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Abstract

‘We present iSieve, a modular architecture for identifying intrusion profiles in packet trace data and
automatically constructing resilient signatures for the profiles. The first component of the architecture
organizes and normalizes packet trace data collected from honeynets. The second component classifies this
data into attack profiles based upon data similarity measures. The final component uses machine learning
methods to generate an automaton for each attack profile. These automata can then be used as signatures
by network intrusion detection systems. We show how a large, diverse data set is effectively sumnmarized
by each component of our system and use these results to highlight implementation considerations in the
architecture. Evaluation demonstrates iSieve’s ability to generate resilient signatures for many different
intrusion profiles. For example, our learned signatures detect 99.98% of the intrusive sessions in NetBIOS
data and generate no false alarms.

1 Introduction

Computer network security is a multidimensional activity that continues to grow in importance. The
prevalence of attacks in the Internet and the ability of self-propagating worms to infect millions of Internet
hosts has been well documented [14, 16,30]. Developing techniques and tools that enable more precise and
more rapid detection of such attacks presents significant challenges to both the research and operational com-
munities. In their recent analysis of the Witty worm, Moore et al. [15] state that zero-day worms such as Witty
have effectively demonstrated how the current “patch model for Internet security has failed spectacularly”.

Network security architectures often include network intrusion detection systems (NIDS) that monitor
packet traffic between networks for malicious activity and raise alarms upon intrusions. Commonly used
NIDS compare traffic against a hand-built signature database that contains previously documented attack
profiles [2, 18]. A NIDS generates false alarms if a signature identifies features in traffic streams that are
common to both malicious and benign packets. The standard objective in creating signatures is to make them
as specific to a given attack profile as possible to minimize false alarms. If a signature is too specific, however,
an attack profile can be easily morphed to render it ineffective. Ideally, a resilient signature would incorporate
common obfuscation transformations used by attackers so that it could accurately identify variants of known
attacks.

This paper introduces a modular architecture called Internet Sieve (iSieve) that identifies intrusions and
automatically generates such resilient signatures. We use packet traces from a honeynet! [7] deployed on un-
used IP address space as input to our system. Any data observed at a honeynet is anomalous?, thus eliminating
both the problem of privacy and the problem of separating malicious and normal traffic. We assume that the
honeynet receives attack traffic similar to that observed on standard hosts and discuss the ramifications of
this assumption in Section 7. Our architecture includes three components. The data abstraction component
normalizes packets from individual sessions in the collected data and converts them into a standard format
for evaluation. The clustering component uses machine learning to group sessions that have similar charac-

! A honeynet is defined as a network of high-interaction honeypots.
2 A negligible amount of non-malicious traffic observed on our honeynet is due to misconfiguration and is easily separated from
the malicious traffic.



teristics into clusters. Intuitively, each cluster corresponds to a specific attack and its variants observed at
the honeynet. The signature generation component produces a connection-level or session-level finite-state
automaton (FSA) signature for each cluster, suitable for deployment in a NIDS. As discussed in Section 2,
this architecture differs significantly from prior work. Section 3 describes our modular system architecture.

To evaluate iSieve’s architecture, we developed a prototype implementation of each component. We
have also developed a simple alert generation tool for off-line analysis which compares packet traces against
FSA signatures. While we demonstrate that our current implementation is extremely effective, the modular
design of the architecture enables any of the individual components to be easily substituted. We expect
that further developments will tune and expand individual components resulting in more timely, precise, and
effective signatures. From a broader perspective, we believe that our results demonstrate the importance of
iSieve’s capability in a comprehensive security architecture. Section 4 presents our prototype implementation
of iSieve.

We performed two evaluations of our implementation. First, we calculated detection and misdiagnosis
counts using packet traces collected at two unused /19 address ranges totaling 16K IP addresses from two
distinct Class B networks allocated to our campus. We collected session level data for exploits targeting ports
80 (HTTP), 139, and 445 (NetBIOS/SMB) using the data collection environment described in Section 5. We
then used this packet trace data as input to iSieve to produce a comprehensive signature set for the three ports.
In Section 6, we describe the major clusters and the signatures produced. Leave-out testing results indicate
that our system generates accurate signatures for most common intrusions, including Code Red, Nimda, and
other popular exploits. We detected 99.1% of the HTTP exploits and 99.98% of the NetBIOS exploits with
0 misdiagnoses. Second, we validated our signatures by testing for false alarms using packet traces of all
HTTP traffic collected from our department’s border router. iSieve produced O false alarms on this dataset.
For comparison, Snort [2] generated over 88,000 false alarms on the same data set. These results suggest that
even with a much smaller signature set, iSieve achieves detectability rates on par with Snort while identifying
attacks with superior precision and far fewer false alarms.

2 Related Work

Most network intrusion detection systems including Snort [2], Bro [18], and a collection of commer-
cial tools use misuse detection to identify attacks. Misuse detection scans for specific malicious patterns or
signatures in monitored traffic. Sommer and Paxson proposed extending such systems to use session-level
signatures [26]. Signatures generated by iSieve may be added to any misuse detector, although our signatures
are particularly suited to systems that use regular expressions and provide session-level context, such as Bro.

Anomaly detection systems such as EMERALD [17] and STAT [29] use statistical profiles of normal
traffic rather than signatures to identify attacks. Thus, our techniques do not apply to these systems. However,
anomaly detectors may enable signature learning in environments with mixed malicious and normal traffic.
Our clustering component expects its input traffic stream to be largely devoid of benign traffic, as a large
volume of normal traffic would potentially exhibit great variation and skew the clusters. If the anomaly
detector can cull out normal traffic, clustering and learning can then occur as described in this paper.

Handley, et al. describe transport-level evasion techniques designed to elude a NIDS as well as normal-
ization methods that disambiguate data before comparison against a signature [6]. Similar work describes
common HTTP evasion techniques and standard URL morphing attacks [21]. They inform the development
of our data abstraction component which normalizes session data at both transport and application levels for
HTTP and NetBIOS data.

Honeypots provide data suitable for intrusion and attack analysis. Levin et al. describe how honeypots
extract details of worm exploits that can be analyzed to generate detection signatures [11]. Unlike our archi-
tecture, their signatures are generated by hand.

Honeycomb is a host-based intrusion detection system that includes signature generation capabilities with
design goals similar to our own [9]. Honeycomb extends Honeyd {19], an open source honeypot tool that




01:48:18.076540 213.189.83.103.47606 > 128.104.134.106.80:
P 1:150(149) ack 1 win 17520 <nop,nop,timestamp 878172804 0> (DF)

SEARCH./.HITP/1.1..Host:.128.104.134.106..
Connection:.keep~alive.
X-Forwarded~For:.62.150.189.187..
Via:.1l.l.supercache2. (NetCache NetBApp/5.3.1R2)....

01:48:15,751137 213.182.83.103.47276 > 128.,104.134.106.80: P 1:273(272)
ack 1 win 17520 <nop,nop,timestamp 878172572 0> (DF)

GEI./.HTIP/1.1..Host:.128.104.134.106..

Connection:.keep-alive..
Accept:.image/gif, .image/x-xbitmap, .image/4peg, .image/pipeg, .*/*..
User-Agent:.Mozilla/4.0. (compatible; .MSIE.5.5; .Windows.98) .
X~Forwarded-For:.62.150.189,187..

Via:.1l.l.supercache2. (NetCache.NetBApp/5.3.1R2)....

Figure 1: Two HTTP payloads with proxy cache headers. Bold text marks strings identified by the LCS
algorithm.

simulates virtual machines over unused IP address space. Honeycomb uses the longest common substring
(LCS) algorithm on packet-level data recorded by Honeyd to automatically generate signatures. We consider
Honeycomb to be the canonical example of an LCS tool. More recent systems that extend the basic LCS ideas
include Earlybird and Autograph [8,25].

