CENTER FOR
PARALLEL OPTIMIZATION

PARALLEL GRADIENT DISTRIBUTION
IN UNCONSTRAINED OPTIMIZATION

by

O. L. Mangasarian

Computer Sciences Technical Report #1145

April 1993

Parallel Gradient Distribution
in Unconstrained Optimization

O. L. Mangasarian™

Revised February & June 1994

Abstract

A parallel version is proposed for a fundamental theorem of serial unconstrained optimiza-
tion. The parallel theorem allows each of & parallel processors to use simultaneously a different
algorithm, such as a descent, Newton, quasi-Newton or a conjugate gradient algorithm. Each
processor can perform one or many steps of a serial algorithm on a portion of the gradient of the
objective function assigned to it, independently of the other processors. Eventually a synchro-
nization step is performed which, for differentiable convex functions, consists of taking a strong
convex combination of the k points found by the & processors. A more general synchronization
step, applicable to convex as well as nonconvex functions, consists of taking the best point found
by the k processors or any point that is better. The fundamental result that we establish is that
any accumulation point of the parallel algorithm is stationary for the nonconvex case, and is
a global solution for the convex case. Computational testing on the Thinking Machines CM-5
multiprocessor indicate a speedup of the order of the number of processors employed.

1 Introduction

In this work we are interested in parallel algorithms for solving the unconstrained minimization
problem

min f(a) (L)

zeR"

where f is a differentiable function from the n-dimensional real space R" into R. The basic idea
behind our approach is to assign a portion of the gradient V f of f, to one of & processors, let
each processor perform one or more steps of a serial algorithm on its portion of the gradient, and
then synchronize the processors eventually. The synchronization consists of taking a strong convex
combination of the k points found by the k processors when f is convex. For nonconvex f, the best
point found by the k processors can be taken, or any other point with a lower value of f will work.

The fundamental theorem we intend to parallelize is related to some classical forcing func-
tion theorems given in [7, 4, 11] that establish convergence for a wide class of algorithms. Such
algorithms typically consist of a direction choice followed by a stepsize choice. The combined
direction-stepsize choice generates a decrease in the objective function that forces the eventual sat-
isfaction of an optimality condition, namely the vanishing of the gradient. Direction choices include
descent directions, Newton, quasi-Newton and conjugate directions. Stepsize choices along the cho-
sen direction include minimization, finding the first stationary point, interval stepsize, the Armijo

*Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706, email:
olvi@cs.wisc.edu. This material is based on research supported by Air Force Office of Scientific Research Grants
AFOSR-89-0410 and F49620-94-1-0036, and National Science Foundation Grants CCR-9101801 and CDA-902461¥.

stepsize and others. Related algorithms, wherein the objective function is sequentially minimized
with respect to certain variables, include the serial algorithm proposed by Warga [16] for a strictly
convex function in each block of variables and in which the function is sequentially minimized for
each block of variables, and the coordinate descent methods of Tseng [15] and Luo and Tseng [8].
Other parallelization schemes are discussed extensively in [2].

We note that our parallelization proofs are direct extensions of those for general serial algo-
rithms. However the resulting parallel algorithms are quite general and have significant theoretical
and computational implications. For example, the parallelization proposed here played an impor-
tant role in establishing the convergence and computational results of the parallel backpropagation
algorithm of neural networks [9], the parallel variable distribution algorithm for unconstrained and
constrained optimization [6], and the parallel multicategory discrimination problem [1].

