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Abstract:  Many projections envision a future in which the Internet is populated with a vast
number of Web-accessible XML files—a “World-Wide Database”. Recently, there has been a
great deal of research into XML query languages to enable the execution of database-style queries
over these XML files. However, merely being an XML query-processing engine does not render a
system suitable for querying the Internet. A truly useful system must provide mechanisms to (a)
find the XML files that are relevant to a given query, and (b) deal with remote data sources that
either provide unpredictable data access and transfer rates, or are infinite streams, or both. The
Niagara Internet Query System was designed from the bottom-up to provide these mechanisms. It
finds relevant XML documents by using a novel collaboration between the Niagara XML-QL
query processor and the Niagara “text-in-context” XML search engine. To handle infinite streams
and data sources with unpredictable rates, it supports a “get partial” operation on blocking
operators in order to produce partial query results, and inserts synchronization packets at critical
points in the operator tree to guarantee the consistency of (partial) results.  The Niagara Internet
Query System is public domain software that can be found at http://www-db.cs.wisc.edu/niagara/.
Category: Research.

1 Introduction
At the time of the writing of this article in early 2000, even a cursory glance at the research and trade
press shows that XML is generating intense interest. There are venture funds created for the sole purpose
of funding XML-related business opportunities;  there are numerous large consortia dedicated to defining
and standardizing DTDs for various communities; all major DBMS vendors have announced XML
support in their products; and every major database research conference has at least one session devoted
to XML issues.  While HTML is still by far the dominant format for publishing data on the web, it
appears very likely that in the near future a large portion of the web-accessible documents will be
published in XML. From a database point of view, one of the most exciting opportunities this raises is the
ability to query XML data over the Internet.

In our view, a query system for web-accessible Internet data should have the following
characteristics. First, the query itself need not have to specify the XML files that should be consulted for
its answer. This flexibility is a radical departure from the way current database systems work; in SQL
terminology, it amounts to supporting a “FROM *” construct in the query language.  However, we think
this is essential because a truly useful system will allow the user to pose a query, and get an answer if the
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query is answerable from any combination of XML files anywhere in the Internet. Secondly, a useful
query system cannot assume that all the streams of data feeding its operators progress at the same speed,
or even that all of the data streams feeding its operators will terminate. XML files fetched from some sites
may come much more slowly than files fetched from other sites; furthermore, some of these “files” may
actually be streams (consider a stock ticker news feed). These possibilities mean that the system must not
“hang” waiting for a slow site, and that users must be able to request the result “so far” without having to
wait for all the input streams to terminate,  even in the presence of inherently blocking operations such as
average, sum, nest and negation. Once again, this is a radical departure from the way conventional DBMS
operate. The Niagara Internet Query System is designed to have these characteristics.

To support the “From *” clause, Niagara uses a novel collaboration between its XML query processor
and its “text-in-context” XML search engine. When the XML query processor receives a query, expressed
in a modified version of the XML-QL query language [8] (in XML-QL terminology, we have an “IN *”
construct), it first parses the query to extract a search engine query. The search engine query is expressed
in the Search Engine Query Language (SEQL, pronounced “seek-ul”), which supports Boolean
combinations of predicates that specify containment relationships between XML elements and their
contents. The SEQL query extracted from the XML-QL query is passed to the Niagara Search Engine.
The Niagara Search Engine is an inverted list system optimized for evaluating SEQL. It works by
crawling the web off-line, and building an index of all the XML files it encounters. The Search Engine
evaluates the SEQL query utilizing the index and returns to the XML-QL query engine a list of URLs for
the XML files that could possibly contribute answers to the original XML-QL query.

Once the Search Engine has returned a list of URLs, the Query Engine begins fetching the documents
referenced by the URLs (first checking to see if it has copies of “hot” documents in the local cache).  As
we mentioned previously, it is possible that these documents could arrive at different rates, and after
different initial delays. Furthermore, documents from different sites could feed into different leaves of the
query evaluation tree. Finally, it is possible that some of the “documents” in question are really non-
ending streams, which means a user could wait forever for an answer if the query contains blocking
operators. A solution to these problems is to provide partial results to users. The Niagara Query Engine
allows users to ask at any time “give me the results so far.”

Supporting this kind of request over potentially streaming input sources imposes some constraints on
the operators used to implement the query engine. First, all multi-operand operators are implemented in
such a way that they can process data on any of their inputs at any time. This flexibility ensures that
operators do not stall waiting for slow input streams when there are other (faster) inputs. Second,
traditionally blocking operators (for example, hash join) are implemented using a non-blocking
alternative (such as symmetric hash join or one of its variants 0[17][19]) when possible. If no non-
blocking alternative is possible (for operators such as nest, average and except), the operator must support
a “get partial” command. Upon receiving a “get partial” command, the operator passes to its successor in
the tree the result it has computed at the point it receives the “get partial” command. Third, each operator
handles changes (updates and deletions, in addition to insertions) because a partial result input may
change or may no longer be valid.

Unfortunately, this combination of streaming processing and get partial commands introduces the
possibility of inconsistency if the operator “tree” is really a DAG, since the computation on one branch of



the DAG may reflect input data that has not yet propagated up another branch of the DAG. To eliminate
this sort of inconsistency, the Niagara Query Engine uses synchronization packets inserted at appropriate
places in the DAG in response to “get partial” commands.

The Niagara Query Engine and Search Engine are public domain software, available at http://www-
db.cs.wisc.edu/niagara/.  The user interface provided with the query engine does not currently export the
“get partial” command, although all the machinery necessary to support it is built into the prototype and
has been tested and evaluated using a special-purpose interface.