Honeycomb is inherently limited because it does not consider higher-level protocol structure and seman-
tics. Its LCS algorithm is frequently “distracted” by long strings in the packet payload that are irrelevant for
attack identification. Figure 1 shows two HTTP requests scanning for WebDAV exploits. The URL is the
significant discriminating field but is only a small portion of the entire payload. The LCS algorithm identifies
the strings in bold as the signature although these strings have no direct bearing on the exploit. Hence, Hon-
eycomb is poorly suited to attacks with small exploit strings. It has been demonstrated to produce relevant
signatures only for buffer-overflow exploits where the attack string is very long [9]. Systems like Autograph
that ignore higher level protocol semantics are also susceptible to similar problems.

Another deficiency of Honeycomb’s LCS algorithm is that it outputs a single string for each signature.
The consequence is that Honeycomb cannot produce signatures for protocols like NetBIOS/SMB [9]. In such
data, the relevant fields are a small fraction of the entire payload and may not be contiguous. Hence, signatures
seen in real-world systems like Snort are often composed of multiple substrings of varying lengths that are
all equally valuable. We argue that a more pragmatic approach is to build a system that incorporates higher-
level protocol semantics into the signature-generation algorithm. Our data abstraction component marks the
pertinent data in each session so that clustering can focus only upon the relevant data. We also use a clustering
algorithm that is less dependent upon the size of the exploit string. As a result, our automaton-based signatures
can easily describe such patterns and enable iSieve to produce very accurate NetBIOS signatures.

3 Internet Sieve Architecture

We have designed a framework for automatically generating robust signatures via efficient monitoring of
honeynets. As shown in Figure 2, iSieve’s architecture is divided into three components: the data abstraction
layer, the clustering module, and the signature generator. The input to iSieve could be packet traces collected
at any network. However, in this paper, we consider the particular instance of data collected on honeynets.
This traffic is attractive because it primarily consists of malicious traffic. Even when deployed on a small
address space (e.g., a /24 containing 256 IP addresses), a honeynet can provide a large volume of data without
significant privacy or false positives concerns.

3.1 Data Abstraction Component

The Data Abstraction Layer (DAL) aggregates and transforms the packet trace into a well defined data struc-
ture suitable for clustering by a generic clustering module without specific knowledge of the transport protocol
or application-level semantics. We call these aggregation units semi-structured session trees (S5Ts). The com-



1 Semi-structured
t Session Tree (SST)

Strings

'
Trace E H b Messages E Sessions E ___%
1 | Funoctions: . Functions: Functions: Functions: Functions:
M Frag-Reasserobly Flow Accumulation Service Disambiguation Group Similar Sessions Praduce NIDS-Specific
Dup. Suppression Connection Expiry Parse Tree Generation Separate Dissimilar Signatures
Checksum Validation Session Gt i ‘Weighl Assignment Daun

DATA ARSTRACTION LAYER

Figure 2: Components and data flow description of the Internet Sieve architecture

ponents of the DAL can then be thought of in terms of the data flow through the module as shown in Figure 2.

Transport normalization disambiguates obfuscations at the network and transport layers of the protocol
stack. The DAL reads packet traces through the 1ibpcap library. This can either be run online or offline on
t cpdump traces. This step considers transport-specific obfuscations like fragmentation reassembly, duplicate
suppression, and checksums. We describe these in greater detail in Section 4.

The aggregation step groups packet data between two hosts into sessions. The normalized packet data is
first composed and stored as flows. Periodically, the DAL expires flows and converts them into connections. A
flow might be expired for two reasons: a new connection is initiated between the same pair of hosts and ports
or the flow has been inactive for a time period greater than a user defined timeout (1 hour in our experimental
setup). Flows are composed of packets, but connections are composed of request-response elements. Each
connection is stored as part of a session. A session is a sequence of connections between the same host pairs.

Service-specific information in sessions must be normalized before clustering for two reasons. First,
classification of sessions becomes more robust and clustering algorithms can be independent of the type of
service. Second, the space of ambiguities is too large to produce a signature for every possible encoding of
attacks. By decoding service-specific information into a canonical form, normalization enables generation of
a more compact signature set. A detection system must then first decode attack payloads before signature
matching. This strategy is consistent with that employed by popular NIDS [2]. We describe the particular
normalizations performed in greater detail in Section 4.

The DAL finally transforms the normalized sessions into XML-encoded SSTs suitable for input to the
clustering module. This step assigns weights to the elements of the SST to highlight the most important
attributes, like the URL in an HTTP request, and deemphasize the less important attributes, such as encrypted
fields and proxy-cache headers in HTTP packets. The clustering module may use the weights to construct
more accurate session classifications.

3.2 Clustering Component

The clustering component identifies sessions belonging to the same attack. It classifies sessions according to a
similarity or distance metric. Sessions grouped together correspond to a single attack or variants of the attack.
Distinct clusters correspond to distinct attacks or attack variants that differ significantly from some original
attack. Effective clustering requires two properties of the attack data. First, sessions that correspond to an
attack and its variants should be measurably similar. A clustering algorithm can then classify such sessions as
likely belonging to the same attack. Second, sessions corresponding to different attacks must be measurably
dissimilar so that a clustering algorithm can separate such sessions. We believe that the two required properties
of session data are unlikely to hold for data sets that include significant quantities of non-malicious or normal
traffic. Properties of normal traffic vary so greatly as to make effective clustering difficult without additional
discrimination metrics. Conversely, malicious data contains identifiable structure even in the presence of
obfuscation and limited polymorphism. Internet Sieve’s use of honeynet data enables a reasonable number of
meaningful clusters to be produced.

Each cluster ideally contains the set of sessions for some attack. We presume that these sessions will




contain minor obfuscations, particularly in the sequential structure of the data, that correspond to an attacker’s
attempts to evade detection. These variations provide the basis for our resilient signature generation step.

3.3 Signature Generation

The signature generation component constructs an attack signature from a cluster of sessions. A generator is
implemented for a target intrusion detection system and produces signatures suitable for use in that system.
This component has the ability to generate highly expressive signatures for advanced systems, such as regular
expression signatures with session-level context that are suitable for Bro [18, 26].

Clusters that contain non-uniform sessions are of particular interest. These differences may indicate either
the use of obfuscation transformations to modify an attack or a change made to an existing attack to produce a
new variant. Our signature generation algorithm generalizes these transformations to produce a signature that
is resilient to evasion attempts. Generalizations enable signatures to match malicious sequences that were not
observed in the training set.

Our current implementation of the signature generation engine works best with minimal expert supervi-
sion. In our experience, different types of attacks require different types of signatures to be built. For example,
we constructed connection-level signatures for Nimda because these attacks are independent of connection
ordering and are identified by a string contained in a single connection. Conversely, Welchia employs a
multi-stage attack that typically involves three ordered connections, so session-level signatures may be more
appropriate for this worm (see Section 4.5). Clustering algorithms are also imperfect and can sometimes
produce clusters that contain a small number of irrelevant sessions. Simple sanity checks can easily discount
such irrelevant clusters, leading to a more robust signature set.

4 Design and Implementation

We have implemented prototypes of each iSieve component. We focus on two specific protocols, HTTP
(port 80) and NetBIOS/SMB (ports 139 and 445), since these two services exhibit great diversity in the
number and types of exploits.