We give now an outline of the paper. In Section 2 we establish two serial convergent algorithm
Theorems 2.1 and 2.2 (SCAT1 and SCAT2) which cover many unconstrained direction-stepsize
algorithms that are suitable for parallelization. We also give a number of specific instances of well
known algorithms satisfying conditions of these theorems. In Section 3 we establish a number of
parallel convergent algorithm theorems that utilize the serial algorithms. In Theorem 3.1 (Convex
PCAT1), which covers the convex case, each processor takes one step of any serial algorithm
covered by SCAT1 or SCAT2, and then a strong convex combination (positively weighted average)
of all the points is taken as the next iterate. Corollary 3.1 (Nonconvex PCAT1) differs from
the Convex PCAT1 in that the synchronization step consists of taking the best point found by
the k processors, or searching for a better point. By better we mean, of course, lower [value.
Corollary 3.2 (Partially Asynchronous Nonconvex PCAT1) allows partial asynchronization among
the k processors in the sense that each processor is free to perform any number of steps of the
serial algorithm that is desirable (say, until further improvement in each processor is very small),
followed by a synchronization step that consists of taking the best point or searching for a better
one. Theorem 3.2 (Partially Asynchronous Nonconvex PCAT2) combines, in a similar manner to
SCAT? for the serial case, the direction and stepsize choices of Corollary 3.2 into a simpler and
more general forcing function condition (20). However, this theorem is not as suggestive of an
explicit computational scheme as the Partially Asynchronous Nonconvex PCAT1 of Corollary 3.2.
In the concluding Section 4 we report briefly on computational experience with parallel gradient
distribution algorithms on multicategory discrimination problems [1], and on publicly available test
problems [6] from the constrained and unconstrained testing environment CUTE [3]. Computations
were carried out on the Thinking Machines CM-5 multiprocessor. Speedup efficiency depended on
problem size and number of processors employed (2 to 32) and averaged between 129% and 20%..

We now briefly describe our notation. The sequence {z;}, ¢ = 0,1,..., will represent iterates
in the n-dimensional real space R™ generated by some algorithm. For £ = 1,...,k, 2t € R will

k
represent an nf-dimensional subset of components of z;, where Z n’ = n. The complement of in
(=1
{1,...,k} will be denoted by (and we write 2; = (af, @ 2f), L=1,...,k. For a differentiable function
fi R” — R, V f will denote the n-dimensional vector of partial denvatlves with 1espect toz,and ¥V, f

will denote the n’-dimensional vector of partial derivatives with respect to 2‘ € R” C=1,...,k
k k

For k points y in R", Z Ajy;, such that A; > ¢ > 0 and Z A; = 1, is said to be a strong convex
J=1 j=1

combination of the points y;, j = 1,..., k. If f has continuous first partial derivatives on R", we

say f € CY(R"™). If f has Lipschitz continuous first partial derivatives on R™ with constant K > 0.

that is:
V() = V@Il < Klly -« Vo, y € R"

B[

we write f € LC}-(R"). Here and throughout, || - || denotes the two norm, that is ||z]| = (zT2)
for z in a finite-dimensional real space of unspecified dimension.

2 Serial Convergent Algorithm Theorems

We begin first with a simple serial convergent algorithm theorem (SCAT1) for the solution of the
unconstrained minimization problem (1). The theorem is related to some classical forcing function
theorems given in [7, 4] that establish convergence for a wide class of algorithms that consist of
a direction choice followed by a stepsize choice. The decrease in the objective function forces the
satisfaction of an optimality condition, namely the vanishing of the gradient. Before stating and

proving SCAT1 we adapt the definition of a forcing function [10, p.479] for our purposes.

Definition 2.1 Forcing function A continuous function o from the nonnegative real line R,
into itself such that o(0) = 0, a({) > 0 for ¢ > 0 and such that for the sequence of nonnegative real
numbers {(;} :

{c(¢;)} — 0 implies {¢;} — 0.

is said to be a forcing function on the sequence {(;}.
Some simple typical examples of forcing lunctions are
al, a¢?, max{ai(C), a2(¢)}, min {o1(¢), 02(¢)} and a2(a1(¢)),
where « is a positive number and oy (¢) and ¢2(¢) are forcing functions. We now state and prove
SCATL.

