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Abstract

The growing number of XML files accessible on the Internet suggests that in the future,
searching for XML files will become as important as searching for HTML files is today. XML
information retrieval differs from HTML or plain text document retrieval in that the XML allows
queries on the structure as well as the content of the documents. Perhaps the most logical way
to build such a system is to follow the road the SGML search community has taken, and to build
a special-purpose inverted-list index engine. In this paper, we investigate a different approach,
that of using a commercial relational database system to support XML information retrieval.
We show that using a relational database system offers some advantages that are not offered by
traditional IR systems, including the standard features of query optimization, concurrency control,
and recovery, but also greater flexibility and extensibility. The question, of course, is whether
these benefits come at the expense of good performance. To begin to answer this question, we
compared the performance of two commercial RDBMSs with that of our own inverted list XML
information retrieval engine. Our study shows that while in general the database systems are
not well tuned for IR queries, under certain conditions they can outperform the IR system. Our
results and analysis further suggest that with additional research into techniques for supporting
IR workloads, RDBMSs could become a viable alternative to special purpose inverted list systems
for supporting XML information retrieval. Category: Research.

1 Introduction

Today’s WWW contains vast amounts of data, and the utility of this data depends more and more on
search engine technology that enables users to find what they are looking for. To date, search engine
technology has relied upon implementations in custom systems that resemble classical information
retrieval (IR) systems. In this paper we explore the question of whether that is the best approach —
specifically, we investigate the use of a general purpose RDBMS as the storage and computational

engine for XML data retrieval.
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There are a number of reasons why this question is relevant. First, the WWW environment does
not really resemble the classical information retrieval environment very closely. One of the main
changes occuring on the web is a move toward more highly structured data, through the advent of
XML [XML98]. This highly structured data enables far more complex and precise searches than are
possible over traditional unstructured text documents. Other important differences are that the web
is dynamic, and that the scale is simply enormous both in terms of data size and numbers of user
queries.

These differences between the web and classical IR environments pose demands on search en-
gines that are similar to those met by RDBMSs. The SQL query language can express powerful
and complex queries; and 30 years of research and development has produced systems that have
superb scalability, concurrency control, query optimization, and recovery; furthermore, there is a
huge industry of supporting tools and applications for using RDBMSs.

Note that this work is different from work that studies using an RDBMS to store XML docu-
ments [SGT+99, FK99, TDCO00]. Here we are not trying to store the documents themselves, rather,
we are using the RDBMS as an engine upon which to build an index for these documents. This is a
different problem; storing XML in relational database systems deals with mapping semi-structured
data to a structured relational system. To the contrary, the indices on XML data sets are highly
structured. So the questions to be addressed here include (a) what is the performance impact of this
decision, and (b) what benefits might arise from using an RDBMS for this task.

Our technique transforms the inverted index, a widely used IR index, into a set of relational tables,
and translates IR queries into SQL queries. Not only is the translation very simple, but also we found
that, due to the flexibility of an RDBMS, we obtain a number of advantages that are not provided by
a traditional IR system. These advantages include the ability to express complex searches involving
joins, the ability to query based both on the XML data content and also other information stored in
the RDBMS, and the ease with which the RDBMS-based system can be extended to handle query
types that were not anticipated during the design of the original system.

Of course, all these benefits are irrelevant if the RDBMS performance is not satisfactory. For this
reason, we conducted a performance study to compare the query performance with database support
versus the query performance in a special purpose IR system. We used two commercial database
systems in the study, and built our own IR system. Our goal was to investigate the potentials and
weaknesses of using an RDBMS for information retrieval, and perhaps to gain insights into better
database techniques to improve performance on IR workloads.

Our results show that in general, performance of RDBMSs on the IR workload is not very good,
although under certain conditions, the RDBMS approach can outperform the IR system. We discuss
the observations we made during our performance study and we suggest areas where an RDBMS can
be improved to better support the IR workloads.

We begin in Section 2.1 with a discussion of related work. In Section 2.2, we introduce the IR
inverted index structure that supports boolean, proximity, ranking and containment queries and the
retrieval algorithms used to process these queries. In Section 3, we describe the relational schema

counterpart of the IR inverted index, and show how IR queries can be translated into SQL queries.



The performance study is detailed in Section 4. We present our conclusions in Section 5.

2 Background and Related Work

2.1 Related Work

Although the fields of IR and database systems have largely gone their own separate ways in the
past, work has been done on integrating information retrieval, especially text searching, with database
systems. Examples of integrating text search with relational, object-relational, or object-oriented
databases include [BCK+94, YA94, DM97]. Commercial examples include DB2 Text Extender and
Oracle ConText Cartridge. An example of integrating text search with semi-structured databases
is Lore [MAG+97], in which a simplified version of IR-style text index is used to locate strings
containing specific words or groups of words [MWA+-98].

There are two main approaches to integrating text retrieval with DBMSs in the literature. The
first is a loosely coupled integration that keeps an IR system as an external component. The second
is a tightly coupled integration that builds text searching functionality inside a database system. The
former has performance problems mainly due to latency caused by crossing system boundaries, while
the latter requires significant modification to the database system. In both cases, query optimization
is an issue.

Our approach could be viewed as building IR functionality in an application on top of a database
system. With this approach, there is no need modifying the database system, no external support is
necessary, and there is no latency related to coordinating more than one subsystem. It leverages all
the advantages that a database system has to offer, and all queries are optimized by the database
system.

The advent of SGML [SGML86] triggered much research on integrating content and structure
in text retrieval, including [BN96, AFL+94, BCK+94, M90, SAZ95]. Work on containment queries
(Section 2.2) can be found in [CCB95a, CCB95b, DST96], and [CCB95a] proposes an algebra for
containment queries. Our work on containment queries differs from the previous work in that, since
we target at XML rather than SGML data retrieval, and XML elements are strictly nested, we are
not concerned with overlapped extents, nor with reduction functions on inverted lists containing
overlapped extents. Most significantly, our work does not focus on the development of containment
algorithms; rather, it focuses on using an RDBMS to implement the algorithms.