The remainder of this paper is organized as follows.  Section 2 gives a very brief overview of XML
and XML-QL and presents the overall top-level architecture of the Niagara Internet Query System.
Section 3 describes the text-in-context Niagara Search Engine, the SEQL language, and how SEQL
queries are extracted from XML-QL queries. It also gives an example of the Search Engine and the Query
Engine cooperating to answer queries. Section 4 covers the implementation of the Niagara Query Engine,
and discusses the design of its operators and how it supports the “get partial” command. We give our
conclusions in Section 5.

2 XML, XML-QL, and Top-Level Architecture of Niagara
2.1 XML and XML-QL

Extensible Markup Language (XML) is a hierarchical data format for information representation and
exchange in the World Wide Web. An XML document consists of nested element structures, starting with
a root element. Element data can be in the form of attributes or sub-elements. Figure 1 shows an XML
document that contains information about a book. In this example, there is a book element that has three
sub-elements – title, price and author. The author element has an id attribute with value “gosling” and is
further nested to provide name information. Further information on XML can be found in [4][7].
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Figure 1.  XML-QL query to find all books with

WHERE <book>
                      <title> Java Programming </title>

        <author>
             <lastname> $l </lastname>

                      </>
               </> IN *
CONSTRUCT <lastname> $l </lastname>
<book>
    <title> Java Programming </booktitle>
    <price> 40 </price>
    <author id = “gosling”>

<name>
      <firstname> James </firstname>
      <lastname> Gosling </lastname>
</name>

    </author>
</book>
2

here are many semi-structured query languages that can be used to query XML documents, including
ML-QL [8], Lorel [1], UnQL [2] and XQL [20] (from Microsoft). Each of these query languages have a
otion of path expressions for navigating the nested structure of XML. In Niagara, we use XML-QL as
e query language mainly because it can specify joins and complex result construction naturally. XML-
L uses a nested XML-like structure to specify the parts of a document to be selected and specifies the

tructure of the result XML document using a result template. Figure 2 shows an XML-QL query to

the title “Java Programming”
Figure 2.  Example XML Document

http://www-db.cs.wisc.edu/niagara/
http://www-db.cs.wisc.edu/niagara/
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determine the last name of the author of a book having the title “Java Programming”. The query is
executed over the XML documents specified in the “IN” construct and the last names thus selected are
nested under a <lastname> element. As mentioned earlier, one of the design goals of the Niagara query
system is to allow the user the flexibility to query the web without having to explicitly specify each
individual XML file to be queried. We thus extend XML-QL to support the “IN *” construct, whereby the
query is (conceptually) executed over all the XML files present in the World Wide Web.

2.2 Top-Level Architecture of the Niagara Query System

Niagara Query Engine Niagara Search Engine

THE INTERNET

GUI Client

Connection Manager

XML-QL Parser

Query Optimizer

Execution Engine

Data Manager

Browser

Server

Crawler

SEQL Parser

SEQL Optimizer

Interpreter

Index Manager

Figure 3: Architecture of the Niagara System

As mentioned earlier, the Niagara system has two main components – the Search Engine, which returns
the URLs of the XML files relevant to a query, and the Query Engine, which evaluates XML-QL queries.
This section provides an architectural overview of each sub-system and illustrates how the sub-systems
interact.

Figure 3 shows the high level architectural overview of the Niagara Internet Query System.
Potentially many users can craft XML-QL queries using a graphical user interface and send them to the
query engine for execution. The connection manager in the query engine accepts queries for execution
and is also responsible for maintaining sessions with each client. Each query received by the connection
manager is then parsed and optimized. A crucial step in the optimization process is reducing the number
of XML files to be consulted in order to produce the result of the query (especially in view of the “IN *”
construct). This reduction is done by extracting a search engine query from the XML-QL query, which
asks for the URLs of the XML files that could possibly be relevant to the final result, from the user query.
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This search engine query is sent for execution to the search engine, which responds with a list of URLs
that the query engine needs to query over. The user query is further optimized by the query engine and
then executed. During execution, data from the relevant input sources is asynchronously fetched from the
Internet by the data manager (if it is not already cached), and the results of execution are streamed to the
user as and when they become available. Users can request partial results at any time during the
execution. In this case, the execution engine returns the “result so far” while at the same time processing
new input data coming off the Internet.

The Niagara search engine, in addition to its role in answering user XML-QL queries, can also be
used as a stand-alone search engine for XML documents over the World Wide Web. The query interface
to the search engine, in either case, is SEQL (Search Engine Query Language). SEQL queries are parsed
and optimized in the search engine and the search engine interpreter executes the optimized execution
plan. The search engine uses inverted indexes to efficiently determine the URLs of relevant XML files
and these indices are consulted during SEQL query execution. The results of the query execution are
returned to the query engine or user. The inverted indices used for efficient SEQL execution are built and
updated by the index manager. The index manager receives information about new and updated XML
files from a crawler that constantly crawls the World Wide Web (in the background) for XML files.

The GUI is a Java application that can also be run as an applet in a web browser. In addition to
providing a simple graphical user interface to generate XML-QL, it is also capable of handling multiple
concurrently executing XML-QL or SEQL queries. Both the query engine and search engine are also
implemented in Java and are structured as multi-threaded servers. Since the query engine and search
engine are individual servers, they run as separate processes (in potentially different machines). The next
two sections describe the working of the search engine and the query engine in more detail.

3 The Niagara “Text-in-Context” Search Engine
As mentioned earlier, a novel feature of the Niagara Internet Query System is that users do not need to
specify source XML files in their queries. Rather, it is the responsibility of the system itself to examine
the query, and from the query to determine the set of XML files that could possibly contribute to an
answer to the query.  Niagara does this through the use of its own search engine, the Niagara “Text-in-
Context” Search Engine.