Theorem 2.1 Serial convergent algorithm Theorem 1 (SCAT1) Let f € C1(R™). Start with
any xg € R™. Given w;, stop if V f(w;) = 0, else compute x;11 from a direction d; and stepsize A;
that satisfy:

Direction d;:
= V) di 2 o (IV F (), (2)
where o) is a forcing function on {||V f(z;)]|}, and
Stepsize A;:
Tip1 = &+ Aid; (3)
such that
J@) = flwis1) 2 02(=V f(2:)Tdi) 2 0, (4)
where oy is a forcing function on the sequence of nonnegative real numbers {=Vf(z)Td;} for
bounded {d;}. Then either {x;} terminates at a stationary point a7, that is Vf(z;) =0,0r Vf(T) =
0 for each accumulation point (#,d) of the sequence {a;,d;}.

Proof The algorithm terminates at an 2; only if V f(z;) = 0. Suppose now it does not terminate
and that {(z;;, d;,)} = (2, d). Since [is continuous, lim f(zi,) = f(%). By the stepsize condition
J=reo

(4), the sequence { f(z;)} is nonincreasing and has an accumulation point f(Z), and hence converges
to f(Z). By (4) and the continuity of o4(¢)
0= lim flo;) = flein) 2 im oa(=Vf(2,)7d,) = 02(=VF(2)7dD) 2 0.

J—roeo

Hence V f(2)Td = 0. But by the direction condition (2)

0=-vs(@)'d=- lim V(i)T di, > ;l.i.i?ic,‘”(”vf il = o (IVA(@)]]) 2 0.

=00

Hence Vf(z) = 0. 0
We note that the boundedness condition on {d;}, which does not restrict Theorem 2.1, was not
explicitly used in the proof. However, this condition simplifies the application of the theorem to
specific stepsize choices, such as the first stationary-point and Armijo stepsize choices given below.
We give now examples of direction and stepsize choices that satisfy the assumptions of Theorem

2.1.

Example 2.1 Serial direction choices For f € CY(R") and ¢ a forcing function, a direction
d; € R™ satisfying any of the following condilions will satisfy condition (2):

(i) Descent direction

—~dTV f(z;) > ||V f(z;)]|° for some a >0, § > 0.

(1i) Quasi-Newton direction

d; = —H;V f(x;), H; € R™™, THz > ol z))? Yz € R*, forsome «a > ().

(iii) Conjugate direction
di = =V [(2;) + aydi—y

1V f(i)]” -
(v .
o7l + e > ° /=l R
where o is a Jorcing function on {||V f(x)|]}.

We note that the conjugate direction conditions of (iii) are satisfied by the Polyak-Polak-Ribiere
[13, 12, 14, 11] coefficient
(V /(i) = VS (2i-1))" V()

Q= : 6
V7 Gn]? v

for f € C?(R™) and such that
Bllzl|? > TVEf(2)z > a2 Vz € R" for some >« > 0. (7)
We also note that the Newton direction d; = —~V?f(z;) "'V f(2;) satisfies (ii) above under the same

condition (7).
We give now stepsize choices that satisfy conditions (3)-(4) of Theorem 2.1.

Example 2.2 Serial stepsize choices. For d; € R* and f € C*(R"™), a A\; > satisfying any one
of the following conditions will satisfy conditions (3)-(4) of Theorem 2.1:

(i) Minimum along d;
A; € arg n\li>n flzs + Ady), f € LCL(RY).

(ii) First stationary point

Ai € arg ngi>n {MV (2 + M) d; = 0}, f € LCL(R™).

(iii) Interval stepsize

2 . , .
0<ey <A <L ;f;—-gg, H(l;Hz < ﬂpV‘/'(xg)T(l;, f € LC}-(R™) for some €; > 0, g2 > 0 and p > 0.
0 K

(iv) Armijo [5, pp.118-119]
Y
A = max {\;, —2—1 yo -} such that

Flai) = Sl + Nidi) > =NV f(2)Tdi for some &€ (0,1),

o(=V flx)Td;)
VfeaTd

It takes a bit of algebra to show that each of the four stepsizes (i) to (iv) above satisfy conditions
(3)-(4) of Theorem 2.1. We omit the details here.