4.1 Transport-Level Normalization

Transport-level normalization resolves ambiguities introduced at the network (IP) and transport (TCP) layers
of the protocol stack. We check message integrity, reorder packets as needed, and discard invalid or duplicate
packets. The importance of transport layer normalizers has been addressed in the literature [6,20]. Building a
normalizer that perfectly resolves all ambiguities is a complicated endeavor, especially since many ambiguities
are operating system dependent. We can constrain the set of normalization functions for two reasons. First,
we only consider traffic sent to honeynets, so we have perfect knowledge of the host environment. This
environment remains relatively constant. We do not need to worry about ambiguities introduced due to DHCP
or network address translation (NAT). Second, iSieve’s current implementation analyzes network traces off-
line which relaxes its state holding requirements and makes it less vulnerable to resource-consumption attacks.

An adversary could also attempt to evade a NIDS by introducing ambiguities to IP packets. Examples
include simple insertion attacks that would be dropped by real systems but are evaluated by NIDS, and evasion
attacks that are the reverse [20]. Since iSieve obtains traffic promiscuously via a packet sniffer (just like real a
NIDS), these ambiguities must be resolved. We focus on three common techniques used by attackers to elude
detection.

First, an invalid field in a protocol header may cause a NIDS to handle the packet differently than the des-
tination machine. Handling invalid protocol fields in IP packets involves two steps: recognizing the presence
of the invalid fields and understanding how a particular operating system would handle them. Our imple-
mentation performs some of these validations. For example, we drop packets with an invalid IP checksum or
length field.

Second, an attacker can use IP fragmentation to present different data to the NIDS than to the destina-
tion. Fragmentation introduces two problems: correctly reordering shuffled packets and resolving overlap-



ping segments. Various operating systems address these problems in different ways. We adopt the always-
favor-old-data method used by Microsoft Windows. A live deployment must either periodically perform
active-mapping [24] or match rules with passive operating system fingerprinting. The same logic applies for
fragmented or overlapping TCP segments.

Third, incorrect understanding of the TCP Control Block (TCB) tear-down timer can cause a NIDS to
improperly maintain state. If it closes a connection too early it will lose state. Likewise, retaining connections
too long can prevent detection of legitimate later connections. Our implementation maintains connection state
for an hour after session has been closed. However, sessions that have been closed or reset are replaced earlier
if a new connection setup is observed between the same host/port pairs.

4.2 Service-Level Normalization: HTTP

Ambiguities in HTTP sessions are primarily introduced due to invalid protocol parsing or invalid decoding of
protocol fields. In particular, improper URL decoding is a point of vulnerability in many intrusion detection
systems. An attacker has available a large variety of HTTP URL encoding techniques. Our DAL correctly
decodes hex encoding and its variants, UTF-8 encoding, bare-byte encoding, and Microsoft unicode encoding.
Regardless of its encoding, the DAL presents a canonical URL in ASCII format to the clustering module. We
provide details on some commonly observed encoding schemes.

Hex encoding refers to substitution of hexadecimal characters for ASCII characters in the URL.. For exam-
ple, the hexadecimal value of ASCI character ‘.’ is 0x2E. The URL . .\scripts\winnt\cmd.exe could
alternatively be expressed as $2E%2E\scripts\winnt\cmd.exe. There are other variations of hexadeci-
mal encoding such as double-percent hex encoding, double-nibble hex encoding, first-nibble hex encoding and
second-nibble hex encoding [22]. All such hexadecimal encodings are decoded correctly by the DAL HTTP
normalizer.

UTF-8 encoding is used to represent unicode characters that are outside of the traditional 0-127 ASCII
range. For example, the character ‘A’ can be encoded as %C1%81. Existing NIDS systems either disregard
UTF-8 encoding or perform conversions for certain standard code pages. Likewise, our implementation has
rules for converting commonly observed UTF-8 ASCII codes.

Bare-byte encoding is similar to UTF-8 encoding except that there is no ‘%’ character preceding the
hexadecimal bytes. For example, 0xC10x81 = ‘A’. Microsoft Windows IIS servers provide an additional
format for encoding unicode characters that is commonly known as unicode encoding. In this format, unicode
values are expressed as %U followed by 4 hexadecimal characters. For example, the character ‘A’ is %U0041.

Directory traversal is a common URL obfuscation technique. Attackers add noop directory traversals
like ./././system32/.././. in system paths. This method effectively evades NIDS signatures that do
not account for directory traversal attacks. Our DAL normalizes noop directory traversals.

Currently, our implementation does not handle all obvious HTTP obfuscations. For example, we do not
process pipelined HTTP/1.1 requests. Such requests need to be broken into multiple connections for analysis.
We plan to incorporate this functionality into our system in the future.

4.3 Service-Level Normalization: NetBIOS/SMB

NetBIOS is a session-layer service that enables machines to exchange messages using names rather than IP
addresses and port numbers. SMB (Server Message Block) is a transport-independent protocol that provides
file and directory services. Microsoft Windows machines use NetBIOS to exchange SMB file requests. Net-
BIOS/SMB signature evasion techniques have not been well studied, possibly due to the lack of good NIDS
rules for their detection. A full treatment of possible NetBIOS/SMB ambiguities is outside the scope of this
paper. We describe certain ambiguities handled by our normalizer.

Invalid NetBIOS/SMB protocol fields may confuse intrusion detection systems. These could include,
for example, NetBIOS packets with incorrect length fields. We identify such incidents from the response of
our honeynet server. The ambiguities of unicode and UTF-8 encoding previously described for HTTP traffic




apply for NetBIOS as well. If the server and clients both possess unicode capabilities, it is very common for
NetBIOS clients to negotiate unicode. This implies that data fields such as filenames will be expressed as 16
bit unicode characters. All unicode data fields are converted to ASCII fields in the parse tree if unicode has
been negotiated.

NIDS systems and iSieve should also recognize and account for violations of session semantics. Examples
of such violations include sending ASCII character bytes to a unicode negotiated session or sending messages
in an invalid order. We rely upon the server’s response to recognize these situations.

Our normalizer additionally removes meaningless information from certain resource identifiers. Univer-
sal Naming Convention (UNC) is a standard method for naming files and resources in a network. This is
supported by Microsoft Windows and can be used to refer to file requests in SMB. UNC names appear as
\\servername\sharename\path\filename, where the server name can be either a domain name or an
IP address. If it refers to the local IP address, it provides no meaningful information and is removed.

4.4 Clustering

The iSieve clustering component classifies normalized sessions into groups containing similar data. We im-
plemented the on-line star clustering algorithm, which clusters documents based upon a similarity metric [1].
This algorithm has advantages over the more common k-means family of clustering algorithms [12]. For
example, it is robust to data ordering. K-means, conversely, produces different clusters depending upon the
order in which data is read. Moreover, we need not know a priori how many clusters are expected. Although
it seems suitable, we make no claims that star is the optimal clustering algorithm for our purposes, and we
intend to consider other algorithms in future work.

Star clustering builds a star cover over a partially-connected graph. Nodes in the graph each represent
one or more sessions with semantically equivalent data. We arbitrarily choose one session at each node to
be the representative session. A link exists between two nodes if the similarity between the corresponding
representative sessions is above a designated threshold. A star cluster is a collection of nodes in the graph
such that each node connects to the cluster center node with an edge. A star cover is a collection of star clusters
covering the graph so that no two cluster centers have a connecting edge. In the original algorithm, a non-
center node may have edges to multiple center nodes and thus appear in multiple clusters. We implemented a
modified algorithm that inserts a node only into the cluster with which it has strongest similarity.

Session similarity determines how edges are placed in the graph. We implemented two different similarity
metrics to test sensitivity: cosine similarity [1] and hierarchical edit distance (Appendix A). The cosine
similarity metric has lower computational complexity than hierarchical edit distance and was used for our
experiments in Section 6.

Cosine similarity computes the angle between two vectors representing the two sessions under compar-
ison. For each session A, we build a 28-ary vector D4 giving the distribution of bytes that appeared in the
session data. If 4 is the angle between vectors D 4 and Dp representing sessions A and B, then:

D4 Dp
D4l | Dell

where ‘-’ represents inner product and ||v|| is the vector norm. All vector values are non-negative, s0 0 < 6 <
/2 and 1 > cos @ > 0. The similarity between sessions is the value cos 6, with cos @ = 1 indicating session
equality.