There are a lot of search engines on the web: AltaVista, Hotbot, NorthernLight, Google, and many
others.  Why do we need another search engine?  The answer is that each of these commercial search
engines focus on HTML files, rather than XML files. (Rightly so; for the time being, the XML on the web
is dwarfed by the HTML on the web.  XML search engines are starting to appear, but they are still in their
infancy.  GoXML, http://www.goxml.com, for example, is a standard search engine that allows post-
processing of results based upon XML tags in the documents.)   However, Niagara has as its goal the
querying of XML, and fortunately, XML documents support much more powerful and precise searches
than HTML documents.

When using an existing search engine, one can essentially ask only “find all the documents that
contain these keywords.”  It is possible to construct more advanced searches based upon such properties
as proximity and simple Boolean combinations of keywords. However, it is impossible to query based
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upon the role of the keyword in a document, because that information is not even available in the
document itself.  XML changes all this.

As a simple, admittedly contrived example, consider searching for all documents that have
information about departures of a ship named “Montreal”. One could go to one of the existing search
engines and ask for the URLs of all documents that contain the string “Montreal”, with predictable results
– the query will return thousands of documents, most of which have nothing to do with the ship named
“Montreal.”  Using the Niagara text-in-context search engine, one can instead ask for “all documents that
contain departure elements that contain shipname elements that contain the string ‘Montreal’”.  It should
now be clear what we mean by “text-in-context” – rather than just searching for words in documents, we
search for containment relationships between elements and other elements (e.g., “departure element
contains shipname element”) and also containment relationships between elements and strings (e.g.,
“shipname element contains the string ‘Montreal’”).

The preceding paragraph is overly simplistic – a user looking for departures of ships named Montreal
with a traditional search engine would be unlikely to search only on “Montreal”, they would be far more
likely to search for “Montreal, ship, departure.”  This will yield a far more focussed search than just
giving the keyword “Montreal.”  It is an open question how this search would fare when compared to the
XML structural search.  The structural search is more precise, but the value of this precision can only be
determined empirically as we gain experience with the engine.  Since in our experiments the structural
approach is not significantly slower with respect to query evaluation, we have decided to use it.

3.1 SEQL
In this section we describe Search Engine Query Language (SEQL), the language executed by the

search engine, briefly describe how the search engine evaluates SEQL, and how the XML-QL engine and
the search engine interact.

SEQL is a simple language designed to specify patterns that can be matched by XML files. The
output of a SEQL query is the list of URLs of the files that match the query. An atomic SEQL query is a
word or an XML element tag. Such a query returns the URLs of the XML files containing the word or
XML element tag, respectively, as shown by queries Q1 and Q2 in Table 1.  Complex SEQL queries can
be built from the atomic SEQL queries using the binary operators “contains”, “containedin” and “is”
(see Q3, Q4). In addition, SEQL supports a proximity operator and a numeric comparison operator. The
proximity operator (added for compatibility with existing search engines) returns the URLs of the XML
files that satisfy a restriction on the distance between two words contained in the file (see Q5). The
numeric comparison operator returns the URLs of those files that have a numeric-valued element
satisfying the comparison condition (see Q6).

To allow the composition of more elaborate queries, SEQL supports the standard Boolean
connectives “and”, “or”, and “except” which represent the intersection, union and difference of the
results of the simple SEQL queries, respectively. (See Q7, Q8.) Finally, SEQL supports a special
construct “conformsto”, which is used to restrict the result to only the URLs of those XML files that are
declared to conform to a given DTD (see Q9). SEQL is a highly orthogonal language and so a SEQL
expression can appear anywhere a literal (string, number or element name) can appear. This orthogonality
allows one to build up complex queries.
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SEQL Query Result

Q1 “Java” All XML files that contain the text string “Java.”

Q2 book All XML files that contain a “book” element.

Q3 book contains “Java” All XML files that contain a “book” element that
contains the text string “Java”

Q4 title is “Java Programming” All XML files that contain a “title” element whose
content is “Java Programming”

Q5 distance(“Java”, “Programming”) < 5 All XML files that contain the text string “Java”
and “Programming” less than 5 words apart

Q6 price < 30 All XML files that contain a “price” element
whose contents is a numeric value less than 30

Q7 “Java” and “Programming” All XML files that contain the text strings “Java”
and “Programming”

Q8 book contains (“Java” and
“Programming”)

All XML files that contain a “book” element that
contains the text strings “Java” and
“Programming”

Q9 book contains “Java” and conformsto
“http://www.cs.wisc.edu/bib.dtd”

All XML files that contain the text string “Java”
and conform to the DTD
“http://www.cs.wisc.edu/bib.dtd”

Table 1

It is important to note that the SEQL text-in-context query language subsumes the expressive power
of standard, HTML search engine query languages. SEQL queries that are built using only strings and
Boolean operators, thereby ignoring all tags, have the same basic semantics that regular search engine
query languages have over plain text documents (although SEQL currently has none of the sophisticated
facilities for ranking results that are incorporated into standard search engines.)

3.2 Evaluating SEQL

Given SEQL query specifications, we now turn our attention to the efficient evaluation of these queries in
the Niagara search engine. As mentioned in Section 2.2, the search engine has two logical parts – the first
part deals with crawling the web and indexing all the encountered XML files while the second part deals
with exploiting these indices to optimize the execution of SEQL queries.

The Crawler component of the search engine is essentially used to locate XML documents in the web.
Since at the time of writing this paper there are so few XML files on the web, to evaluate the system we
manually built a local collection of XML files, and then used this crawler to crawl the local subtree and
“find” these files.