Commercial search engines that combine content and structure in the retrieval have already

started to appear. GoXML(http://www.goxml.com) is an example.

2.2 Inverted Index

The inverted index that we consider supports a superset of queries supported by traditional IR
systems. These include boolean queries (so-called keyword searches), proximity and ranking queries,
as well as containment queries—queries that restrict the search of keywords within the context of

structural elements. For instance, the set of XML Shakespeare plays can be indexed, including



1. Find books with title "AltaVista Search Revolution™.

2. Find the section with the last subsection of which containing the keyword "multimedia’.
3. Find al citationsin the article titled "Web Databases".

4. Find the first author of the book titled "Modern Information Retrieval”.

5. In the speech spoken by "Antonio", find the line that contains "merchandise”.

6. Find authors containing "donald" followed by "knuth" within 2 words.

Figure 1: Sample queries that use containment

all the markup tags, then one can query the <title> of plays containing a <line> that contains
“caesar”. Here both <title> and <line> are markup tags (called elements), and “caesar” is a text
word. Figure 1 lists some sample queries that use containment.

The classic inverted list data structure [K73, SM83] records various information about a word,
such as which document the word appears in and its position in the document. This type of structure
is similar to the indices at the ends of books. In an IR system, a collection of inverted lists is stored
in a file called an inverted file. One or more inverted files form one component of an inverted index,
and one or more lexicons form the other component. A lexicon is a collection of indexed words or
phrases plus links to inverted lists that reside in an inverted file. Multiple lexicons and inverted files
can exist in a system. In general, a lexicon is small, accessed very often, and can be kept in main
memory. An inverted file, on the other hand, is large and must stay on secondary storage.

There are variations of inverted index data structures. We used a simple one for our study. First
we give some definitions that will be used throughout the paper. An index term is either an element
or a text word. For conciseness, we use index term and term interchangably. A position is the location
of a term in a document. For an element, the position is given by a begin and end word number
pair; for a text word, the position is given by a word number. A posting is a pair of a document
number and a position. Thus a posting pinpoints a term in a collection of documents. An inverted
file is also called a postings file. The frequency of a term is the number of occurrences of the term in
the whole dataset.

Figure 2(a) shows what a simple inverted index for XML files looks like conceptually. It has
two lexicons, one for elements and one for text words. The contents of a pair of angle brackets is
a posting, and the number, or number pair, following a semicolon in a posting is a position. For
example, the “<book>" element spans in document 1 from word number 19 to 27 and occurs a
second time in the document from word number 28 to 36. It also appears in document 2 from word
number 1 to 9. Similarly, “java” appears in document 1 at word numbers 21 and 30 and in document
2 at word number 4.

Although this inverted data structure is simple, it is able to support keyword and boolean queries,
ranking queries, proximity queries, and more importantly, containment queries. Proximity and
containment relationships among terms are captured in the postings. In the example in Figure 2(a),
we can see that the “<book>" element in document 1 at position (19,27) contains the “<title>”

element in document 1 at position (20, 23), as they are in the same document, and the first position
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Figure 2: (a) A sample fragment of an inverted index (b) Building an inverted index and using the

inverted index to answer queries

nests the second. We can also see that the title contains both “java” and “programming” as (20, 23)
nests both 21 and 22. In addition, the title is exactly “java programming”.

The two paths, building an inverted index, and using the inverted index to answer queries, are
depicted in Figure 2(b). Index terms are identified and postings are created during indexing. When
evaluating queries, inverted lists are retrieved from the index and operators are invoked on them to
produce intermediate results. Usually these results are not to be consumed by the end user, and
some additional steps need to be performed. For example, it might be necessary to retrieve the

original documents in order to construct fragments of it to return to the user.

2.3 IR Retrieval Algorithms

For the efficiency of query operations, all inverted lists are stored in sorted order. For the inverted
index structure described in the previous section, a list is sorted first in increasing order of document
number, then in increasing order of positions. This data structure makes operations on inverted lists
very much resemble the merge phase of a sort-merge join in a database system. Let’s look at the
containment operation, which takes two terms as operands, and finds all occurrences of one term
that contain the other.
func CONTAIN_FUNC (T1,T>) {
Retrieve inverted lists Ly, Lo for terms 17, Ty;
Prepare output inverted lists OL1, OLo;
ptry := head of L1, ptry := head of Lo;
while (ptry # end of Ly and pitry # end of Ls) {
P, := posting pointed to by ptri, P» := posting pointed to by ptro;
D, := document number in P;, Dy := document number in P;;
POS; := position in P;, POS, := position in Py;
if (D1 = Dy and POS; nests POS3) { /* nests has intuitive meaning */
add P; to OLq, add P, to OLo;

increment ptry and ptro;



else if (D1 > Dy) increment ptry;
else increment piry;

¥
Return OLy,OLo;

¥
This code merges two operations into one. It finds both T1’s that contain T2 and T2’s that are
contained in T1. Frequently we would like to get only one of these. For this purpose we use two
operators: CONTAINS and CONTAINEDIN, which can be built on top of CONTAIN_FUNC. The
former returns all containers, and the latter returns all containees.

Next we describe how two powerful and popular operations, distance (e.g. DISTANCE(“java”,
“programming”)<1) and is (e.g., title IS “java programming”) are processed. But before that, let’s
define two operations on positions. First, a cover of N postions is a position that nests all of the
positions and spans the minimum region. For instance, a cover of positions (19,21), 23, and (22, 27)
would be (19,27). Second, a postion P1 tightly nests position P2 iff P1 nests P2 and does not nest
anything else. Thus, (19,22) tightly nests (20,21), but (19,23) doesn’t.