We initially believed hierarchical edit distance, though costly, would be the better similarity metric. It
preserves connection ordering information within each session and differentiates between the various data
fields within each connection. We believed these properties would produce better clusters than the cosine
metric. Our experiments revealed that while both distance metrics work quite well, cosine is less sensitive
to the accuracy of threshold parameters used in partitioning clusters. Hence, we use cosine distance in this
paper’s experiments and describe the hierarchical edit distance metric in Appendix A.

cost =
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Figure 3: Welchia session level signature

Using a similarity metric, we construct the partially-connected similarity graph. An edge connects a pair
of nodes if the similarity of the representative sessions is above a threshold, here 0.8. We then build a star
cover over the similarity graph. Each star cluster is a group of similar sessions that presumably are variants
of the same exploit. The cluster set is finally passed to the signature generation module.

4.5 Signature Generation

Signature generation devises a NIDS signature from a cluster of similar attack sessions. We construct a finite
state automaton (FSA) signature for each cluster. These signatures are suitable for use in a detection system
that can use regular expressions as signatures. If a FSM contains no loops, then enumeration of all accepted
data streams can produce a family of signatures for use in systems requiring simple string signatures.

The process of generating signatures from clusters is complicated by our desire to generate resilient sig-
natures for attack variants that have not been seen by the cluster module. We would like the signatures to be
sufficiently general so that they can detect all attacks that match the class of attacks in the cluster, yet generate
few false alarms. We generalize variations observed in a cluster’s data. Assuming effective clustering, these
variations correspond to obfuscation attempts or differences among variants of the same attack. By general-
izing the differences, we produce a resilient signature that accepts data not necessarily observed during the
training period. We implemented two generalizations: structure abstraction and subsequence creation.

Structure abstraction adds new sequences to the automaton based upon the previously existing patterns in
the signature. This can occur in two ways. Let A, B, X, and Y be sequences of observed session data (e.g.
each is a contiguous sequence of transitions in the automaton). Let AB denote concatenation of symbols.
First, if the signature includes the patterns AB, AY, and XY, then we add the sequence X B. Intuitively, the
pre-existing patterns AB and AY indicate that B may be interchanged with Y, and hence X B is added to
the signature. Second, if the signature accepts the sequences AC and ABC, then add the signature AB*C
accepting an arbitrary number of the sequence B. This generalization introduces loops into the signature. The
cycles in the Welchia signature (see Figure 3) accepting any number of arbitrarily interleaved GET / 200
and SEARCH / 411 occur due to structure abstraction.

Subsequence creation converts a signature defining a sequence of session data into a signature that is a
subsequence of that data. This is a signature with “gaps” that accept arbitrary sequences of arbitrary symbols.
We insert gaps whenever observing four or more patterns with a common prefix, common suffix, and one
dissimilar data element. For example, let A and B be as above. Let v, w, z, and y be single data elements.
If the signature contains AvB, AwB, AzB, and AyB, then we replace those four sequences with the regular
expression A[.#]B. Intuitively, we have identified a portion of the signature exhibiting large variation and
allow it vary arbitrarily in our final signature. The wild-card transitions in the optimized Nimda signature
shown in Figure 4 correspond to subsequences in the observed dataset that exhibited significant variability.
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Figure 4: Nimda, Windows Media Player Exploit, and Deloder connection level signatures

The resulting FSM may thus accept a greater collection of sessions than those present in the clusters. Each
accepted string has characteristics in common with the attack strings observed in the cluster and is likely an
attack variant not previously observed. Our resulting signatures are thus not beholden only to data observed
during training but can detect previously unknown attacks.

Our signature generation engine can produce both session-level and connection-level signatures. Session-
level signatures are more restrictive as they impose ordering upon the constituent connections and must match
a collection of connections. As a result, they are less likely to generate false alarms, although they may miss
attack variants. Connection-level signatures are less restrictive and better generalize to previously unseen
attacks, although this freedom may lead to a higher false alarm rate. For attacks like Nimda that exhibit great
diversity, session semantics are not meaningful and connection-level signatures are more appropriate. For
worms like Welchia, session-level signatures are more accurate.

Figure 3 shows a session-level signature for Welchia, a worm that exploits a buffer overflow. Structure ab-
straction produced a general signature that matches a wide class of Welchia scans without losing the essential
buffer overflow information characteristic to the worm. Figure 4 shows the signatures generated for Nimda,
a Windows Media Player exploit, and the Deloder NetBIOS worm. The connection-level Nimda signature is
an example of a signature for an exploit with high diversity. In particular, note that the subsequence creation
generalization allows this signature to match a wide class of Nimda attacks. The Windows Media Player
exploit is representative of an HTTP exploit where the size of the exploit URL is small. Previous signature
generation techniques, such as Honeycomb, fail for small URLs. The Deloder signature demonstrates the
capability of iSieve to generate signatures for exploits using more complex protocols like NetBIOS/SMB.

5 Data Collection

Traffic from two unused /19 IP address blocks totaling 16K addresses from address ranges allocated to our
university was routed to our monitoring environment. This environment contained three primary components:
a NAT filter, a VMware honeynet, and an active sink (see Figure 5).

The NAT filter responded to the intra-campus border router via ARP (Address Resolution Protocol) as the
next hop for the specified address blocks. The NAT filter used a packet filter to capture the traffic addressed to
these blocks. The packets received were first filtered using a simple filtering rule: one destination IP address
per source. Connections to additional destination IP addresses were dropped by the filter. This filtering rule
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Figure 5: Data collection environment

Table 1: Data Summary

Learning Data Test data
Port | Packets | Sources | Connections | Sessions Packets | Sources | Connections | Sessions
80 278,218 10,859 25,587 12,545 100,291 12,925 12,903 5,172
139 192,192 1,434 3,415 1,657 || 6,764,876 | 539,334 1,662,571 24,747
445 | 1,763,276 14,974 35,307 19,763 | 6,661,276 | 383,358 1,171,309 37,165

reduced the volume of traffic by over two orders of magnitude and provided a consistent view of the network
to the adversaries. The filtered packets were then forwarded to either the active sink system or the VMware
honeynet, based upon the service. ‘

We routed HTTP requests to a fully patched Windows 2000 Server running on VMware. We routed
NetBIOS/SMB packets to the active responder masquerading as an end host offering NetBIOS services rather
than to the Windows 2000 Server for two reasons. First, the fully patched Windows 2000 Server often rejected
or disconnected the session before we had enough information to classify the attack vector accurately. This
could be due to invalid NetBIOS names or user/password combinations. Our active responder accepted all
NetBIOS names and user/password combinations. Second, NetBIOS connection requests were occasionally
rejected due to too many simultaneous network share accesses. .

We collected the data over a two day period. We collected three sets of traces, one for each port. Table 1
provides a high level description of the traces. The number of sessions is roughly the same as the number
of unique sources with the discrepancy due to sessions that expired after a timeout. The number of port 139
connections and sources is much smaller than that of port 445. Although the typical worm scans ports 139
and 445 simultaneously, we did not increment the connection count and the source count until we received
data packets. Most sources tended to prefer port 445 and did not send data packets to port 139 if the former
connection was successful.

6 Evaluation

We tested the effectiveness of our generated HTTP and NetBIOS signatures and examined the session
clusters used to produce these signatures. Sections 6.1-6.3 reveal the major classes of attacks in our recorded
data and quantitatively measure the clusters produced by the clustering module. We conclude with an evalua-
tion of the detection and false positive rates of iSieve’s signatures and compare our results with Snort’s HTTP
capabilities.

