higher fidelity” tool than
most software model checkers that analyze source code. This can be important for cer-
tain kinds of analysis; for instance, many security exploits depend on platform-specific
features, such as the structure of activation records. Vulnerabilities can escape notice
when a tool does not have information about adjacency relationships among variables.

Although the present toolset is targeted to x86 executables, the techniques used [1,
14, 10] are language-independent and could be applied to other types of executables.

The remainder of the paper is organized as follows: � 2 sketches the methods used in
CodeSurfer/x86 for IR recovery. � 3 gives an overview of the model-checking facilities
that the toolset provides. � 4 discusses related work.

2 Recovering Intermediate Representations from x86 Executables
To recover IRs from x86 executables, CodeSurfer/x86 makes use of both IDAPro [8],
a disassembly toolkit, and GrammaTech’s CodeSurfer system [4], a toolkit for build-
ing program-analysis and inspection tools. Fig. 1 shows the various components of
CodeSurfer/x86.

����������

	�
���� �

	��� ��

	
����

���������

� ��������
� �����
�

��
�
������
� ������
� �������������
� ����������
� ������
���
� � ����� �
���

� � ����

	�
��
� � �

�����
	
����

� ����!�������� � �
� ����!������������"���!
� ����#�$
����#�� ���$
����
���
�%��������� � ������

� ��
�����������
� ������������
����
���

	
����
&�� �
���

 ���� �
���

�����
��
� ����'���

(��� ���
���

Fig. 1. Organization of CodeSurfer/x86.

An x86 executable is first dis-
assembled using IDAPro. In ad-
dition to the disassembly listing,
IDAPro also provides access to the
following information: (1) proce-
dure boundaries, (2) calls to li-
brary functions using an algorithm
called the Fast Library Identifi-
cation and Recognition Technol-
ogy (FLIRT) [6], and (3) statically
known memory addresses and off-
sets. IDAPro provides access to its
internal resources via an API that allows users to create plug-ins to be executed by
IDAPro. We created a plug-in to IDAPro, called the Connector, that creates data struc-
tures to represent the information that it obtains from IDAPro. The IDAPro/Connector
combination is also able to create the same data structures for dynamically linked li-
braries, and to link them into the data structures that represent the program itself. This
infrastructure permits whole-program analysis to be carried out—including analysis of
the code for all library functions that are called.

Using the data structures in the Connector, we implemented a static-analysis al-
gorithm called value-set analysis (VSA) [1]. VSA does not assume the presence of
symbol-table or debugging information. Hence, as a first step, a set of data objects called
a-locs (for “abstract locations”) is determined based on the static memory addresses and
offsets provided by IDAPro. VSA is a combined numeric and pointer-analysis algorithm
that determines an over-approximation of the set of numeric values and addresses (or
value-set) that each a-loc holds at each program point. A key feature of VSA is that it
tracks integer-valued and address-valued quantities simultaneously. This is crucial for
analyzing executables because numeric values and addresses are indistinguishable at
execution time.

IDAPro does not identify the targets of all indirect jumps and indirect calls, and
therefore the call graph and control-flow graphs that it constructs are not complete.
However, the information computed during VSA can be used to augment the call graph
and control-flow graphs on-the-fly to account for indirect jumps and indirect calls.

VSA also checks whether the executable conforms to a “standard” compilation
model—i.e., a runtime stack is maintained; activation records (ARs) are pushed onto
the stack on procedure entry and popped from the stack on procedure exit; a procedure
does not modify the return address on stack; the program’s instructions occupy a fixed

2

area of memory, are not self-modifying, and are separate from the program’s data. If it
cannot be confirmed that the executable conforms to the model, then the IR is possibly
incorrect. For example, the call-graph can be incorrect if a procedure modifies the re-
turn address on the stack. Consequently, VSA issues an error report whenever it finds a
possible violation of the standard compilation model; these represent possible memory-
safety violations. The analyst can go over these reports and determine whether they are
false alarms or real violations.