The crawler passes URLs of XML files to the search engine to be indexed.  The indices used by the
search engine are variants of inverted lists used for information retrieval [21]. There are three categories
of inverted lists used by the search engine, which are element lists, word lists and DTD lists. The search
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engine maintains one element list for every unique XML element name encountered in the crawled XML
files. An element list associated with a given element name stores information about the files that contain
the XML element, and the position of the XML element in those files. More precisely, each entry (or
“posting”) of the element list has the form (fileId, beginId, endId) where fileId identifies a file containing
the XML element,  beginId specifies the beginning position of the element’s begin tag in that file, and
endId specifies the ending position of the element’s end tag in the same file. For example, if the list for
the <book> element contains a posting (26, 5, 10), this would mean that the file with id 26 has a book
element that begins at position 5 and ends at position 10.  The position in a document is simply the word
number in the document.

Similar to element lists, the search engine maintains one word list for each unique text word
encountered in the crawled XML files. Each posting in a word list for a given word is of the form (fileId,
position) where fileId identifies a file containing the word and position indicates the position of the word
in that file. Figure 4 gives a logical view of a simple inverted index.  It shows two kinds of lists, one for
elements and one for text words.  This index indicates that there is a “<book>” element in document 1
from word number 19 to 27, and that the book element occurs a second time in document 1 from word
number 28 to 36. It appears again in document 2 from word number 1 to 9.  Similarly, the word “java”
appears in document 1 at word numbers 21 and 30 and in document 2 at word number 4.  The search
engine also maintains one DTD list for each unique DTD that the crawled XML files conform to. Each
posting in a DTD list for a given DTD is of the form (fileId), where fileId identifies a file that conforms to
that DTD. All three types of lists are maintained sorted by fileId to enable the efficient execution of
SEQL queries.

When the search engine receives a SEQL query for execution, it parses it into a tree of binary and
unary operators, where each operator corresponds to a SEQL construct such as “contains” or  “and”. Each
operator operates on its input(s), which are inverted list(s), and produces an output, which is also an
inverted list. As an example, consider SEQL query Q3 in Table 1.  The search engine will create an
operator tree with a single operator corresponding to “contains”. This operator will fetch the element list
for the <book> element and the word list for the text string “Java”, and merge the two. The merge logic
will output a file with Id fid if and only if there is a book posting of the form (fid, beginElemPos,
endElemPos) and a word posting of the form (fid, beginWordPos) and beginElemPos < beginWordPos <
endElemPos.

<1; (19,27)> <1;(28,36)> <2;(1,9)>

<1;(20,23)> <1;(29,32)> <2;(2,5)>

<book>

<title>

<1; 21> <1;30> <2;4>

<1;22> <1;31>

   java

  programming

Lexicons Inverted Lists

Figure 4:  Example illustrating element and
word lexicons and  the associated inverted lists
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3.3 Extracting SEQL from XML-QL

As described in Section 2.2, the Niagara query engine sends SEQL queries to the Niagara search engine
to determine the XML files over which to run an XML-QL query. To do so, the XML-QL query engine
extracts a SEQL query (or queries) from the original XML-QL query. This section describes the
extraction process.

The XML-QL query engine extracts SEQL during query optimization using the logical plan produced
by the XML-QL parser, and also a data structure called “the schema”.  The schema data structure contains
information about parent and child relationships between tags, as well as all the selection predicates from
the original XML-QL query.  The following two types of restrictions are extracted from the schema and
are used to construct SEQL queries:

(1) selection predicates, for example, <title> Java Programming </title>

(2) containment relationships among tags, for example, <book><title>…</title></book>

Selection predicates are translated into is and numerical comparison operations, while containment
relationships are translated into contains or containedin operations.  Boolean relationships among
predicates in the original XML-QL query are generally maintained in the translated SEQL query.

The extraction process starts with the translation of the XML-QL predicates into SEQL predicates,
because of their ready availability in the “select nodes” of the logical query plan.  A simple predicate in
XML-QL takes the form:

   expression op value

where “expression” is a regular path expression, “op” is any operator supported by the query engine, and
“value” is some constant.  Of course, simple predicates can be used as building blocks for more complex
predicates through the use of recursion. XML-QL predicates yield both SEQL selection predicates and
containment constraints.

We now discuss the process of translating XML-QL predicates to SEQL queries.  The SEQL
extraction process does not extract all possible constraints from the query, rather it uses heuristics to
avoid generating SEQL that would be likely to be extremely inefficient to evaluate.  The goal of the
generated SEQL is to produce a superset of the URLs that need to be consulted to evaluate the XML-QL.
It would be optimal if the “superset” were exactly the set actually required, but for efficiency of SEQL
evaluation we do not always achieve this goal.  Evaluating tradeoffs between the cost of the SEQL query
and the precision with which it returns useful URLs is an interesting direction for future work.

The constraints used in translating XML-QL predicates to SEQL are listed below. Examples of the
translations are provided in Table 2.  In this table, each XML-QL predicate is shown being translated to a
single SEQL query. In practice, as in the example in Section 3.4.2, these SEQL queries are combined,
when appropriate, to make a larger SEQL query to maximize the filtering of XML files (URLs).

(1) XML-QL predicates involving negation are not extracted and added to the SEQL query  (see T1
and T2 in Table 2).

(2) Numeric predicates are only extracted if they are equality predicates.  Inequality predicates are
not extracted and are not “pushed” to the search engine because they are potentially expensive for
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the search engine to evaluate and are not expected to significantly restrict the number of URLs
the search engine returns to the query engine.

(3) If a predicate involves a tag variable (that is, a range variable, such as $1 in Figure 2), the
predicate is ignored.  It is possible that in some cases analysis could restrict the tag variable to a
small set of element domains, which could then appear in the SEQL predicate, but we do not
currently perform this analysis.

(4) A predicate involving a non-numeric value is always translated to an is operation, whereas a
predicate involving a numeric value is translated to a numerical predicate. (See T3 and T4 in
Table 2.)