6.1 HTTP Clusters

We begin with an overview of the major HTTP clusters in our learning data set. WebDAV scans account for
the majority of the attacks in our data set. WebDAV is a collection of HTTP extensions that allow users to
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collaboratively edit and manage documents in remote web servers. Popular WebDAV methods used in exploits
include OPTIONS, SEARCH, and PROPFIND and are supported by Microsoft IIS web servers. Scans for
exploits of WebDAYV vulnerabilities are gaining in popularity and are also used by worms like Welchia. Nimda
attacks provide great diversity in the number of attack variants and HTTP URL obfuscation techniques. These
attacks exploit directory traversal vulnerabilities on IIS servers to access cmd . exe or root . exe. Figure 4
contains a connection-level iSieve Nimda signature.

The remaining clusters observed in our data include clusters for the Welchia worm, a Frontpage exploit,
web crawlers, and an open-proxy exploit. Appendix B provides more details of these exploits.

6.2 NetBIOS Clusters

Worms that are typically better known as email viruses dominate the NetBIOS clusters. Many of these viruses
scan for open network shares and this behavior dominated the observed traffic. The first set of viruses,
including LovGate [3], NAVSVC, and Deloder [10], use brute force password attacks to look for open folders
and then deposit virus binaries in startup folders.

The second set of viruses are more sophisticated. Windows provides the ability to access system services
such as epmapper (Windows RPC Service), srvsvc (Windows Server Service), and samr (Windows Se-
curity Account Manager). These viruses connect to default hidden shares on Windows such as IPC or ADMIN
to access these services. This enables them to launch more intelligent attacks. For example, connecting to the
samr service allows the attacker to obtain an enumeration of domain users, and accessing the RPC service
allows access to the well known RPC-DCOM exploit [13]. We provide more details in Appendix C.

6.3 Cluster Quality

We quantitatively evaluated the quality of clusters produced by the star clustering algorithm using two com-
mon metrics: precision and recall. Precision is the proportion of positive matches among all the elements
in each cluster. Recall is the fraction of positive matches in the cluster among all possible positive matches
in the data set. Intuitively, precision measures the relevance of each cluster while recall penalizes redundant
clusters.

We first manually tagged each session with conjectures as shown in Figure 6. Conjectures identified
sessions with known attack types. They were not used in clustering and served only as evaluation aids. It
is possible for a session to be marked with multiple conjectures. We used these conjectures to measure the
quality of our clusters.

The conjectures allow us to compute weighted precision (wp) and weighted recall (wr) for our clustering.
As sessions can be tagged with multiple conjectures, we weight the measurements based upon the total number
of conjectures at a given cluster of sessions. We compute the values wp and wr as follows: Let C be the set
of all clusters, J be the set of all possible conjectures, and c; be the set of elements in cluster ¢ labeled with
conjecture j. Then |c;| is the count of the number of elements in cluster ¢ with conjecture j.

_ el leil el wr = el lejl el
= Z(iCl;(EwiCkl Icl)> Z(iCIZ(ZkeJICkHle))

cel ceC JjEJ
1 Djeslol? _ LZ( le] «lcjlz)
ICl &2 ke lox] IC] 28 N ke ekl 27 1G51

In the formulas above, ) ;. ; [ck| > || and 3, ; |Ck| > |C| as sessions may have multiple conjectures.
Figure 7 presents graphs indicating how precision and recall vary with the clustering similarity threshold.
Recall that in the star clustering algorithm, an edge is added between two sessions in the graph of all sessions
only if their similarity is above the threshold. Although particularly true for NetBIOS data, the similarity
threshold has a significant impact on the quality of the resultant clustering in general. However, there are
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CLUSTER 0: 598 Unique Client IPs, 739 Sessions CLUSTER 12: 751 Unigue Client IPs, 817 Sessions
Identified as NIMDA : 739 (100%) Identified as Welchia : 817 (100%

Identified as Code Blue H 21 {3%) Identified as SEARCH H 801 (98%
Identified as Code Blue Variant H 14 {2%) CLUSTER 13: 6 Unique Client IPs, 7 Sessions
CLUSTER 1: 70 Unique Client IPs, 71 Sessions Identified as Unknown H 7 (100%
Identified as NIMDA B 71 (100%) CLUSTER 14: 14 Unique Client IPs, 14 Sessions
CLUSTER 2: 3 Unigue Client IPs, 7 Sessions Identified as Windows Media Exploit: 14 (100%
Identified as web crawler H 6 {B&%) CLUSTER 135: 1 Unique Client IPs, 1 Sessions
Identified as Unknown H 1 (14%) Identified as Unknown : 1 (100%)
CLUSTER 3: 1 Unigue Client IPs, 1 Sessions CLUSTER 16: 2 Unigque Client IPs, 2 Sessions
Identified as Unknown H 1 {100%) Identified as FrontPage Exploit : 2 {(100%
CLUSTER 4z 1 Unique Client IPs, 1 Sessions CLUSTER 17: 7 Unique Client IPs, 7 Sessions
identified as real media player H 1 {100%) Identified as PROPFIND H 7 (100%
CLUSTER 5: 89 Unicque Client IPs, 93 Sessions Identified as OPTIONS : 7 (100%
Identified as SEARCH : 93 {100%) CLUSTER 18: 14 Unique Client IPs, 17 Sessions
CLUSTER 6: 10 Unigque Client IPs, 10 Sessions Identified as PROPFIND H 17 (100%)
Identified as SEARCH : 10 (100%) Identified as OPTIONS : 17 {(100%)
CLUSTER 7: 116 Unique Client IPs, 131 Sessions CLUSTER 19: 41 Unigue Client IPs, 83 Sessions
Identified as Unknown : 125 (85%) Identified as PROPFIND : 93 {100%)
Identified as NIMDA H 6 (5%) Identified as OPTIONS : 93 (100%
CLUSTER 8: 8 Unique Client IPs, B Sessions CLUSTER 20: 1 Unigue Client IPs, 2 Sessions
Identified as Code Red Retina H 8 (100%) Identified as Kazaa H 2 (100%
Identified as SEARCH H 5 (63%) CLUSTER 21: 1 Unigue Client IPs, 1 Sessions
CLUSTER 9: 1 Unique Client IPs, 1 Sessions Identified as Kazaa H 1 (100%
Identified as Unknown : 1 (100%) CLUSTER 22: 1 Unigue Client IPs, 1 Sessions
CLUSTER 10: 1 Unique Client IPs, 1 Sessions CLUSTER 23: 1 Unigque Client IPs, 1 Sessions
Identified as Unknown H 1 {100%) Identified as Open Proxy : 1 {100%)
CLUSTER 11: 1 Unique Client IPs, 1 Sessions CLUSTER 24: 9184 Unigue Client IPs, 10525 Sessions
Identified as Code Blue : 1 (100%) Identified as OPTIONS ;10525 (100%

Figure 6: HTTP Port 80 cluster report
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Figure 7: Effect of clustering similarity threshold upon weighted precision and weighted recall. Points of high
volatility in precision scores correspond to significant shifts in the resulting clusterings.

clearly good values to use. The range from 0.75 to 0.9 maximizes both precision and recall scores for NetBIOS
data and is effective for HTTP data. At the clustering threshold used in our experiments (0.8), precision scores
were perfect or nearly perfect.

We favor clusterings with high precision even if recall scores diminish. In a non-hierarchical clustering
scheme like star clustering, it is easier to merge two clusters of similar data than it is to split a cluster of
differing data. We thus allow similar data to potentially be divided into two clusters, dropping the recall,
knowing that we may later manually combine the clusters. Conversely, if dissimilar data is clustered together,
improving recall but decreasing precision, then a single cluster may contain sessions from different exploits
and it may be difficult to generate reasonable signatures.