The distance operation takes two text words, an operator such as ‘<’, and a numeric value,
and produces an inverted list. The is operation takes an element, a string of text words, and find
occurrences of that element that exactly contain the string of text words.

func DISTANCE_FUNC (T3, T3, op, value) {
Retrieve inverted lists L1, Lo for terms 17, T5;
Prepare output inverted list OL;
ptry := head of L1, ptry := head of Lo;
while (ptr; # end of Ly and ptry # end of Lg) {
P; := posting pointed to by ptri, P» := posting pointed to by ptro;
D1 := document number in P;, Dy := document number in Ps;
POS; := position in P;, POS; := position in Py;
if (D1 = Dy and op(POS;, POSs, value)=true) {
OutPOS := cover (POS;, POS,);
add OutPOS to OL;
increment either or both of ptri, ptro depending on op, value;
}
else if (D1 > Dy) increment ptry;
else increment pirq;

}
Return OL;

}

func IS FUNC (Elem,T1,...,Tk ) {
Retrieve inverted lists Lg, L1, ..., Lx for terms Elem,T1, ...,Tk;
Prepare output inverted list OL;
ptr; :== head of L; (0 < i < K);



1. Find books with title " AltaVista Search Revolution”.

book CONTAINS ( title IS"AltaVista Search Revolution” )
2. Find the section in which the last subsection contains the keyword "multimedia’.

section CONTAINS ( section[-1] CONTAINS "multimedia’ )
3. Find all citationsin the article titled "Web Databases".

cite CONTAINEDIN ( article CONTAINS ( title IS "Web Databases" ) )
4. Find thefirst author of the book titled "Modern Information Retrieval”.

author[1] CONTAINEDIN ( book CONTAINS ( title IS "Modern Information Retrieval" ) )
5. In the speech spoken by "Antonio"”, find the line that contains " merchandise".

line CONTAINS ( "merchandise" CONTAINEDIN ( speech CONTAINS ( speaker IS"Antonio" ) ) )
6. Find authors containing "donald" followed by "knuth" within 2 words.

author CONTAINS ( DISTANCE ( "Knuth", "Donald" ) <= 2)

Figure 3: Sample queries using operators described

while (ptr; # end of L;(0 <i < K)) {
P, := posting pointed to by ptr;(0 < i < K);
D; := document number in P; (0 <i < K);
POS; := position in P; (0 <i < K);
if ( Dy = ... = Dg and POS;’s are adjacent (1 <17 < K)
and POS) tightly_nests ( cover (POSi,...,POSk) ) {
add POS) to OL;
increment ptrs;

}

else increment ptrs pointing to smallest D;’s;

}

In addition to the operations above, there are others such as the familiar boolean AND, OR, and
NOT. The processing of these operations requires intersection, union, and complement, respectively,
of the inverted lists. Due to space constraints, we do not elaborate on them here. One thing to note
is that they should be interpreted in the context of a containment operator, for example, <author>
CONTAINS (“java” OR “programming”). When there is no explicit containment, an implicit one
involving the root of an XML document is assumed.

Most of the operations have inverted lists as their inputs and outputs. Some take inverted lists
and produce postings. These include the retrieval of specific positions such as the “first”, “second”,
etc. occurrence of a term.

With these operations and in light of the algebra in [CCB95a), we can now express the sample
queries in Figure 3. We call the last two queries the “Antonio” query and the “Knuth” query. We

express these queries in SQL (Section 3.1) and show their performance in Section 4.3.



3 Information Retrieval on RDB

3.1 Schema for Inverted Index

We now turn the index structure described in Section 2.2 into a relational schema. We store the
postings in two tables:
ELEMENTS (integer termno, integer docno, integer beginno, integer endno)
TEXTS (integer termno, integer docno, integer wordno)
The ELEMENTS table stores postings for elements, while the TEXTS table stores postings for text
words. The column termno uniquely identifies a term. Note that it is not a key.
There are two ways to handle the lexicon. One alternative is to turn it into a relational table:
LEXICON (varchar term, integer termno, integer frequency, ...)

where both the term column and the termno column are keys, thus there is one row per distinct
term. The column frequency and others may be used to support ranking or query optimization.
The other alternative is to keep the lexicon external to the RDBMS in the same structure as is used
in an IR system, and keep it memory resident. After the termnos are looked up in the lexicon, they
are used for generating the SQL translation of IR queries. We used the second alternative for our
experiments (Section 4). For brevity and purposes of illustration, when we speak of predicates of
the form: ELEMENTS.term = ’string’, it implies the eqgivalent of: LEXICON.term = ’string’ and
LEXICON.termno = ELEMENTS.termno; the same is true for the TEXTS table.

Using the information captured in the above tables, we can translate the IR operations described
in Section 2.3 into SQL queries. We use simple examples to illustrate. Figure 4(a) is a translation of
the CONTAINS operator. It shows how the containment between an element and a text word can be
expressed in SQL. Figure 4(b) is a translation of the CONTAINEDIN operator. Figure 4(c) shows
the SQL counterpart of the IS operation. Finally, Figure 4(d) shows the DISTANCE operation in
SQL. More complex queries involving one or more IR operations can be built up from the simple
ones, and the process is very mechanical. Figure 4(e) and (f) express the Antonio and Knuth queries
in SQL.

This simple translation of IR queries into SQL allows an IR application to leverage all the ad-
vantages that an RDBMS has to offer, including query optimization, and parallel and distributed
processing. In addition, since concurrency control and recovery are provided by the RDBMS, up-
dates are much easier. Because traditional IR systems are read-only, systems such as search engines
that support high throughput and long-standing service must use large amounts of hardware to
keep duplicate copies of indices [RRS98]. Strong support for updates can potentially cut down the
requirement for hardware resources and improve the freshness of data.

In Section 4.2 we shall discuss another approach proposed in [FKM99]. The approach separates
the postings of each element and each text word in its own table. For example, we would have a
LINE table for the “<line>" element, a CLEOPATRA table for the word “cleopatra”, etc. We call
these tables term tables. The schema of these tables are the same as ELEMENTS and TEXTS except

there is no need for the termno column.