Once VSA completes, the value-sets for the a-locs at each program point are used to
determine each point’s sets of used, killed, and possibly-killed a-locs; these are emitted
in a format that is suitable for input to CodeSurfer. CodeSurfer then builds a collection
of IRs, consisting of abstract-syntax trees, control-flow graphs (CFGs), a call graph,
and a system dependence graph (SDG).

3 Model-Checking Facilities
For model checking, the CodeSurfer/x86 IRs are used to build a weighted pushdown
system (WPDS) that models possible program behaviors. WPDS++ [9] is a library that
implements the symbolic reachability algorithms from [14] on weighted pushdown sys-
tems. We follow the standard convention of using a pushdown system (PDS) to model
the interprocedural control-flow graph (one of CodeSurfer/x86’s IRs). The stack sym-
bols correspond to program locations; there is only a single PDS state; and PDS rules
encode control flow as follows:

Rule Control flow modeled
��������� 	
������� Intraprocedural CFG edge �	��
��������� 	�������������������� Call to from � that returns to �
����!"�#� 	
���$� Return from a procedure at exit node !

Given a configuration of the PDS, the top stack symbol corresponds to the current pro-
gram location, and the rest of the stack holds return-site locations—much like a standard
run-time execution stack.

This encoding of the interprocedural CFG as a pushdown system is sufficient for
answering queries about reachable control states (as the Path Inspector does; see � 3.2):
the reachability algorithms of WPDS++ can determine if an undesirable PDS config-
uration is reachable [2]. However, WPDS++ also supports weighted PDSs. These are
PDSs in which each rule is weighted with an element of a (user-defined) semiring. The
use of weights allows WPDS++ to perform interprocedural dataflow analysis by using
the semiring’s extend operator to compute weights for sequences of rule firings and us-
ing the semiring’s combine operator to take the meet of weights generated by different
paths. (When the weights on rules are conservative abstract data transformers, an over-
approximation to the set of reachable concrete configurations is obtained, which means
that counterexamples reported by WPDS++ may actually be infeasible.)

3.1 Stack-Qualified Dataflow Queries

The CodeSurfer/x86 IRs are a rich source of opportunities to check properties of in-
terest using WPDS++. For instance, WPDS++ has been used to implement an illegal-
stack-manipulation check: for each node � in procedure , this checks whether the net
change in stack height is the same along all paths from entry � to � that have perfectly
matched calls and returns (i.e., along “same-level valid paths”). In this analysis, a weight

3

is a function that represents a stack-height change. For instance, push ecx and sub
esp,4 both have the weight � height � height ��� . Extend is (the reversal of) function
composition; combine performs a meet of stack-height-change functions. (The analysis
is similar to linear constant propagation [15].) When a memory access performed rel-
ative to � ’s activation record (AR) is out-of-bounds, stack-height-change values can be
used to identify which a-locs could be accessed in ARs of other procedures.

VSA is an interprocedural dataflow-analysis algorithm that uses the “call-strings”
approach [16] to obtain a degree of context sensitivity. Each dataflow fact is tagged
with a call-stack suffix (or call-string) to form (call-string, dataflow-fact) pairs; the
call-string is used at the exit node of each procedure to determine to which call site
a (call-string, dataflow-fact) pair should be propagated. The call-strings that arise at a
given node � provide an opportunity to perform stack-qualified dataflow queries [14]
using WPDS++. CodeSurfer/x86 identifies induction-variable relationships by using
the affine-relation domain of Müller-Olm and Seidl [12] as a weight domain. A post �
query builds an automaton that is then used to find the affine relations that hold in a
given calling context—given by call-string cs—by querying the post � -automaton with
respect to a regular language constructed from cs and the program’s call graph.

3.2 The Path Inspector

The Path Inspector provides a user interface for automating safety queries that are only
concerned with the possible control configurations that an executable can reach. It uses
an automaton-based approach to model checking: the query is specified as a finite au-
tomaton that captures forbidden sequences of program locations. This “query automa-
ton” is combined with the program model (a WPDS) using a cross-product construction,
and the reachability algorithms of WPDS++ are used to determine if an error configu-
ration is reachable. If an error configuration is reachable, then witnesses (see [14]) can
be used to produce a program path that drives the query automaton to an error state.