6.4 Signature Effectiveness

Intrusion detection signatures should satisfy two basic properties. First, they should have a high detection
rate; i.e., they should not miss real attacks. Second, they should generate few false alarms. Our results will
show that iSieve has a 99.9% detection rate with 0 false alarms. Two additional metrics evaluate the quality of
the alarms raised by an IDS. Precision empirically evaluates alarms by their specificity to the attack producing
the alarm. Noise level counts the number of alarms per incident and penalizes redundant alarms.
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Table 2: Session-level HTTP signature detection
counts for iSieve signatures and Snort Signatures. We
show only exploits occurring at least once in the train-
ing and test data.

Table 3: Detection and misdiagnosis counts for
connection-level iSieve NetBIOS signatures. This
data includes both port 139 and port 445 traffic.

' Signature Present || iSieve | Snort Signature | Present || Detected | Misdiagnoses
Options 1174 || 1162 | 1173 Srvsve 19973 || 19967 0
Nimda 500 || 497 | 499 Samr 8743 8742 0
Propfind 229 | 225 | 229 Epmapper | 1224 1223 0
Wtalchm . 92 92 92 NvcplDmn 62 61 0
Windows Medhla Player 89 89 89 Deloder 30 30 0
Code Red Retina 4 4 0 LoveGate 1 1 0
Kazaa 2 2 2
Open Proxy 1 0 0

® 99.9% Detection Rate: We evaluated the detection rate of iSieve signatures using leave-out testing, a
common technique in machine learning. We used the honeynet data set described in Table 1 to automati-
cally create connection-level and session-level signatures for the clusters identified in a training data set. We
measured the detection rate of the signatures by running signature matching against data in a different trace
collected from the same network (see Table 1).

We detected 99.0% of the attacks present in the HTTP data. We used connection-level signatures for
PROPFIND and Nimda and session-level signatures for all other attacks. Table 2 shows the number of oc-
currences of the HTTP attacks and the number detected by iSieve signatures. For comparison, we provide
detection counts for Snort running with an up-to-date signature set. Snort detected 99.7% of the attacks.

The detection rate of NetBIOS attacks is similarly very high: we detected 100.0% of the attacks present.
Table 3 contains the detection rates for NetBIOS/SMB signatures. Snort provides only limited detection capa-
bility for NetBIOS attacks, so a comparison was infeasible. All signatures were connection-level because the
defining characteristic of each attack is a string contained in a single connection. The structure of connections
within a session is irrelevant for such attacks.

e Zero Misdiagnoses or False Alarms: We qualify incorrect alerts on the honeynet data as misdiagnoses.
Although not shown in Table 2, all iSieve HTTP signatures generated 0 misdiagnoses on the honeynet trace.
Misdiagnosis counts for NetBIOS/SMB on the honeynet data were also 0, as shown in Table 3.

We also measured false alarm counts of HTTP signatures against 16GB of packet-level traces collected
from our department’s border router over an 8 hour time period. The traces contained both inbound and
outbound HTTP traffic, most of which was legitimate. We evaluated both iSieve and Snort against the dataset.
Table 4 shows the encouraging results for iSieve signatures: 0 false alarms.

Our automatically-generated iSieve signatures substantially improve upon the false alarm rate of Snort
signatures. Snort generated 88,000 alarms on this dataset, almost all of which were false alarms. Table 5 lists
the top seven Snort false alarm categories by volume. Our university filters NetBIOS traffic at the campus
border, so we were unable to obtain NetBIOS data for this experiment.

e Highly Specific Alarms: Although the decision is ultimately subjective, we believe our signatures gener-
ate alerts that are empirically better than alerts produced by packet-level systems such as Snort. Table 5 shows
that the types of alerts produced by Snort are not highly revealing. They report the underlying symptom that
triggered an alert but not the high-level reason that the symptom was present. This is particularly a problem
for NetBIOS alerts because all popular worms and viruses fire virtually the same set of alerts. We call these
weak alerts and describe them in Appendix C. iSieve, via connection-level or session-level signatures, has a
larger perspective of a host’s intentions. As a result, we generate alerts specific to particular worms or known
exploits.
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Table 4: HTTP false alarm counts for iSieve signa-

tures. The test data set contained 47,473 sessions col- ~ Table 5: Snort false alarm summary for
lected from our department’s border router. 47,473 HTTP sessions collected from our
department’s border router.

Signature iSieve
Welchia 0 Alert Volume
Nimda 0 Non-RFC HTTP Delimiter 32246
Code Red 0 Bare Byte Unicode Encoding 28012
Options 0 Apache Whitespace (TAB) 9950
Propfind 0 WEB-MISC /doc/ Access 9121
Windows Media Player 0 Non-RFC Defined Character 857
Kazaa 0 Double-Decoding Attack 365
Web Crawler 0 IS Unicode Codepoint Encoding 351
Open Proxy 0

o Low Noise due to Session-Level Signatures: Moreover, iSieve provides better control over the level of
noise in its alarms. Packet-level detection systems such as Snort often raise alerts for each of multiple packets
comprising an attack. A security administrator will see a flurry of alerts all corresponding to the same incident.
For example, a Nimda attack containing an encoded URL will generate URL decoding alarms in Snort and
alerts for WEB-IIS cmd.exe access. Sophisticated URL decoding attacks could later get misdiagnosed
as Nimda alerts and be filtered by administrators. Our normalizer converts the URL to a canonical form
to accurately detect Nimda attacks. Since iSieve aggregates information into connections or sessions and
generates alerts only on the aggregated data, the number of alerts per incident is reduced.

In summation, we believe these results demonstrate the strength of iSieve. It achieves detection rates
similar to Snort with dramatically fewer false alarms. The alerts produced by iSieve exhibit high quality,
specifying the particular attack detected and keeping detection noise small.

7 Discussion

A potential vulnerability of iSieve is its use of honeynets as a data source. If attackers become aware of
this, they could either attempt to evade the monitor or to pollute it with irrelevant traffic resulting in many
unnecessary signatures. Evasion can be complicated by periodic rotation of the monitored address space.
Intentional pollution is a problem for any automated signature generation method and we intend to address it
in future work.

Three issues may arise when deploying iSieve on a live network. First, live networks have real traffic,
so we cannot assumme that all observed sessions are malicious. To produce signatures from live traffic traces
containing mixed malicious and normal traffic, we must first separate the normal traffic from the malicious.
Flow-level anomaly detection or packet prevalence techniques [25] could help to identify anomalous flows
in the complete traffic traces. Simple techniques that flag sources that horizontally sweep the address space,
vertically scan several ports on a machine, and count the number of rejected connection attempts could also
be used.

Second, iSieve must generate meaningful signatures for Snort, Bro, or other NIDS. Snort utilizes an HTTP
preprocessor to detect HTTP attacks and does not provide support for regular expressions. Figure 8 shows the
transformed Snort signature generated for the Windows Media Player exploit shown in Figure 4. Snort does
not have the ability to associate both a request and a response in a signature, so our Snort signature ignores the
response. Converting iSieve signatures to Bro signatures (see Figure 9) is straightforward since Bro allows
for creation of policy scripts that support the use of regular expressions.