XML-QL Predicate SEQL Query

T1 A = 10 and  not (B = “hello”) A = 10

T2 A = 10 or not (B = “hello”) null (nothing corresponding to this predicate appears in
the SEQL query)

T3 <title> Java Programming </title> title is “Java Programming”

T4 <year> 1999 </year> year = 1999

Table 2

Another interesting issue is how to process predicates involving regular path expressions, that is,
predicates on path expressions that may contain embedded “*”, “?”, “+”, or “|” operators.  These are
handled as described below and illustrated in Table 3.

(1) A path expression without “*”, “?”, “+”, or “|”, is translated into containment.  (see P1, Table 3) .

(2) The components of the regular path expression with “?”, “*” are ignored, but not components
with “+.”  (see P2 and P3, Table 3).

(3) “|” is translated into OR (see P4,  Table 3).

These rules are recursively applied, and A, B, and C themselves can be a complex path expressions.

Path Expression SEQL Query
P1 A.B A contains B

P2 A.B*.C A contains C

P3 A.B+.C A contains B contains C

P4 A.(B|C) (A contains B) or (A contains C)

Table 3

Once all the predicates have been extracted, we are still not finished, since there are potentially other
containment relationships that can be extracted from the schema data structure.  Walking this parse
structure generates these relationships.  For example, if an XML-QL query had an expression such as

WHERE <book><title> “Java Programming” </title></book>
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the SEQL corresponding to this would be

book contains title is “Java Programming”

The next section contains a complete example of an XML-QL query and the SEQL that is generated.

3.4 An End-to-End Example
We close this section with two examples that follow two XML-QL queries from the time they are
generated by a user until the answer has been computed.  We begin by discussing the user-interface issues
that arise in building a system such as Niagara.

3.4.1 A User Interface for XML Querying

In a classical relational database management query-builder interface, the basic approach is to start with
the database schema.  From this schema, a user can decide which tables to query, which attributes to
include in the result, any join or selection predicates, and so forth.  Clearly something analogous is needed
for querying XML (no user is going to type in XML-QL!), but if a query is being posed over “all the
XML files on the Internet” where is the schema?

The Niagara XML-QL query processor and text-in-context search engine do not need any schema
information to evaluate queries.  Neither engine “interprets” the element names and constants used in
queries, they just “match” these element names and constants with the tags and element values found in
the XML files over which they are querying.  However, once again, this flexibility does not mean that the
user does not need schema information.  To the contrary, in order to pose a query, the user must know
some element names, or he or she has nothing to refer to in the query.

In our system, we have taken the simple approach that this schema information is derived from
document type descriptors (DTDs). Both the XML-QL engine and the text-in-context search engine have
graphical user interfaces.  To build a query, a user starts by selecting a set of DTDs to work with.  After
these DTDs have been selected, the GUI displays element names and users can do standard “point and
click” or “drag and drop” query building over these DTDs.  Once the query has been specified, and the
user clicks on “submit query”, an XML-QL query is generated (in the case of the XML-QL engine) or a
Search Engine Query Language Query is generated (in the case of the text-in-context search engine.)

Note that the resulting query will not run solely over documents conforming to the DTDs selected by
the user (unless the user specifies that this is desired by including a “conformsto” clause).  Rather, the
DTDs are used to generate a candidate set of tags over which to query.  Any document that can match the
query over these tags will be used in answering the query, whether or not it conforms to the DTD.

Clearly this is only a first step to building a good user interface.  What is needed is a higher level
mapping from user concepts to XML element vocabularies.  We regard this area as important for future
research.  It is our hope that this sort of mapping will be done at a higher level than the query engine, in a
layer that “understands” user-level concepts and can map them to schema information stored as DTDs or
XML Schemas.

3.4.2 XML-QL Query Processing Example

Next we give an example of how the XML-QL query process works.  For clarity and brevity of
exposition, we present a very simple query. Consider the DTD in Figure 5 that describes XML documents
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representing movies. The elements are self-explanatory, with the exception of W4F_DOC, which is an
element added by the wrapper that converted this data to XML [22].

Figure 6 shows a screen shot of the Niagara GUI specifying the query “retrieve the Movie title and
the Cast of movies directed by Terry Gilliam” over the DTD in Figure 5. The XML-QL query that is
generated in response to the query specified in the GUI is shown in Figure 7. Figure 8 shows the SEQL
query the query engine extracts from this XML-QL query. In response to the SEQL query, the search
engine returns three URLs, which have been filtered from over 600 XML documents that conform to the
“movies” DTD.  These URLs are passed to the query engine, which evaluates the XML-QL query, giving
the result shown in Figure 9.

From Figure 9 we can also see some additional features of the Niagara GUI.  The buttons “Query”
and “Search” toggle between the XML-QL and the Search Engine query-building GUIs.  The “XMLQL”
button displays the XML-QL for the current query; the box below this button lists the currently defined
queries, which can be chosen for execution by selecting them.  The Install Trigger button refers to the
trigger engine portion of Niagara, which is described elsewhere [6].  The lower pane of the GUI deals
with query results.  The window in Figure 6 is currently displaying the results of the movie query.  The
“Get Next” button returns the next 20 results to the screen (in this case there are only three results), while
the Pause and Kill Query buttons control query execution.

4 The Niagara Query Engine, Streaming, and Partial Results
To this point, we have focussed on how Niagara determines a relevant set of XML files for a given XML-
QL query.  We have treated the XML-QL query engine as a black box. Furthermore, for clarity of
exposition, we have treated all the XML files in the examples as if they are located local to the system
running the XML-QL query processor and the search engine.  In this section we focus on the query
engine itself, and further focus on the novel features of the query engine that are designed to make it
effective in an Internet environment.