<line> CONTAINS"cleopatra”

select line*
from ELEMENTS line, ELEMENTS cleo

where lineterm =’lin€

and cleo.term ="cleopatra

and line.docno = cleo.docno
and line.beginno < cleo.wordno
and cleo.wordno < line.endno

@
<speaker> |S"antonio"
select speaker.*
from ELEMENTS speaker, TEXTS antonio,

where speaker.term =’ speaker’

and antonio.term =antonio’

and speaker.docno = antonio.docno

and antonio.wordno - speaker.beginno =1
and speaker.endno - antonio.wordno = 1

(©

Antonio Query: In the speech spoken by antonio,
find the line that contains " merchandise”.

select line*
from ELEMENTSIine, ELEMENTS speaker,
ELEMENTS speech,

TEXTS antonio, TEXTS merchandise
where lineterm =’line’ and speaker.term =’ speaker’
and speech.term =" speech’
and antonio.term ="antonio’
and merchandise.term =’ merchandise’
/I al in the same document
and line.docno = merchandise.docno
and merchandise.docno = speech.docno
and speech.docno = speaker.docno
and speaker.docno = antonio.docno
/I line CONTAINS merchandise
and line.beginno < merchandise.wordno
and merchandise.wordno < line.endno
/I merchandise CONTAINEDIN speech
and speech.beginno < merchandise.wordno
and merchandise.wordno < speech.endno
/I speech CONTAINS speaker
and speech.beginno < speaker.beginno
and speaker.endno < speech.endno
/I speaker IS "antonio"
and antonio.wordno - speaker.beginno = 1
and speaker.endno - antonio.wordno =1

C)

<cite> CONTAINEDIN <article>

select cite.*
from ELEMENTScite, ELEMENTS article

where cite.term =’ cite’

and articleterm ="article

and cite.docno = article.docno
and  article.beginno < cite.beginno
and cite.endno < article.beginno

(b)
"knuth" followed by "donald" within 2 words

select donad.*, knuth.*
from TEXTS donald, TEXTS knuth,

where donald.term =’ donald’

and  knuth.term ="knuth’

and donald.docno = knuth.docno

and  knuth.wordno - donald.wordno <= 2
and  knuth.wordno - donald.wordno > 0

(d)

Knuth Query: Find author containing "donald"
followed by "knuth" within 2 words.

select au.*
from ELEMENTSau,
TEXTSdonad, TEXTS knuth

where au.term =author’
and donald.term ="donald’
and knuth.term ="knuth’

/I in the same document
and au.docno = donald.docno
and donald.docno = knuth.docno

/I author contains both "donald" and "knuth"
and au.beginno < donald.wordno
and knuth.wordno < au.endno

/[ "donald" followed by "knuth" within 2 words
and 0 <= knuth.wordno - donald.wordno
and knuth.wordno - donald.wordno <= 2

(f)

Figure 4: Examples of IR operations in SQL (a) CONTAINS (b) CONTAINEDIN (c) IS (d) DIS-
TANCE (e) The Antonio Query (f) The Knuth Query



3.2 Beyond Simple Translation

In this section, we argue for the use of an RDBMS for XML information retrieval on the grounds
that it provides capabilities that a conventional IR system cannot offer, and that it is much easier to

extend with new IR functionality and features than a custom IR system. We consider three cases.

3.2.1 Case 1. Join Processing

Missing from the operations and languages of most IR systems is the processing of join queries. The
join is usually considered a specialty of relational database systems, but is it useful in an IR system
as well? We believe the answer is yes. Let’s look at an example. Figure 5(a) shows a sample XML

document with three bibliography entries. Suppose we want to ask these two queries:
¢ Find bib entries that cite Smith’s paper
¢ Find authors who have more than one paper in SIGMOD99

These queries require joins and cannot be expressed by conventioned IR systems. The first query
implicitly pairs up bib entries in which the <cite> element in one and the <key> element in the
other contain the same word. The second query pairs up those bib entries such that the <author>
elements in both have the same contents. The challenge for the IR system is that the queries involve
searching for keywords that are not constants, but are specified by some conditions. However,
these queries can easily be evaluated if we use a relational database system. With the schema and
query transformation described in Section 3.1, the two queries can be expressed in SQL as shown in

Figure 5(b) and (c), respectively.

3.2.2 Case 2. Queries Mixing Index and Other Data

In the RDB approach, since we store the inverted index in a database system, postings are accessed
the same way as regular data. This makes it convenient to access both types of data in the same
query, and the database system can automatically take care of optimization. These types of queries
are advocated in [GWO00] where they are called Web-Supported Database Queries and Database-
Supported Web Queries. Again, we use a simple example to illustrate. Suppose we have stored
in our database an inverted index of the DBLP web pages, and also a GRADUATES table holding
information about graduate students in our department. We can find all graduate students who have
a DBLP entry using the SQL query shown in Figure 6.

This query would not be so straightforward if the DBLP postings were indexed in an IR system
while the GRADUATES table was kept in a database. In that case, the only natural way would be
to build an additional module on top of both systems to pull GRADUATES tuples and the postings
out and do the join in this module. In fact, [GWO00] is mainly concerned with the construction of this
module. This has three disadvantages. First, the module is rather ad-hoc. Second, a join algorithm
has to be implemented, and this duplicates something the RDBMS is already good at. Third, it
would be costly if there are large number of GRADUATES tuples and postings, or if the database

10



<database>
<bib>
<key> John99a </key>
<title> Semistructured Data </title>
<author> John </author>
<publish> SIGMOD99 </publish>
<cite> Smith74 </cite>
</bib>
<bib>
<key> John99b </key>
<title> Continuous Optimization </title>
<author> John </author>
<publish> SIGMOD99 </publish>
</bib>
<bib>
<key> Smith74 </key>
<title> Computation Theory </title>
<author> Smith </author>
<publish> JACM </publish>

</bib>
</database>
@
Find those bib entries that cite Smith’s paper.
select bibl.*

from ELEMENTS bibl, ELEMENTS bib2, ELEMENTS au,
ELEMENTS cite, ELEMENTS key, ELEMENTS smith,
TEXTSt1, TEXTSt2
where bibl.term ="bib’ and bib2.term ="bib’
and au.term = "author’ and citeterm ='cite’
and key.term ="key’ and smith.term ="smith’