We note that Theorem 2.1 can be written in a more general and simpler, but algorithmically
less suggestive, form by combining conditions (2) and (4) into the single condition (8) below. This
results in the following theorem, the proof of which either follows from that of Theorem 2.1 or can
be given in a few lines as is done below.

and \; > where o is a forcing function and f € LC}-(R™).

Theorem 2.2 Serial convergent algorithm theorem 2 (SCAT2) Let f € C*(R™). Start with
any zo € R™. Given x;, stop if Vf(z;) = 0, else determine ;4 such that

f(2) = flziv1) 2 o([[Vf(=il]), (3)
where o is a forcing function on {||V f(z;)||}. Then either {z;} terminates at a stationary point a7,

or each accumulation poinl @ of {x;} is stationary.

Proof Suppose V f(z;) # 0 for all i and that {2, } converges to . Since the nonincreasing sequence
{f(2;)} has an accumulation [(Z), it converges to f(Z). By (8) we have that
0= lim (f(w;,) = flai41) > lim o(IVF (i)l > 0.
Jrod 7—ro0
Hence lim [|[V f(z;,)|| = 0 and V f(z) = 0. 0
PR

We note that the full sequences {f(w;)} and {||V f(2:)]|} converge if f is bounded below. We

state this as the following corollary.

[}

Corollary 2.1 Function and gradient convergence Let f be bounded below on the level set
S(zo) = {2|f(z) < [(z0)}. Then the sequence {[(x;)} of Theorems 2.1 and 2.2 converges, and the
hm IV f(zi)]] = 0.

Proof Irom (8) the sequence {f(z;)} is nonincreasing, and since {z;} remains in S(xo), {f(2;)}
is bounded below and hence converges. From (8), we have that hm o(|IVf(z:)]l) = 0, and hemo

Jim [IV (2|l = 0. 0

We now proceed to establish parallel versions of Theorems 2.1 and 2.2 and other parallel results.

3 Parallel Convergent Algorithm Theorems

We shall establish in this section parallel versions of Theorems 2.1 and 2.2. The import of these
theorems, PCAT1 and PCAT?2, is that they enable each of k processors to perform, on a portion
of the gradient that is assigned to it, one or more iterations of the serial algorithms independently
of the other processors. The processor picks a direction and stepsize based on the partial gradient
assigned to it. A simple synchronization step follows in which a new point is generated by a
strong convex combination of the k points obtained by the & processors for the convex case, and
by using the best, or better, point obtained by the & processors for the nonconvex case. We first
state and prove Theorem 3.1, our parallel theorem for the convex case. Corollary 3.1 extends
Theorem 3.1 to the nonconvex case. Corollary 3.2 further extends Corollary 3.1 by allowing partial
asynchronization by letting each processor take as many steps as desirable. Finally Theorem 3.2
gives a more general version of Theorem 3.1 for the nonconvex case. We note here that a referce
pointed out that the distribution of the gradient can also be made with respect to subspaces
induced by other decompositions of R". For example, the iterate z; can be decomposed into

= Pa;, {=1,...,k, instead of into subvectors 1f of ;. Here Py, ..., P, are projection matrices

(thatis P? = P, P = P, i=1,...,k) such that Sk P =1

Theorem 3.1 Convex parallel convergent algorithm theorem 1 (Convex PCAT1) Lel
f € CHR™) be convex on R™. Start with any zy € R™. Given z; bf()]) if Vf(z;) =0, else compule

X1 from dirvections r[f- € R, and stepsizes /\f e R, =1,...,k, Zn n, that satisfy:
Direction d!:
- Vo) dE 2 eIV ef ()l)), ok (9)

where ¢ is a Jorcing funclion on {||Vef(x)||}, (=1,... k.