<?xml encoding="ISO-8859-1"?>
<!ELEMENT W4F_DOC (Movie)>
<!ELEMENT Movie
(Title,Year,Directed_By,Genres,Cast)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Directed_By (Director)*>
<!ELEMENT Director (#PCDATA)>
<!ELEMENT Genres (Genre)*>
<!ELEMENT Genre (#PCDATA)>
<!ELEMENT Cast (Actor)*>
<!ELEMENT Actor
          (FirstName,LastName)>
<!ELEMENT FirstName (#PCDATA)>

Figure 5:  Movie DTD

Figure 6:  Screen shot of query interface
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Using the Niagara search engine to determine the URLs of the XML files relevant to a given query is
but the first step in providing a query capability over the Internet. The data in the XML files identified to
be relevant has to further be processed by the query processor to produce an XML result. Several
challenges arise because the XML files of interest can be distributed, and because evaluating an XML-QL
query often requires extensive use of “blocking” operations such as “nest”. A simplistic solution to the
first problem is to have all the XML documents cached at the query engine. Though this approach is
viable under certain conditions, it cannot be used in general because (a) it is not scalable, especially in
view of the dramatic growth in the content and size of the Internet, (b) some of the web content is highly
dynamic, such as auction bids, that makes caching them impractical, and (c) some of the XML documents
of interest may actually be “continuous feeds”, such as stock quotes, that cannot be cached. This implies
that the Niagara query engine needs to deal with geographically distributed data sources, potentially
reachable only through slow and unreliable communication channels.

Previous approaches to querying widely dispersed data have concentrated either on the modification
of query plans so that the network delays can be (partially) hidden from the user [18] or on the
implementation of such as joins using non-blocking implementations 0[17]. While these approaches
partially address the problems of low network bandwidth and unavailable sites, they do not address the
general problem because a query may have some intrinsically blocking operations, such as nest and
average, which traditionally need to see all of the input before producing any output. This problem
assumes special significance in the context of querying and constructing XML documents because they
are heavily nested and the nest operation is inherently blocking. In such cases, the user will have to wait
until all the input XML data has been received in order to see even the first result.

(W4F_DOC CONTAINS
         (Movie CONTAINS
                ((Directed_By
                  CONTAINS (Director
                    IS "Terry Gilliam"))
                           AND
                           (Title AND Cast)
                  )
         )
)

f

WHERE
<W4F_DOC>
  <Movie>
    <Title>$v68</>
    <Directed_By>
      <Director>$v71</>
    </>
    <Cast>$v74</>
  </>
</>
IN "*" conform_to
  "http://www.cs.wisc.edu/niagara/data/
      xml-movies/movies.dtd",
 $v71 = "Terry Gilliam"
CONSTRUCT

l

Figure 7.  XML-QL query generated in
response to the query shown in Figure 6.

Figure 8.  SEQL query generated by the
Query Engine for the XML-QL query in

Fi 7
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To solve this problem, Niagara is architected to provide partial results to users. Thus, users can see
incomplete results of queries as they are executed over slow, unreliable sites or when the queries are long
running (or never terminate!). For example, if a user wants to find all BMW cars that cost less that 90% of
the average price of cars in its class, except those that appear on salvage lists, it may be desirable to
display initial results before all the documents having price and salvage car information have been
processed. As we have said, previous solutions to the problem of producing partial results [9][16] are for
specific aggregate operations and limit the aggregate operations to appear at the top of the query plan tree
or be nested at most one level. As a result, these techniques fail to extend to important blocking
operations such as nest and negation that can appear anywhere in the query. Thus queries such as the one
above cannot be handled in a partial-result mode by existing techniques even assuming a centralized
database system.

The Niagara query engine has been designed from the start to deal with remote data sources and at the
same time to provide users the flexibility to see the partial results of computation at any time. The core of

Figure 9:  Screen shot showing result of query from Figure  6.
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its architecture is a general framework for producing partial results for queries involving any blocking
operator. A key feature of this framework is that it provides a mechanism to ensure consistent partial
results with unambiguous semantics even in the face of massive distribution of the input data sources. The
framework is also general enough to allow blocking and non-blocking operators to be arbitrarily
intermixed in the query tree. The rest of this section describes these novel features of the Niagara query
engine in more detail. The first part of the discussion focuses on the architecture of the query engine
while the second part delves into the implementation details of query engine operators. In the interest of
space, we omit the discussion of more traditional query engine components, such as the execution engine
and the query optimizer.

4.1 The Niagara Query Engine Architecture for Producing Partial Results
In order to architect a query engine to produce partial results over widely distributed data sources, we first
need to formally define the semantics of the partial results of a query.

Definition: Let Q be a query with n inputs and let Q(I1, …, In) represent the result of query Q on inputs
I1, …, In. A partial result of the query Q, given inputs PI1, …, PIn is Q(PI1, …, PIn), where, for 1 ≤ i ≤
n, PIi ⊆  Ii.

Intuitively, a partial result of a query on a given set of inputs is the result of the query on a (possibly)
different set of inputs such that each input in the new set is a subset of the corresponding input in the old
set.

Given the above definition of partial results, the following questions immediately come to mind.  Is it
possible to use traditional query engine architectures to produce partial results? If not, then what
modifications are needed? Are there any new issues that arise? The following sections are devoted to
answering these questions. We first briefly outline the structure of traditional query engines. We then
identify some key properties of operators, not supported by traditional query engine architectures that are
crucial for producing partial results. We also identify consistency anomalies that can arise during partial
result production and propose a solution to tackle this problem. The result is a flexible, general
architecture that produces consistent partial results.

4.1.1 The Traditional Query Engine Architecture

In traditional query engines, queries are executed by a collection of operators, each of which transform its
input stream(s) and produce an output stream.  The inputs to each operator are monotonically increasing,
that is, data is only added to the streams, never updated or removed.