/I bibl contains cite
and bibl.docno = cite.docno
and bibl.beginno < cite.beginno
and cite.endno < bibl.endno

I/ citeISt1
and cite.docno = t1.docno
and t1.wordno-cite.beginno = 1
and cite.endno-tl.wordno = 1

/I bib2 contains key
and bib2.docno = key.docno
and hib2.beginno < key.beginno
and key.endno < bib2.endno

/I key 1St2
and key.docno = t2.docno
and t2.wordno-key.beginno=1
and key.endno-t2.wordno = 1

/I bib2 contains author
and bib2.docno = au.docno
and bib2.beginno < author.beginno
and au.endno < bib2.endno

[l author 1S "smith"
and au.docno = smith.docno
and smith.wordno-au.beginno = 1
and au.endno - smith.wordno = 1

//'t1 and t2 are the same thing
and t1.termno = t2.termno

(b)

Find those authors who have
mor e than one paper at SGMOD99.

select t1.*, t2.*
from ELEMENTSbibl, ELEMENTS hib2,
ELEMENTS aul, ELEMENTS au2,
ELEMENTS publ, ELEMENTS pub2,
TEXTSsigl, TEXTSsig2,
TEXTSt1, TEXTSt2
where bibl.term ="bib’ and bib2.term ="bib’
and aul.term ='author’ and au2.term ="author’
and publ.term ='publish’ and pub2.term ="publish’
and sigl.term ='sigmod99’ and sig2.term =’sigmod99’

[/ bibl contains aul
and bibl.docno = aul.docno
and bibl.beginno < aul.beginno
and aul.endno < bibl.endno

/laul1Stl
and aul.docno = t1.docno
and tl.wordno-aul.beginno =1
and aul.endno-tl.wordno =1

[/ bibl contains publ
and bibl.docno = publ.docno
and bibl.beginno < publ.beginno
and publ.endno < bibl.endno

// publ 1S "sigmod99"
and publ.docno = sigl.docno
and sigl.wordno-publ.beginno =1
and publ.endno-sigl.wordno=1

I/ bib2 contains au2
and bib2.docno = au2.docno
and bib2.beginno < au2.beginno
and au2.endno < bib2.endno

Il au21St2
and au2.docno = t2.docno
and t2.wordno-au2.beginno =1
and au2.endno-t2.wordno =1

/I bib2 contains pub2
and bib2.docno = pub2.docno
and bib2.beginno < pub2.beginno
and pub2.endno < hib2.endno

// pub2 1S "sigmod99"
and pub2.docno = sig2.docno
and sig2.wordno-pub2.beginno = 1
and pub2.endno - sig2.wordno = 1

//'t1 and t2 are different occurrences of the same term
and tl.termno = t2.termno
and tl.wordno <> t2.wordno

©

Figure 5: (a) Sample XML (b)(c) SQL queries for join processing
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select g.*
from GRADUATESQ, ELEMENTS au, TEXTSfn, TEXTSIn,
where au.term ="author’ and fn.term = g.firstname and In.term = g.lastname
[ author contains firsthame
and au.docno=fn.docno and au.beginno < fn.wordno and fn.wordno < au.endno
[l author contains lastname
and au.docno=In.docno and au.beginno < In.wordno and In.wordno < au.endno

Figure 6: Query joining the GRADUATES table with postings

and the IR system run in different processes or on different platforms. It is much more efficient to

push as much processing down into a single system as possible.

3.2.3 Case 3. Direct Containment

Another advantage of using an RDBMS instead of a special purpose IR system is that there is greater
extensibility.

One can observe from Section 2 that the containment operators do not distinguish the nesting
depth. That is, if posting P1 nests posting P2, P2 may be nested one or several levels below P1.
This is fine if this is what is desired, but is a problem if it is not.

Suppose we have XML documents as shown in Figure 7(a), and we want to get the title of the
first section. The query “<title> CONTAINEDIN <section>[1]" does not give us the exact answer,
but rather a superset, as titles of subsections would also be returned. What we want is something
like “<title> DIRECT CONTAINEDIN <section>[1]". Further, notice that if we express the query
as “<section>[1] DIRECT CONTAINS <title>”, it is exactly “<section>[1].<title>”, which is just
a path expression. Thus supporting direct containment is important.

Adding direct containment to an IR system that does not provide such support is not trivial.
The parser, index structure, storage and operators all need to be extended and partially rewritten.
Although the parser needs to be modified no matter what, other changes are easier to deal with if
we build the functionality on top of a relational database system.

One solution is to add another column, depth, to the ELEMENTS and TEXTS tables. Each
posting now has an additional attribute, which indicates the depth of an occurrence of a term in
a document. The root element of a document has depth 0, the other elements and text words
have depths relative to the root. For the sample XML in Figure 7(a), the first <section> has a
depth of 0 since it is the root. The <title> containing “Information Retrieval on RDB” has depth
1, as well as the second <section>. The text word “Case” has depth 4. The query “<title>
DIRECT CONTAINEDIN <section>[1]" can be expressed in SQL as shown in Figure 7(b). It
is straightforward how to extend the operation CONTAIN_FUNC (Section 2.3) to handle direct

containment and therefore we omit it.
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select title.x

<section> . .
<title> Information Retrieval on RDB </title> from EU_EM ENTS_s’ecthn, I,ELEM ENTS e
<section> where sz_actlon.termi—_ S?C’[IOI’]

<title> Beyond Simple Trandlation </title> and t|t|e_.term i tile . .
<section> and section.beginno = (select min(beginno)

<title> Case 1. Join Processing </title> from ELEMENTSe

where e.term = "section’)

</section>
<Jsection> and section.docno = title.docno
</section> and section.beginno < title.beginno

and title.endno < section.endno
and title.depth - section.depth =1

@ (b)

Figure 7: (a) A sample XML document (b) SQL query for <title> DIRECT_CONTAINEDIN
<section>[1]

4 Performance Evaluation of Information Retrieval Using RDB

In this section, we describe our performance study that aims to compare the retrieval performance
using a database system versus a special purpose IR system. We used two commercial database
systems for the study. However, due to space constraints, we only report the results using one of
them, DB2 UDB version 6.1. Experiment results on the other commercial DBMS were similar. We
ran DB2 UDB on a 500MHZ PIII machine with 256 MB memory and Linux Redhat 6.1.