Stepsize A!:
Choose /\fiy, C=1,...,k such that for , the complement of € in {1,...,k}:

Fla) = flab 4 288, ab) > pe(=Vef(z)Tdb) >, C=1,...,k, (10)

where pte is a forcing funclion on the sequence of nonnegative real numbers {—=Vf(2 yLdsy for

bounded {d$}, ¢ =1,... k. and

Synchronization:

'1:5'-{..] - + l/ /\t(/((,: l»’ . '*,/‘: (J l)
k
Sf=1 >8>0, 0=1,..,k 12)
=1

6

Then, either {z;} terminates at a solution x; of (1), or for each accumulation point (I, d) of
{z;, d;}, T is a solution of (1).

Proof We first show that the sequence {f(x;)} is nonincreasing.

flz) - fla
= flal, .. af)y = flal + iR, ek oA

k k-1
= [f(a},.. ey — fod el + A b + (Zuf)mf, . .,i/f’(mf + /\f;“'(lf‘:) + (Z vH)at)
(=2 (=1

e T F TN L U0 | I S
.+ 1/1”'[f(n;}, ce m{‘) — flat, .’uf"l, :1:5" +)\f’(lf-”')] (By convexity of f)

AV
X
—
—
~
—
=
e

> ()Z,ug ~Vef(ei)Td). (By (12) and (10).) (13)
Hence
Ji) = faigr) 2 <>Z;1(~Vef(a)Td) >, (1)
and the sequence {f(z;)} is nonincreasing.
Now the sequence {a;} of the PCAT1 algorithm terminates only if V f(z;) = 0, in which case
a7 solves (1). Suppose now that it does not terminate and that {(z;, d;;)} — (&, d). Since f is
continuous, 1m f(zi)) = [(&). Hence the nonincreasing sequence {[i)} has an accumulation

point f(Z), and conscquently the sequence converges to f(%). By (14) and the continuity of e, { =
., k, we have that

=00

k
0= lim (f(wi,) = flzi,+1)) 2 >4 1 1m ZW ~Vef(2i)) ([‘) Z pe(=Vef(Z (ZL/) > 0.

Hence V f(z)Td = 0. But by the direction condition (9)

k k
0= V@) d= = lim V)" 2 Jim 3 nV) = 2 mlIVAL@ID 2
Hence Vf(z) =0, { = 1,...,k and consequently V f(Z) = 0 and & solves (1). O

We note that the convexity of f was needed in (13) in the proof above, as well as to show that
the stationary point generated by PCAT1 is a global solution of m}%l f(z). However, it is easy to
we ki3
extend Theorem 3.1 to nonconvex f by changing the synchronization procedure (11)-(12) to one
that takes the best of the points found by the k processors or a better point. We state this as the
following corollary.

Corollary 3.1 Nonconvex parallel convergence algorithm theorem 1 (Nonconvex PCAT1)
Theorem 3.1 holds for nonconvex [, with a resulling stationary point, if the synchronization proce-
dure (11)-(12) is replaced by the following:

Synchronization:

Find z;41 such thal

(wig) < ll}lcigk flab 4 At 2f). (15)

~1

Proof The only changes needed in the proof of Theorem 3.1 in order to apply it here are the
following. Replace & by T in (14) and replace the string of inequalities of (13), which establish the

monotonicity of {f(x;)} tlwmngh the convexity of f, by the following:

fle) — fli) 2 % [flz:) - "/'(.7,:} “+ /\}d}, :z:f, R 15”)] + ..

() = flab b of 4 6] By (15))

1 k ‘ o
27 el = Ve) d).
v (3!

v

O

We note now that partial asynchronization of the k processors for the nonconvex PCATI is
possible by allowing each of the k processors to take as many steps as desired until, say, they
encounter slow convergence, provided we terminate each processor €, { = 1,...,k, at a point

(v?, 1?) such that

Tyt) < flab 4+ Ay, 2, 0=1,.. k. (16)
where Af, € =1,...,k, satisfy (10). Such an inequality is easily satisfied, for example, when each
processor takes a desired number of steps in /3’»"[determined by any of the standard serial algorithms
described in Section 2 on the function f(af, vf) starting at (zf+Afdf, af). After these parallel steps
are performed by each processor then an eventual synchronization step is needed that consists of
determining ;41 such that

fleie) € min [y,). (17)

We summarize these procedures as the following partially asynchronous algorithm.