In many cases, the operator graph structure is a tree, but not always. As an example, consider a query
that asks for all cars that have a price less than 90% of the average price of cars in their category. A graph
representation of the operator tree of this query is shown in Figure 10 (the average computes the average
price of cars in each category and the join relates it to the price of individual cars). If the query were
executed over a network where the information about cars is present at one site and all the processing
(Average and Join) are performed at another site, then there is wasteful communication because Car
information is transmitted twice over an expensive network. A more efficient solution is to send Car
information just once and “replicate” it at the site where the processing is performed. This solution is
shown in Figure 11. Note that the operator graph is no longer a tree but a Directed Acyclic Graph (DAG).
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Common sub-expressions within a single query can also give rise to DAG operator graphs for the same
reason.

Given the traditional query engine architecture described above, what needs to change in order to
produce partial results? The architecture described above is inappropriate or inadequate for two main
reasons: (a) unsuitable assumptions about the properties of operators and (b) lack of synchronization
support for producing consistent partial results, particularly for DAG operator graphs. We discuss and
propose solutions for these problems in the next few sections.

4.1.2 Properties of Operators for Producing Partial Results

Traditional implementations of operators are not suitable for partial result production because they do not
satisfy some key characteristics required for producing partial results. The following three properties
summarize the key requirements for such operators:

1) Flexible Input Property: Operators should not stall waiting for input from a particular input stream
if there is some input available on another input stream. The motivation behind this property is that in
a network environment, traffic delays may be arbitrary and data in some input streams may arrive
earlier than data in other input streams and it may be impossible to determine this information a
priori.

2) Anytime Property: At any time, each blocking operator should be able to put the “current” result,
based on the data seen so far on its input stream(s), into its output stream.  Note that non-blocking
operators always put the current results based on the input streams immediately, thus satisfying the
Anytime property.

3) Non-Monotonic Input-Output Property: Each operator has to deal with input streams (and produce
output streams) that are not monotonically increasing. This is a direct result of requiring inherently
blocking operators such as nest, groupby, and aggregates to produce partial results. Consider the
output stream of a nest operator that nests a set of (author, book) pairs on author. An initial partial
result is produced by the nest operator, which includes a group for an author named Smith containing
two books Database Design and Object Databases for the New Millennium.  By the time the second
partial result request is issued, the tuple (Smith, New Book) has been received and processed by the
nest operator, so Smith’s group now contains three books. Thus the nest operator must somehow

Node 2

Node 1

Average

Join

Cars

Cars

                                          Node 1

Average

Join

Cars

Replicate

                                          Node 2

Figure 11Figure 10
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communicate to the operator above it the addition of the book New Book to Smith’s group. This
requires changes (not just addition) to be propagated via streams.

Note that the flexible input and the anytime properties are required for the currency of partial result,
while the non-monotonic input property is required for the correctness of partial results. In any case, the
design and implementation of operators satisfying the properties above is crucial in designing a flexible
system capable of producing partial results and are discussed in more detail in Section 4.2.

4.1.3 Synchronization

In addition to more flexible operator properties, the fact that the operator graph can be a DAG has
important implications for the architecture of a system designed to produce partial results. The definition
of partial results requires that the partial output be the result of executing the query on a subset of the
inputs. This limitation implies that any data item that is replicated must contribute to the partial result
along all possible paths to the output or not contribute at all to the output (along any path). This
restriction is necessary to avoid anomalies such as selecting cars below the average price, without the
car’s price itself being used to compute the average (see Figure 10). Note that this is not an issue when
constructing only final results because each operator produces results based on all of the inputs it sees.
This potential inconsistency is an artifact of the flexibility we desire of interrupting input streams to
produce partial results.

A related issue also arises when an operator logically produces more than one output data item
corresponding to a single input data item. This could happen, for instance, in a Join operator when a
single tuple from one input stream joins with more than one tuple from the other input stream and
produces many output tuples. Another example where this can arise is while unnesting many set sub-
elements (say employees) from a single element (say department) in XML documents. In these cases

again, we need to ensure that the partial query result includes the effects of all or none of the output data
items that correspond to a single input data item.

We ensure consistent partial results using the idea of synchronization packets. Conceptually, these
packets are inserted in the input streams of the query whenever a partial result is desired. This situation is
shown in the figure above. These synchronization packets are replicated whenever a stream is replicated
and their main function is to “synchronize” input streams at well-defined points so that operators see

Average

Join

Replicate

DataSynch Packet

Figure 12:  Use of synchronization packets
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consistent partial inputs. More precisely, each operator sees all the data “before” the synchronization
packets in the production of partial results. In Figure 12 above, the Join operator thus sees all the data
before the synchronization packets in the production of partial results. This ensures that every data item
reaching the join directly from replicate is also reached through average (and vice versa). The problem
now is to determine how the synchronization information is to be propagated up the operator graph. We
achieve this by enforcing the following rules for producing partial results at every node in the operator
graph:

♦  If there is a synchronization packet received through an input stream of an operator, then no further
inputs are taken from that input stream until synchronization packets are received through all input
streams

♦  Once synchronization packets are received from all input streams of an operator, the operator puts its
partial results (in the case of a blocking operator) and synchronization packets into its output
stream(s). It is important to note that the Anytime property of blocking operators is used here in
partial result/synchronization packet propagation.

The following theorem shows that these rules are sufficient to guarantee consistent partial results.

Theorem: If the synchronization packets are inserted into the input streams when partial results are
desired, the synchronization rules guarantee that the partial results produced are consistent.

We omit the proof of this theorem due to space considerations.  The key idea in the proof is to use
induction on a topological ordering of the operators in the graph.