Since we could not find an appropriate commercial-strength IR system that supports XML in-
formation retrieval, we built our own system, which supports boolean, containment, and proximity
queries, but does not yet support ranking. Two lexicons are kept in memory for elements and text
words. Two GDBM files are used to store inverted lists, one for element lists and the other for text
lists. Each inverted list is stored as a contiguous record. GDBM [GNU] is Gnu’s replacement of the
dbm and ndbm libraries, which are used in IR systems such as WAIS! [PFH95]. GDBM provides a
set of database functions using extendible hashing and allows arbitrary sized keys and data items.
It allows multiple readers to access data stored in a GDBM file, but a writer has exclusive access.
We assume that each inverted list fits in memory, and is read in as a whole when retrieved. The IR
system runs on the same machine as DB2 UDB, and it is a single server system, that is, there is no
client. The GDBM block size is set at 8 KB, and the cache size is set to zero to eliminate additional
caching above the OS file system.

Both the IR and the database systems share the same parsing process, which takes the XML
data set and produces either the IR inverted index stored in GDBM, or load files for the RDBMSs.
Case folding and stop words filtering are done when processing the XML datasets. The postings in
the load files are in the same sequence as the terms are parsed, thus they are ordered according to
the docno column. After the postings are loaded into the database, clustered indices are built. The
postings are then rearranged in another order indictated by the index key.

A large number of factors affect performance in an RDBMS. Index type, buffer pool size, heap

Yhttp://1s6-www.cs.uni-dortmund.de/ir/projects/freeWAIS-sf/index.html
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Shakespeare DBLP Synthetic
Total size 8 MB 53 MB 207 MB
Number of XML files 37 568 500
Number of distinct elements 22 598 1001
Number of distinct, nonstopped text words 22,825 250,657 500,000
Total number of elements 179,726 | 1,595,010 2,200,298
Total number of nonstopped text words 474,057 | 3,655,148 | 19,699,413

Table 1: Datasets

size, transaction type, isolation level, optimization level, and the way the query is written could all
affect performance. We chose to use the default settings for most parameters in the RDBMSs, except
that the buffer pool size is 16 MB and that the hash join is enabled. We found that variations on the
buffer pool size and sort heap size do affect results (we experimented with these sizes varied up to
100 MB), but the impact is insignificant and increasing the sizes could adversely affect the results.

Slight improvements can be observed for some queries, and degradation can be observed for others.

4.1 Data Sets and Queries

We used three XML datasets in our study. The first is a set of Shakepeare plays?. The second is
a set of DBLP bibliographies?. We also generated some synthetic XML documents since we could
not find a larger and complete set of XML data. Table 1 lists the sizes of the datasets. Note that
the total number of elements and text words are exactly the cardinalities of the ELEMENTS and
TEXTS tables.

The synthetic data generator first produces a random tree in which each node corresponds to an
element. It then uses this tree as a template and varies the occurrences of leaf nodes (the frequency
of leaf elements) and the text content of nodes to generate each document. The template tree has 7

levels. The following two constraints are also made to the synthetic dataset:

o All text words in the whole set of data follow a zipfian distribution. We used the generalized

formulation of Zipf’s law with the constant 1.0 [Poo].
e Three elements are controlled to appear 20, 2000 and 200000 times in the set.

We chose to use simple queries for our performance study, as they allowed us to see the behavior
of different systems more clearly than complex ones. We focused on fourteen containment queries
of varying input/output sizes. However, we also tested some complex queries. Results from two of
them, the Antonio query and the Knuth query, are shown in Section 4.3.

Each of the fourteen queries is coded “QXN” where ‘X’ is one of ‘S’(Shakespeare), ‘D’(DBLP), or

‘G’ (generated data), and ‘N’ is the query number within the respective dataset. All fourteen queries

http://www.oasis-open.org/cover /xml.html.
3ftp:/ /ftp.informatik.uni-trier.de/. The dataset is a modified DBLP archive. The original archive consists of 141,023

small files averaging 374 bytes each. We combined small files into bigger ones to obtain a more realistic average of
93KB per document.
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terml frequency | term2 frequency | num results: term1 CONTAINS term2
QS1 1 147 1
QS2 107,833 277 36
QS3 107,833 3,231 1,543
Q5S4 107,833 1 1
QD1 5 18 1
QD2 4,188 712 672
QD3 287,513 6,363 6,315
QD4 287,513 3 3
QG1 20 13 1
QG2 2,000 10,068 7
QG3 200,000 104,278 10,419
QG4 200,000 1,402,124 137,970
QG5 200,000 13 1
QG6 20 1,402,124 0

Table 2: Query Sizes

are of the form “term1 CONTAINS term2” where “term1” is an element and “term2” is a text word.
The translated SQL query looks like that shown in Figure 4(a). Table 2 shows the frequencies of the
terms and the number of results produced by each query. Dividing the frequency of each term by
the total number of elements or text words in Table 1, we get the selectivity of each term, by which
we mean the ratio of the frequency of a term to the cardinality of the table that holds this term.
The greater the ratio, the less selective the term.

Except for QS4, QD4, QG5 and QG6 (the last one or two of each query set), queries within a set
operate on increasingly larger inputs and produce increasingly larger outputs. Queries QS4, QDA4,
QG5 and QG6 stand out from the others. In these queries, one term is highly selective, while the
other is highly unselective.

We tried different indices on the ELEMENTS and TEXTS tables but we consider two represen-
tative ones in this paper. One is a clustered index on the (termno, docno) columns, the other is
a clustered index on all columns. We call the former two-column(2col) index and the latter cover
indez. Table 3 shows the storage requirements for the inverted files in the IR system and for the
tables and indices in DB2. No compression is done on the inverted lists. As we can see, the cover
index requires much more storage than the two-column index, in fact, it is at least as big as the table
itself. Also, the RDBMS requires much more storage than the IR system, especially with the index.