Third, while it is not the focus of this paper, iSieve may be run online. This makes iSieve attractive as a
means to defend against new worms that propagate rapidly. The data abstraction component’s modules work
without any changes on live traces. The star clustering algorithm is also designed to perform incremental
clustering and work in an online fashion. Anomaly detection techniques could be employed in parallel with
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signature nsiislog {
ip-proto == tcp
dst-port == B0
http /.*/scripts/nsiislog.dll
requires-signature-opposite ! http_200_ok

alert tcp any any -> 10.0.0.0/8 tecp-state—established
(msg: " {(msg:WEB-IIS nsiislog.dll access"; }
flow:to_server, established;
uricontent:"/scripts/nsiislog.dll") signature http_200_ok {
nocase; reference:...) ip-proto == tcp
src-port == B0
i . . payload /.*HTTP\/I\.. 200/
Figure 8: Snort rule for Windows Media Player event ‘‘HTTP 200 OK’’
EXplOﬁ tcp-state—~established

Figure 9: Bro Request/Reply Signature for Win-
dows Media Player Exploit

iSieve to flag compelling clusters for worm outbreaks. Automatically generated iSieve signatures for these
clusters could then be rapidly propagated to NIDS to defend against emergent worms. The resilience of iSieve
signatures to false positive makes such a deployment practical.

8 Conclusions

We have described the design and implementation of iSieve, an architecture for automated generation of
resilient NIDS signatures. iSieve is composed of three integral components: the data abstraction component,
the cluster component, and the signature generation component. This modular design supports and encourages
independent enhancement of each piece of the architecture. We evaluated our system’s capability using data
collected at two unused /19 subnets. We collected data for two services for which we developed service
normalizers (HTTP and NetBIOS/SMB). Running iSieve with this data as input resulted in clusters for a
wide variety of worms and exploits. Our evaluation suggests that simple similarity metrics like the cosine
metric can provide clusters with a high degree of precision. We also demonstrated the signature generation
capability of our system and discussed optimizations used in signature generation such as structure abstraction
and subsequence creation. We showed that iSieve generated accurate signatures with extremely low false
alarm rates for a wide range of attack types, including buffer overflows (Welchia), attacks with large diversity
(Nimda), and attacks for complicated protocols like NetBIOS/SMB. Our analysis of the Snort rules for these
clusters revealed that Snort performs poorly across both services.
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Figure 10: Port 445 edit distance (left) and cosine similarity (right) cumulative distribution functions.

Table 6: Assessment of Snort port 80 alerts

Table 7: Assessment of Snort NetBIOS/SMB alerts

Scan Snort alarms Assessment
OPTIONS Request Simple transiate Weak alert Scan Snort alarms Assessment
PROPFIND Request Simple translate Weak alert MS-RPC Port 445: None False negative
Welchia Safe scan attempt Correct Port 139: IPCS share access ‘Weak alert
WebDav search access Deloder Port 445: None False negative
U encoding Port 139: IPC$/ADMINS share access Weak alert
Frontpage Chunked encoding Incorrect alert NAVSVC Port 445: None False negative
Web Crawler none Correct Port 139: IPC$ share access Weak alert
Open-Proxy Scan none False negative C$ ADMINS share access Missing unicode
Nimda WEB-TIS cmd.exe access Correct LovGate Port 445: None False negative
Unicode directory traversal Port 139: IPC$,ADMINS share access ‘Weak alert
Code-Blue WEB-IIS cmd.exe access Correct

A Hierarchical Edit Distance Similarity Metric

Hierarchical edit distance computes the similarity between sessions A and B as a function of the number
of modifications needed to convert A into B (or equivalently, B into A). This metric extends the well-known
edit distance algorithm [4] for strings of characters to hierarchical vectors. In a hierarchical vector, elements
may themselves be vectors. Terminal elements must have an equality test. The hierarchical edit distance
similarity between sessions A and B is:

_ HIEREDITDIST(4, B)
Cost(A) + Cost(B)

where HIEREDITDIST(:,-) and COST(-) are given in Algorithm 1. This computation preserves connection
ordering within a session. Equivalent connections appearing in different orders in different sessions reduce
session similarity because edits would be required to produce session equivalence. As a result, hierarchical
edit distance generally rates sessions as less similar than does the cosine metric.

Qualitatively, the edit distance metric produced a larger number of clusters than the cosine metric and
the individual clusters were very accurate. The cosine metric produced fewer clusters, although the accuracy
was surprisingly comparable to that of the edit distance. The reason for this is apparent from the cumulative
distribution functions given in Figure 10. The graphs show the probability that any two sessions will have a
similarity measure above the threshold on the x-axis. The stable region of the hierarchical edit distance metric,
from 0.75 to nearly 1.0, is higher than the corresponding stable region for the cosine metri¢c. This indicates that
a greater number of sessions are similar, so the Star cluster graph contains more edges connecting sessions.
The number of clusters produced depends upon the edge count, so edit distance produces more clusters. Note
also that the cosine metric identifies a larger number of sessions as identical than does the hierarchical edit
distance metric, as evidenced by the sharp increase at 1.0. The larger size of the stable region from 0.5 to
almost 1.0 in for the cosine metric also implies that the cosine metric is less tightly coupled to a good threshold
choice.
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HIEREDITDIST(Z, ¥) :
Input: z and y are either both terminals or both hierarchical vectors of identical height
Result: The edit distance between « and y
begin
if z and y are terminals then
if z = y then
return 0
else
return J
endif CoSsT(s) : )
else Input: A vector or a terminal
m «— DEGREE(x) Resuit: Cost of insertion or deletion of s
n +— DEGREE(y) begin
A - (m+ 1) x (n + 1) matrix indexed at [0, 0} if s is terminal then
k return /
for k € [0, m] do Ak, 0] — Z CoSsT(x;) else
i=1 k +— DEGREE(s)
k k
for k € [0, n] de A[0, k] + Z CosT(y:) return Z CoST(s;)
frl =0
for i = 1to m do endif
for j = 1to n do end
InsertCost « Ali — 1, j]+CosT(z;)
DeleteCost « Ali, j — 1]-+C0OST(y;)
ReplaceCost « Ali — 1,j — 1]+HIEREDITDIST(z; , ¥5)
Al4, j] «MmmuMm(InsertCost, DeleteCost, ReplaceCost)
endfor
endfor
return A{m, n}
endif
end

Algorithm 1: HIEREDITDIST computes the hierarchical edit distance between two sessions. Alt, 7] is the
minimum number of insertions, deletions, or replacements required to convert the subvector z; ... z; to
the subvector y; . . . y;. COST calculates the cost to insert or remove a hierarchical vector from an existing
hierarchy.

OPTIONS / HTTP/1.1
translate: f

User-Agent: Microsoft-WebDAV-MiniRedir/5.1.2600 GET /scripts/..\..\..\../winnt/system32/cmd.exe?/c+dir
Host: 10.104.138.47

Content-Length: 0 GET /_vti_bin/..tftp+-i+$s+get+httpext.dll. . tftp+-i+
Connection: Keep-Alive $s+get+htipext.dll. . tftp+-i+¥s+get+httpext.dil..

tftp+-it+is+get+httpext.dll. . titp+-i+dstget+
httpext.dll../winnt/system32/cmd.exe?/c+dir

[**] WEB-IIS view source via translate header [**]

GET /iisadmin/......... /winnt/system32/cmd.exe?/c+dir

[Classification: access to a potentially vulnerable
web application] [Priority: 2]

Figure 12: Code Blue and Nimda attacks. Requests 1

Figure 11: Translate exploit HTTP request and Snort and 3 are Nimda, while request 2 is Code Blue.
alert

B HTTP Clusters

Clusters for port 80 traffic represent all of the most widely reported worms, some lesser-known exploits,
and benign web-crawler traffic. Table 6 evaluates the Snort alerts for this malicious traffic. Figure 6 provides
a summary of our clustering results. We see three significant clusters. Cluster 24 corresponds to sources that
try to send an OPTIONS request to see the list of publicly supported HTTP commands. Typically these are
sources looking for various WebDAV vulnerabilities. The other significant clusters include Nimda sources
(Cluster 1) and Welchia sources (Cluster 12). Scans for exploits of WebDAV vulnerabilities account for the
majority of the scans in our dataset. The list below describes the major types of WebDAV scans.