Corollary 3.2 Partially Asynchronous Nonconvex PCAT1 Theorem 3.1 holds for nonconveu
[y with a resulting stationary point, if the stepsize choices (10) and synchronization procedure (11)-
(12) are changed to the following:

Partially Asynchronous Stepsize Choose yf, (=1,...,k, such that for U, the complement of (
in {1,...,k,}:)

Fl@) = Flyb, 28 > pe(=Vef(z)Tdd) >0, ¢=1,.. .k, (18)
where e is a forcing function on the sequence of nonnegative real numbers {—\7@‘)"(1',,‘)77(1“ for
bounded {d¢}, ¢ =1,..., k.

Comment: Inequality (18) is casily implemented by satisfying (16) and (10).
Synchronization: Find x4 such thal
(21} < min "-U,::,Z. 19
Jlripr) < }IS“H%A,/(U; vi) (19)
Proof The only changes needed in the proof of Theorem 3.1 in order to apply it here are to replace

d by 7 in (14) and to replace the string ol inequalities of (13) that establish the monotonicity of

v

{f(2:)} by using (18)and (19) as [ollows:

J@) = fein) > S[f(e) - flol a2 ab)

v

1 3 o
o) = flads S yB] By (19))
| k
> /i D ne(=Vef(z)Tdb).

(=1

0

By combining the direction (9) and stepsize (18) choices of the Partially Asynchronous Noncon-

vex PCAT1 of Corollary 3.2 into a single forcing function condition (20) below, we obtain Theorem

3.2 that is a simpler and more general theorem than PCATI of Corollary 3.2. We omit the proof
which is similar to that of Theorem 2.2.

Theorem 3.2 Partially Asynchronous Nonconvex PCAT2 [et f € CHR™ on R™. Start
with any xo € R*. Given x;, stop if V f(x;) = 0, else delermine 2iq1 such that:

Parallel Steps Determine 4, (= 1,..., &, such that for 7 the complement of ¢ in {i,...,k} :
Sl = T by > ac(lIVef(z)ll), =1,... k, (20)

where oy is a forcing function on {|[V/(2;)||}, for ¢ = 1,..., k.
Synchronization Step Choose 2;,; such that

J(wea) < min f(yf, 7). (21)

Either {;} terminates at a stationary point 7, or each accumulation point # of {x;} is stationary.

We conclude this section with the remark that the synchronization step, in all the proposed

methods in this section, can be further modified, if desired. In particular, we can search along the

direction a' + A2t — &), A € R, for a better point than 2**! as the next iterate, and replace

2t by this better point. All the convergence results remain valid because of the forcing function
arguments used to establish them.

4 Conclusion and Numerical Results

We have given a number of parallel versions of fundamental convergence theorems for unconstrained
minimization. These basic results enable k, possible massively large, parallel processors to perform
on portions of the gradient, what one processor performs on the entire gradient in a serial algorithm.
The direction choices in these theorems include many of the popular directions (gradient, quasi-
Newton, Newton, conjugate gradient) and stepsizes (minimization, first stationary point, interval,
Armijo). Note that each processor can apply direction and stepsize choices different from those of
the other processors. A synchronization step is then used to obtain a strongly convex combination
of the k points obtained by the k processors for the convex case, or alternatively the best of the A
points or a better point can be taken as the next iterate for the convex as well as the nonconvex
case.

Numerical implementations of parallel gradient distribution algorithms have been carried out
in [1, 6] on the Thinking Machines CM-5 m ultiprocessor. In these implementations, inexact quasi-
Newton minimization was used in each parallel processor so as to satisfy (16). Each processor
was allowed to take a number of steps before synchronization. The synchronization consisted of
searching the affine hull of the points generated by the parallel processors as well as the current
point. The problems solved in [1] consisted of real world multicategory discrimination problems,
formulated as unconstrained minimization of piecewise convex quadratic functions with Lipschitz
continuous gradients. Problem size varied between 70 and 140 variables. For these multicategory
discrimination problems, it is most efficient, to use as many parallel processors as there are categories.
This happened to be 7 for the problems tested. A standard measure of efficiency for parallel
algorithms is the speedup efficiency defined as