Note that the term “index” is overloaded in this paper. There is the IR inverted index, then there
are indices in the RDBMS. To make things clear, we use qualifications as much as possible. In cases

where there is no qualification, the term refers to the RDBMS index.
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IR DB2

inverted file || table only | 2col index | cover index

Shakespeare Elements 1 5 1 5

Shakespeare Texts 4 10 4 10

DBLP Elements 18 41 8 42

DBLP Texts 42 78 30 79

Synthetic Elements 132 56 18 57

Synthetic Texts 335 421 178 428

Table 3: Storage [MB]

lists retrieval(hot) | lists retrieval(cold) | in-mem operation || total(hot) | total(cold)
QS1 0.3 30.2 0.03 0.3 30.3
QS2 47.8 112.6 34.3 82.1 146.9
QS3 46.3 120.1 361.7 408.0 478.8
QS4 46.0 120.8 0.6 46.6 121.4
QD1 0.3 36.0 0.02 0.3 36.0
QD2 1.8 59.0 46.8 48.7 105.8
QD3 133.2 312.3 522.9 656.1 835.3
QD4 129.9 297.8 0.7 130.7 298.6
QG1 0.3 108.2 0.03 0.3 108.2
QG2 5.7 178.6 2.6 8.3 181.2
QG3 110.8 322.8 1285.3 1396.1 1608.1
QG4 450.1 929.6 22207.7 22657.8 23137.3
QGbH 81.2 274.8 0.7 81.9 275.5
QG6 380.0 750.0 0.1 380.0 750.0

Table 4: IR timings [msec]

4.2 Base Query Performance

Table 4 shows the performance of the IR system for the fourteen queries. Two timings are shown
for inverted lists retrieval, the “hot” times are measured when the queries are run multiple times.
The “cold” times are measured when the queries are run after the memory is flushed. The difference
between the hot and cold retrieval times reflects the effect of OS file system caching. The column
“in-mem operation” shows the time it takes to do the IR containment operation, after the inverted
lists are retrieved from disk. The “total”’s are the sum of in-memory operation and list retrieval
times.

Table 5 show the results of running the fourteen queries on DB2, as well as the ratios between
DB2(hot) timings and IR(hot) timings. The “IR” column repeat the “total(hot)” times from Table 4.
The timings are total elapsed times, which include query execution and result fetching times. Since
the production of result tuples can go on in parallel with the fetching of result tuples, the total
elapsed times must be measured.

A few important points can be observed from these numbers. First, for queries with more selective
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IR DB2(no index) DB2(2col) DB2(cover)

hot cold hot ratio cold hot | ratio cold hot | ratio
QS1 0.3 1828 742 2506.8 285 4 13.5 202 1 34
QS2 82 2011 1454 17.7 3010 2584 31.5 636 414 5.0
QS3 408 7275 6788 16.6 12099 10501 25.7 11350 11040 | 27.1
QsS4 47 2202 874 18.6 2733 1965 41.8 203 3 0.1
QD1 0.3 8895 6462 21256.6 483 2 6.6 244 1 3.3
QD2 49 9661 6796 138.7 1985 892 18.2 1143 782 | 16.0
QD3 656 17649 15482 23.6 || 242985 | 237378 | 361.9 6965 6259 9.5
QD4 131 9611 6830 52.1 741 67 0.5 994 2 0
QG1 0.3 38365 36896 | 110467.1 1042 2 6.0 267 5| 16.6
QG2 8 38932 37273 4659.1 16394 1455 | 181.9 1035 675 | 84.4
QG3 1396 78176 75773 54.3 || 743471 | 670530 | 480.3 13206 12056 8.6
QG4 | 22658 || 555977 | 552300 24.4 || 563868 | 550542 24.3 || 623271 | 623026 | 27.5
QGH 82 39831 36940 450.5 1383 72 0.9 927 2 0
QG6 380 39491 36259 95.4 39874 31113 81.9 299 2 0

Table 5: DB2 performance. Cold and hot times are in msec. Ratios are results of DB2(hot) times
divided by IR (hot) times.

terms, using the RDBMS index is definitely a good idea. However, for queries with unselective terms,
it may be better off scanning the whole table (compare the numbers using no index with those using
an index).

Second, for DB2, the queries perform significantly better using the cover index than using the
two-column index. We believe this is because with DB2, when the cover index is used, all values can
be found in the index. Whereas when the two-column index is used, tuples need to be fetched from
the tables, and this cost is additional to the cost of scanning the two-column index.

Third, DB2 performs significantly better for queries QS4, QD4, QG5 and QG6 than the IR system.
The key point to note is that in the IR system, there is no index on the postings (extendible hashing
is used to locate the inverted lists), while in the databases, postings are stored in the relational tables,
on which indices are built. As described in Section 2.3, the IR system uses an algorithm analogous
to the merge phase of a sort-merge join to process containment, thus all postings are retrieved and
operated upon. DB2, on the other hand, discerns the difference in the selectivities of the two terms,
and uses a nested loop join on ELEMENTS and TEXTS tables, arranging the table containing the
more selective term as the outer. In addition, the index nested loop join allows all of the predicates
in the query to be either the sargable or the start- and stop-key predicate on the inner. Since the
outer term is highly selective, and the predicates have high filtering factors, the index nested loop
join enables only a small number of tuples to be fetched from the inner table, thus avoiding a large
amount of I/O and CPU cost.