The Path Inspector includes a GUI for instantiating many common reachability
queries [5], and for displaying counterexample paths in the disassembly listing.3 In
the current implementation, transitions in the query automaton are triggered by pro-
gram points that the user specifies either manually, or using result sets from CodeSurfer
queries. Future versions of the Path Inspector will support more sophisticated queries in
which transitions are triggered by matching an AST pattern against a program location,
and query states can be instantiated based on pattern bindings. Future versions will also
eliminate (many) infeasible counterexamples by using transition weights to represent
abstract data transformers (similar to those used for interprocedural dataflow analysis).

4 Related Work
Several others have proposed techniques to obtain information from executables by
means of static analysis (see [1] for references). However, previous techniques deal
with memory accesses very conservatively; e.g., if a register is assigned a value from
memory, it is assumed to take on any value. VSA does a much better job than previous

3 We assume that source code is not available, but the techniques extend naturally if it is: one
can treat the executable code as just another IR in the collection of IRs obtainable from source
code. The mapping of information back to the source code is similar to what C source-code
tools already have to perform because of the use of the C preprocessor.

4

work because it tracks the integer-valued and address-valued quantities that the pro-
gram’s data objects can hold; in particular, VSA tracks the values of data objects other
than just the hardware registers, and thus is not forced to give up all precision when a
load from memory is encountered. This is a fundamental issue; the absence of such in-
formation places severe limitations on what previously developed tools can be applied
to.

Christodorescu and Jha used model-checking techniques to detect malicious code
variants [3]. Given a sample of malicious code, they extract a parameterized state ma-
chine that will accept variants of the code. They use CodeSurfer/x86 to extract a model
of each procedure of the program, and determine potential matches between the pro-
gram’s code and fragments of the malicious code. Their technique is intraprocedural,
and does not analyze data state.

Other groups have used run-time program monitoring and checkpointing to perform
a systematic search of a program’s dynamic state space [7, 11, 13]. Like our approach,
this allows for model checking properties of the low-level code that is actually run
on the machine. However, because the dynamic state space can be unbounded, these
approaches cannot perform an exhaustive search. In contrast, we use static analysis to
perform a (conservative) exhaustive search of an abstract state space.

References

1. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In Comp.
Construct., Lec. Notes in Comp. Sci., pages 5–23. Springer-Verlag, 2004.

2. H. Chen, D. Dean, and D. Wagner. Model checking one million lines of C code. In Symp.
on Network and Distributed Systems Security, 2004.

3. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious patterns. In
USENIX Security Symposium,, 2003.

4. CodeSurfer, GrammaTech, Inc., http://www.grammatech.com/products/codesurfer/.
5. M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state

verification. In Int. Conf. on Softw. Eng., 1999.
6. Fast library identification and recognition technology, DataRescue sa/nv, Liège, Belgium,

http://www.datarescue.com/idabase/flirt.htm.
7. P. Godefroid. Model checking for programming languages using VeriSoft. In ACM, editor,

Princ. of Prog. Lang., pages 174–186. ACM Press, 1997.
8. IDAPro disassembler, http://www.datarescue.com/idabase/.
9. N. Kidd, T. Reps, D. Melski, and A. Lal. WPDS++: A C++ library for weighted pushdown

systems. Univ. of Wisconsin, 2004.
10. A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In Computer

Aided Verif., 2005.
11. P. Leven, T. Mehler, and S. Edelkamp. Directed error detection in C++ with the assembly-

level model checker StEAM. In Spin Workshop, 2004.
12. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In ESOP, 2005.
13. M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: A pragmatic approach to

model checking real code. In Op. Syst. Design and Impl., 2002.
14. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and their applica-

tion to interprocedural dataflow analysis. Sci. of Comp. Prog., 2005. To appear.
15. M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with applica-

tions to constant propagation. Theor. Comp. Sci., 167:131–170, 1996.
16. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In Program

Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1981.

5

