Please answer all four questions below.

1. For a graph \(G \) and a subset of nodes \(S \), let \(G \setminus S \) denote the subgraph obtained when \(S \) and all of its incident edges are removed from \(G \). Define the following Node-Deletion Problem:

 Input: A graph \(G = (V, E) \) where every vertex has degree at most 3, and integer \(k \).

 Output: “Yes”, if there is a subset \(S \subseteq V \) with \(|S| \leq k\) such that \(G \setminus S \) is bipartite.

 “No”, otherwise.

 Prove that the Node-Deletion Problem is NP-complete. You may use the fact that MAX-CUT is NP-complete for graphs with maximum degree 3.

2. You are given a sorted circular linked list containing \(n \) integers, where every element has a “next” pointer to the next larger element. (The largest element’s “next” pointer points to the smallest element.) You are asked to determine whether a given target element belongs to the list. The only way you can access an element of the list is to follow the next pointer from a previously accessed element, or via the function RAND that returns a random element of the list.

 Develop a randomized algorithm for finding the target that accesses at most \(O(\sqrt{n}) \) elements in expectation. If the target is present in the list, your algorithm should return a pointer to it, and if it is not, your algorithm should return “Error”.

3. Given a graph \(G = (V, E) \), and a subset \(T \) of vertices, a \(T \)-join is a set of edges \(E' \subseteq E \) such that in the subgraph \(G' = (V, E') \), the degree of every node in \(T \) is odd and the degree of every node in \(V \setminus T \) is even. Let \(w \) be a weight function on edges, \(w : E \rightarrow \mathbb{R}^+ \), and let \(w(E') = \sum_{e \in E'} w_e \) denote the weight of \(E' \). Develop a polynomial time algorithm for finding the minimum weight \(T \)-join given \(G, T \), and \(w \).

4. [Corrected.] Let \(b, n \geq 2 \). This problem concerns finite state machines that take as input a string \(x \) of base-\(b \) digits and compute the value of \(x \mod n \). The machines are deterministic, and the output is determined by the final state the machine is in.

 (a) Show that if the input \(x \) is read from left to right, such a machine can be constructed using \(O(n) \) states.

 (b) Show that if the input is read from right to left, any such machine must have \(\Omega(n^2) \) states (for infinitely many \(n \)).

 (Hint: You may use the fact that if \(n \) is prime and \(b \) is a generator for \(\mathbb{Z}_n^* \), the period of the sequence \(b^i \) is \(n - 1 \)).