Note that it is not true that the RDBMS beats IR whenever index nested loop join is used on
a query involving terms of different selectivities. The savings from fetching/operating on only a

portion of the postings could lose to other overhead in the RDBMS. Obviously, there is a crossover
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no index index on docno index on all
cold hot cold hot cold hot
QS1 58 1 58 1 35 1
QS2 2069 1794 2117 1784 2836 2351
QS3 8700 8382 6424 6180 11149 10970

Q5S4 1126 219 260 48 177 3
QD1 53 1 51 1 43 1
QD2 1084 960 1217 1053 1353 1240
QD3 14072 13813 27872 27336 18654 18502
QD4 1269 646 401 82 192 3
QG1 52 1 51 1 52 1
QG2 319 151 376 151 393 180

QG3 43293 42778 43508 43130 60581 60209
QG4 | 518264 | 515189 || 553909 | 550458 || 630421 | 629590
QGH 726 452 394 96 510 2
QG6 3798 2759 172 4 124 2

Table 6: Performance using term tables [msec]

point.

Fourth, consider queries other than QS4, QD4, QG5 and QG6. Using either the two-column or
the cover index, DB2 timings for 6 out of 12 of them are within 10 times those of IR. We think
that this is encouraging. However, Table 5 also shows that the gap could be big for queries that the
DBMS does not perform well.

Recall from Section 3.1 that term tables are ones that contain postings for only one term. Having
one table per term is generally not practical for the RDBMS as there would be too many of them.
The term tables approach is proposed in [FKM99], and is similar to the “Binary” approach in [FK99].
Since the term tables approach is reported to be effective in [FKM99] and the Binary approach is
shown to be the best in [FK99], we tried with our own experiments. Another motivation for trying
the term tables approach is that, if this approach performs well in the RDBMS, a hybrid alternative
could be used in which postings for frequently accessed terms are stored in separate tables, while the
ELEMENTS and TEXTS tables still keep all the postings.

Table 6 shows the results of this experiment. We can see that the performance for the term
tables approach is better than using the two-column index on the big tables, but is worse than using
the cover index. Given this, and the problems of storing a large number of tables, we see no clear

advantage of the term tables approach.

4.2.1 Discussion

During our performance study, we observed that, although very different query plans could be gen-
erated for the same query with different indices, and with the same index but different join methods,

the actual running times are not always very different. We also observed that the optimizers in the
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two commercial DBMSs make very different decisions. We want to point out that the distribution
of term frequencies is highly skewed in the ELEMENTS and TEXTS tables, and we observed that
the optimizer estimations are often far from being accurate.

DB2 reported CPU costs over 80% of elapsed times for over 60% of the queries, especially the
large ones. This does not mean that I/O cost is the remaining 20%, because the RDBMS can overlap
CPU and I/0O. This could nevertheless indicate that those database system features costing CPU
time, such as locking and latching, interpretive predicate evaluation, and result binding, do add a
significant amount of overhead.

Due to space constraints, we did not include the two component timings, execution time and result-
fetch time, in Tables 5, 6, and 7. However, we remark that result-fetch times are the dominant cost
for queries with large output sizes (e.g., QG3 and QG4). This is worrisome because web-oriented
queries could incur large number of results. Delay in exporting the results is a significant obstacle
to utilizing an RDBMS for information retrieval.

From the case where DB2 is faster than IR, one may argue that if a higher level index is added on
top of IR postings, the IR system would also perform well. However, trade-offs must be considered.
An additional index adds storage overhead, further, the storage and retrieval of the inverted lists are
also likely to be affected. Perhaps by adding database-type indices, storage in IR system would get
closer to that in the RDBMS. So why don’t we improve RDBMS to better support the IR workloads?

We think that query processing in the RDBMS could be improved. Notice that the IR System
stores the inverted lists in sorted order (Section 2.3). This arrangement is critical to ensuring that
it only does the analogue of the merge phase of a sort-merge join for the IR operations, and that
the cost of the operations is linear in the number of postings. Neither of the DBMSs we tried used
this algorithm. This is probably because they do not realize that, when we select on a single text
word or element, the postings are already stored in the desired order. To improve, a DBMS could
use the index to seek to the beginnings of two tuple “list”s in question, and do a merge on them,
applying the equi join predicate on docno and the non-equi join predicates on beginno, endno,
wordno while merging. The cost of sorting and filtering before the merge join could be avoided. The
indices are not used to fetch tuples from the tables, but rather are used to identify the start and stop
points of table scans.

In summary, we think that the following areas are worthwhile to be improved for the DBMS:
reduction of CPU costs, better statistic support for highly skewed data, faster path for exporting
large answer sets, and IR-specific processing algorithms and optimizations. The impact and actual
benefit of these need to be evaluated and measured on a system with carefully designed experiments.
In addition, it is worthwhile to investigate whether using multi-dimensional indices on the begin,
end, and wordno columns can help the containment queries. These issues are avenues for future

work.
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IR | DB2, 2col index | DB2, cover index
Antonio (Shakespeare) | 73 4546 1631
Knuth (DBLP) 135 3213 96

Table 7: Performance of the Antonio query and the Knuth query [msec]. All numbers are hot times.

4.3 Performance for More Complex Queries

Besides the fourteen simple containment queries, we also experimented with more complex queries.
We report two in this section. The SQL counterparts of the Antonio and Knuth queries are shown
in Figure 4(e) and (f), respectively, and the timings are listed in Table 7. Notice that when the cover
index is used, DB2 performs better than IR.

From the results of these two and other complex queries, we observed that the running times
do not depend on the complexity of the queries. Queries that look simple may take a long time
to execute, while queries that look complex may run very quickly. What is more important is the
selectivity of the terms and the sizes of inputs and outputs.

The results from complex queries are encouraging because more effective retrieval can result from

these queries without necessarily incurring poor query evaluation performance.

5 Conclusion

We have shown that there are a number of advantages for using a database system for XML informa-
tion retrieval. In addition, there are advantages we can gain from the RDBMS that are not offered
by traditional IR systems. However, our performance study shows that in general the database sys-
tems are not well tuned for IR queries. The performance of the RDBMSs is close to or better than
that of the IR system for queries involving selective terms, but the gap could also be big for queries
on which the RDBMSs do not perform well. The cases where RDBMSs outperform the IR system
demonstrate the importance of query optimization and indices. We believe that with additional
research into techniques for supporting IR workloads in relational systems, RDBMSs could become a

viable alternative to special purpose inverted list systems for supporting XML information retrieval.
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