Time on 1 processor

Speedup Efficiency = ——
(Time on k processors) xk
Thus, a speedup efficiency of 100% means that the time taken by one processor is cut exactly by
a factor of &, when £ processors are employed. An efficiency of over 100% indicates that some of
the parallel processors, that are solving smaller subproblems, have obtained very good points, or
that the affine hull generated by these points spans some very good points. For the multicategory
discrimination problems, speedup efficiency was between 50% and 91%. For more details see [1].
In [6], thirty unconstrained problems from the publicly available CUTE (Constrained and Un-
constrained Testing Environment) [3] were tested. Among others, the parallel variable distribution
algorithm version PVDO was tested, which is equivalent to a parallel gradient distribution algo-
rithm. Problems solved were between 100 and 1024 variables in size. These problems were solved
on 2, 4, 8, 16 and 32 processors, with respective average speedup efficiencies of: 129%, 122%, 77%,
44% and 20%. These figures indicate that for problems of the size attempted, parallel gradient
distribution is capable of producing a speed up, equal to or better than 44% of the number of pro-
cessors used, for 16 or less processors. In order to exploit more fully a larger number of processors,
larger problems need to be solved. We believe, however, that we have demonstrated that paral-
lel gradient distribution can achieve speedups of the order of the processors employed, and hence
warrant further study and testing.

10

References

[1]

(2]

(3]

[14]

[15]

[16]

I.P. Bennett and 0.1, Mangasarian. Serial and parallel multicategory dicrimination. S74Af
Journal on Optimization, 4(1), 1994,

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation. Prentice~Hall, Ine.
Englewood Cliffs, New Jersey, 1989.

. Bongartz, A.R. Conn, N. Gould, and Ph.L. loint. CUTE: Constrained and unconstrained
testing environment. Publications du Départment de Mathématique Report 93/10. Facultés
Universitaires De Namu r, 1993,

J.W. Daniel. The approximate minimization of functionals. Prentice-Hall, Englewood Cliffs,
New Jersey, 1971.

J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and Non-
linear Equations. Prentice-Hall, Englewood Cliffs, N.J., 1983,

M.C. Ferris and O.1.. Mangasarian. Parallel variable distribution. STAM Journal on Optimiza-
tion, 4(4), 1994.

.S, Levitin and B. T. Polyak. Constrained minimization methods. Computational Mathemai-
ics and Mathematical Physics, 6:1-50, 1968. Translated from Russian.

Z.-Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex
differentiable minimization. Jouwrnal of Optimization Theory and Applications, 72:7-35, 1992,

O.L. Mangasarian and M.V, Solodov. Serial and parallel backpropagation convergence via
nonmonotone perturbed minimization. Optimization Methods and Software, 4(2):103-116.

1994.

J.M. Ortega and W.C\. Rheinboldt. lterative Solution of Nonlinear Equations in Several Vari-
ables. Academic Press, 1970.

E. Polak. Computational methods in optimization; 4 unified approach. Academic Press, New
York, 1971.
E. Polak and G. Ribidre. Note sur |a convergence de méthodes de directions conjugées. Revue

Francaise Informatique ¢1 Recherche Opérationelle, 16-R1:35-43, 1969,

B.T. Polyak. The conjugate gradient method in extremal problems. (/SSR Computational
Mathematics and Mathematical Physics, 9(4):94-112, 1969. Translated from Russian.

B.T. Polyak. I'ntroduction to Optimization. Optimization Software, Inc., Publications Division,
New York, 1987.

P. Tseng. Dual ascent methods with strictly convex costs and linear constraints: A unified
approach. SIAM Journal on Control and Optimization, 28:214-242, 1990.

J. Warga. Minimizing certain convex functions. Jowrnal of STAM on Applied Mathematics,
11:588-593, 1963.