4.1.4 Partial Request Propagation and Generation

In the discussion in the previous section, we assumed that synchronization packets are inserted into the
input streams when partial results are required. However, one of the primary requirements for producing
partial results is that the user or application be able to convey this information to the operators in the
operator graph. Typically, the user or application has access only to the output stream of the top-level
operator. This is because the operators of the query can be distributed at various sites, connected by network
streams. What is thus required is a mechanism to be able to propagate user or application requests down the
operator graph. This can be achieved by propagating control messages “down stream”, all the way to the
base of the operator graph. Once the control messages reach the base of the operator graph, there has to be
some mechanism to intercept the partial result request control messages and insert synchronization control
messages. This is provided by means of a “partial” operator.

Partial operators are added to the base of the operator graph and they perform two simple functions:
(1) propagate the data from the input stream unchanged to the output stream and (2) on receiving a partial
result request from an output stream, they send a synchronization packet to their output streams. Besides
providing an automatic way of handling synchronization packets, partial operators introduce optimization
possibilities. The key observation is that partial operators can be moved higher up in the operator graph
(and even merged) under certain conditions. This “transformation” of the operator graph is likely to lead
to better response times and more efficient execution. The response times are likely to be better because
the partial result request and synchronization packets do not have to travel far along the operator graph –
this benefit can be substantial in the presence of network streams. Execution is also likely to be more
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efficient because (a) there is less overhead for partial result request and reply and, more importantly, (b)
there is no need to synchronize operators that are below partial operators in the operator graph.

4.2 The Implementation of the Niagara Query Operators

The previous section described a general architecture and identified certain abstract properties that query
operators need to satisfy in order to produce partial results. We now turn out attention to an
implementation of query operators that satisfy the required properties. As mentioned earlier, we use non-
blocking, flexible input implementations for operators wherever possible. For example, joins are
implemented using symmetric hash join and symmetric nested loops join algorithms (or their variants).
The algorithms in this section extend such flexible input, non-blocking algorithms to satisfy the non-
monotonic input-output property and further, identify blocking operator implementations satisfying all
three desirable operator properties.

The key to designing operators having the non-monotonic input-output property is to have them
process changes (insertions, updates and deletions) in the input and produce associated changes as output.
In this sense, the Niagara query operators are similar to the differential operators of the CQ Project [11],
in which standard operators including selects, projects, and outer joins are extended to handle changes.
Our system, however, handles changes (insertions, deletions, and updates) as the query is being executed
as opposed to [11], which proposes a model for periodic re-execution of continual (trigger) queries. This
extension gives rise to new techniques for handling changes as the operator is in progress. In the
following sections, we provide brief descriptions of the standard differential algorithms and add a
description of a new differential nest operator to illustrate the implementation of a differential blocking
operator. We also contribute by commenting on the implementation of the differential operators.

In order to illustrate the working of the query operators, consider the example in Figure 13 where all
the books of an author are nested and then joined with the author information. In order to produce partial
results, the nest operator must be able to produce the “difference” between sets of partial results and the
join operator must be able to process that “difference”. We accomplish this by having all operators
produce and consume tuples that consist of the old tuple value and the new tuple value, as in [11].  Since
the partial results produced by blocking operators consist of differences from previously propagated
results, each tuple produced by a blocking operator is an insert, delete or update.  For inserts, the old
value is null; for deletes, the new value is null; and for updates both the old and new value are valid.  Scan
operators produce all inserts. Note that a stream of inserts is identical to a stream of tuples in a traditional
database system. Unless otherwise stated, updates are processed, without significant performance loss, as
deletes followed by inserts.

 JO IN
on author

(author, address)

 N EST
on author

(author, book)

Figure 13
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We now describe the implementation of various operators in the Niagara query engine. In the interest
of space, we have only picked some representative operators and have not included details of other
operators such as average, except , etc. These operator have “bag” semantics. They may input or output
the same value several times, and must keep track of the number of times they’ve received a given tuple
(and not remove it totally until an equal number of deletes have been received).

Differential Select: Differential Select propagates inserts (deletes) if and only if the new (old) value
meets the selection criteria.

Differential Join: Our implementation of Differential Join is based on a symmetric hash join;
extensions to other join algorithms are straightforward. A Differential Join joining relations A and B
works as follows. Upon receipt of an insert of a tuple τ into relation B, τ is joined with all tuples in A’s
hash table and the joined tuples are propagated as inserts to the next operator in the tree.  Finally τ is
inserted in the hash table for relation B for joining with all tuples of A received in the future. Upon receipt
of a delete of a tuple τ from relation B, τ is joined with all tuples in A’s hash table and the joined tuples
are propagated as deletes to the next operator in the tree.

Differential Project: Differential Project propagates updates as updates, deletes as deletes and inserts
as inserts with appropriate attributes projected out.

Differential Nest: Differential Nest is described in relation to a hash-based nest; extensions to other
nest implementations are straightforward.  Inserts are treated just as tuples would be in a traditional nest
operation and are inserted into the appropriate entry in the hash table.  For deletes, Differential Nest
probes the hash table to find the affected entry and removes the deleted tuple from that entry. For updates,
if the grouping value is unchanged, the appropriate entry is pulled from the hash table and updated,
otherwise, the update is processed as a delete and insert. All changes are propagated only upon receipt of
the subsequent partial result request.

5 Conclusions
The Niagara Internet Query System is designed to enable users to pose XML queries over the Internet.  It
differs radically from traditional database systems in (a) how it decides which files to use as input, and (b)
how it handles input sources that have unpredictable performance or may be infinite streams or both.  We
have completed the prototypes described in this paper and made them available from our web site.

A great deal of future work remains.  We are in the process of translating the prototypes from Java to
C++.  Our experience with the Java versions have convinced us that we cannot get the performance we
desire without making the change.  We are also investigating building parallel versions of the search
engine and query engine, in order to handle very large data volumes and large numbers of queries.
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