» OPTIONS request: This is the dominant port 80 request observed in our logs. The client sends an
HTTP OPTIONS request of the form shown in Figure 11. The server returns the list of supported
options. Scanners are trying to obtain a list of scriptable files by sending “translate: f” in the options
header of the HTTP request [23].
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POST /_vti_bin/_vti_aut/fp30reg.dll HITP/1l.1
Host: %s

Transfer-Encoding: chunked CONNECT 1.3.3.7:1337 HITP/1.0
CONNECT ns.watson.ibm.com:25 HTIP/1.0

alert tcp \$EXTERNAL _NET any —> \$HITP_SERVERS \SHITP_PORTIS
(msg:’’'WEB~FRONTPAGE rad fp30reg.dll access’’;

uricontent:’’/fp30reg.dll’’; ...) Figure 14: Two instances of CONNECT
(Open-proxy exploit)

Figure 13: HTTP request and Snort rule for Frontpage exploit

* PROPFIND exploit: PROPFIND requests are frequently associated with OPTIONS requests. Many
sources first send an OPTIONS / request to see if PROPFIND is supported before attempting the
PROPFIND exploit. PROPFIND is a WebDAV feature that returns lists of data. Sources use PROPFIND
to attempt to view listings and content of cgi files on the target machine. As with malicious OPTIONS
requests, the PROPFIND requests include the special “translate: f” in the header. As a result, the Snort
alert is essentially equivalent to that for the simple translate exploit.

* WebDAV buffer overflow exploit: All of the sources in cluster 12 are Welchia sources using a unique
3 step scanning process. A source first sends a GET / request, then a SEARCH / request. Finally,
if it receives a 411 length required error message from the server for the SEARCH request, it sends
a WebDAV SEARCH request containing data that overflows a buffer. Snort produces three alerts for
this exploit: the first for to the first SEARCH request and two more alerts for the second SEARCH
request [28].

Our cosine-metric clustering algorithm effectively aggregated WebDAV exploits. Nimda sessions were
divided into multiple clusters due to the variants of Nimda and varying directory prefixes used in these scans.
Due to these differences, our ¢lustering algorithm separates the common scanning episodes of the well known
variants from the isolated scans. This is important because the isolated scans might also be associated with
other less common or unknown exploits. For example, we found an exploit for the Code Blue worm being
clustered along with the Nimda sources as shown in Figure 12.

A Frontpage exploit is among the port 80 clusters. Figure 13 shows the Snort rule for the Frontpage
exploit. Interestingly, Snort did not generate an alert for this exploit when run against our trace despite the
presence of the rule in its dataset. The trace was misdiagnosed as a chunked encoding attack directed against
vulnerable Apache servers. It seems that the presence of chunked encoding in the HTTP header prevents other
rules from executing correctly.

Figure 6 also shows a cluster (Cluster 2) of scans from web crawlers. It is important to note that the scans
from web crawlers did indeed get clustered together. Normally, we would not expect scans from web crawlers
to be seen at at honeynet because these IP addresses neither have DNS entries nor host any content. Hence,
they should not be linked by any other web pages. Our analysis revealed that these scans were, in fact, due to
obsolete DNS entries.

The CONNECT request is used for tunneling requests via proxy servers. Open-proxy servers are popular
in some countries as a means to obfuscate surfing activity. They are also often used by spammers to forward
mail. Figure 14 shows two different instances of CONNECT requests. Snort did not fire an alert for either
one of these scans.

C NetBIOS/SMB Clusters

NetBIOS/SMB scanners that probe ports 139 and 445 (with the possible exception of the MS RPC scan-
ners such as Blaster) are predominantly email viruses which also have a network share propagation com-
ponent. The major clusters include sources accessing the Security Account Manager samr pipe such as
the Lioten (irag-oil) worm, sources accessing the MS-RPC epmapper pipe such as the Agobot (Sophos)
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alert tcp SEXTERNAL_NET any -> $HOME_NET 139
(msg:"NETBIOS SMB IPC$ share access"”;
flow:to_server,established; content:"|{00|";
offset:0; depth:1; content:"{FF|SMB|75]";

offset:4; depth:5; content:"\\IPC$[00|"; alert tcp SEXTERNAL_NET any -> $HOME_NET 139
v ) (msg:"NETBIOS SMB ADMINSaccess";
flow:to_server,established;

alert tcp SEXTERNAL_NET any —> $HOME_NET 1393 content:"\\ADMINS |00 41 3a 00[";
(msg:"NETBIOS SMB IPC$ share access (unicode)”; reference:arachnids, 340; classtype:attempted-admin;
flow:to_server,established; content:"(00|"; sid:532; rev:4;

offset:0; depth:l; content:"|FF|SMB{75|";
offset:4; depth:5;
content:"|5c00|I|00|P|I00|C|00($1001";

) Figure 16: Snort rule for ADMIN share access

Figure 15: Two Snort rules for IPC share access

worm [27], the Deloder worm [10], and NveplDmn. Table 7 provides a summary of the Snort alerts for
NetBIOS/SMB scans.

The RPC Endpoint Mapper (epmapper) maintains the connection information for the RPC processes
in a Windows machine. Scanners use the NetBIOS/SMB service to connect to the epmapper service and
indirectly exploit the same vulnerability as worms like Blaster and Welchia [13]. Besides Blaster, scanners
connecting to this share include machines infected with variants of the Agobot worm [27]. These machines
then create the file Nvscv32.exe.

Snort signatures are particularly weak in detecting SMB exploits, especially against port 445. The Snort
rules contain no references to Nvscv32 . exe. However, rules to detect connections to the IPC$ share exist,
as shown in Figure 15. The second rule is for unicode negotiated clients. These are very general rules that lack
specificity and encompass virtually every NetBIOS worm in the wild. Surprisingly, the two rules did not fire
alerts on the SMB exploits because they were written only for port 139. As mentioned earlier, most NetBIOS
worms attack both 139 and 445 simultaneously and tend to prefer port 445 (raw SMB). Deeper evaluation
of this signature showed that it was unnecessarily restrictive. It checked for content matching: FF|SMB|75,
where 75 is the SMB command code. The code 0x75 corresponds to SMBTreeConnectAndX. However, this
could also possibly be SMBtcon (0x70) or SessionSetupAndx (0x73) [S]. We observed several instances
of SessionSetupAndX in the wild.

The Deloder Worm targets port 445 and connects to the JPC and ADMIN shares. The worm uses simple
password attacks to spread to Windows 2000 and Windows XP machines [10]. The worm attempts to create
the file psexecsvc.exe in the System32 folder. Snort contains no signatures to specifically detect De-
loder, although there are general signatures that detect connections to the IPC and ADMIN shares. As with
the Agobot worm, these signatures are present only for port 139 and not port 445. Figure 16 shows the Snort
rule detecting connections to ADMIN shares on port 139. The rule set is missing a corresponding rule as in
Figure 15 for unicode negotiated clients.

We have identified what seems to to be a trojan (NvcplDmn) or an adware with a network scanning
component. The worm connects to the IPC share and C share and attempts to copy the file Navsvc.exe to
the startup folders. Snort does not have a special rule to detect this worm. On port 445 this worm would not
fire any alarms. On port 139, the closest rules are those that detect IPC and C share accesses. Again, the rule
to detect C share access would need a separate rule for unicode negotiated sessions.

LovGate is an email virus that spreads via network shares and was primarily observed on port 139. It
tries to connect to the ADMIN and IPC shares and then attempts to access the svcct 1 named pipe (service
control manager). The worm drops the file Net services. exe using the NTCreateX command and once
infected tries to send emails through the SMTP server www.163 . com. There are no specific rules in Snort
to detect connections to the service control manager pipe or creation of any of the virus files.
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