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pa•thol•o•gy 
any deviation from a healthy, normal, or efficient condition.
ABSTRACT
Hardware Transactional Memory (HTM) systems reflect 

choices from three key design dimensions: conflict detection, ver-
sion management, and conflict resolution. Previously proposed 
HTMs represent three points in this design space: lazy conflict 
detection, lazy version management, committer wins (LL); eager 
conflict detection, lazy version management, requester wins (EL); 
and eager conflict detection, eager version management, and 
requester stalls with conservative deadlock avoidance (EE).

To isolate the effects of these high-level design decisions, we 
develop a common framework that abstracts away differences in 
cache write policies, interconnects, and ISA to compare these three 
design points. Not surprisingly, the relative performance of these 
systems depends on the workload. Under light transactional loads 
they perform similarly, but under heavy loads they differ by up to 
80%. None of the systems performs best on all of our benchmarks.

We identify seven performance pathologies—interactions 
between workload and system that degrade performance—as the 
root cause of many performance differences: FRIENDLYFIRE, 
STARVINGWRITER, SERIALIZEDCOMMIT, FUTILESTALL, STARVIN-

GELDER, RESTARTCONVOY, and DUELINGUPGRADES. We discuss 
when and on which systems these pathologies can occur and show 
that they actually manifest within TM workloads. The insight pro-
vided by these pathologies motivated four enhanced systems that 
often significantly reduce transactional memory overhead. Impor-
tantly, by avoiding transaction pathologies, each enhanced system 
performs well across our suite of benchmarks.

Categories and Subject Descriptors
C.4 [Performance of Systems]: performance attributes, design 
studies

General Terms
Performance, Design, Experimentation
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1. INTRODUCTION
Transactional memory (TM) [12] simplifies concurrent pro-

gramming by providing atomic execution for a block of code. A 
programmer can invoke a transaction in a multi-threaded applica-
tion and rely on the TM system to make its execution appear atomic 
in a global serial order (serializable). TM systems seek high perfor-
mance by speculatively executing transactions concurrently and 
only committing transactions that are serializable. Transactions can 
be concurrently committed if they do not conflict. A conflict occurs 
when two or more concurrent transactions access the same item 
(word, block, object, etc.) and at least one access is a write. TM sys-
tems may resolve some conflicts by stalling one or more transac-
tions, but must be able to abort transactions with cyclic conflicts.
While some TM systems operate completely in software (STMs) 
[14] or in software with hardware acceleration [9], this paper con-
centrates on those implemented with hardware support (HTMs).

An HTM must record the addresses read (read-set) and 
addresses written (write-set) by a transaction in order to perform 
three critical functions: conflict detection, version management, and 
conflict resolution. Each function represents a major dimension in 
the HTM design space and may have a first-order effect on perfor-
mance.

The first design dimension is conflict detection: when to exam-
ine read- and write-sets to detect conflicts. With eager conflict 
detection, an HTM detects a conflict as a transactional thread seeks 
to make a memory reference. With lazy conflict detection, an HTM 
detects conflicts when the first of two or more conflicting transac-
tions commits. Eager conflict detection may improve performance 
by resolving some conflicts using stalls, rather than more draconian 
aborts, because no transaction can observe an uncommitted or stale 
value. Conversely, lazy conflict detection can mitigate the impact of 

some conflicts1 and allows an implementation to batch conflict 
checking [4, 10]. Hybrid policies that use one approach for reads 
and another for writes have thus far only appeared in STMs [11, 
23].

The second design dimension pertains to version management
for the simultaneous storage of newly written values (for commit) 
and old values (for abort). Lazy version management leaves old val-
ues in memory and makes aborts fast (good for getting conflicting 
transactions “out of the way”), but usually must move data on the 

1. Consider concurrent transactions T1, T2, T3, where T1 conflicts 

with T2, T2 conflicts with T3, but T1 and T3 do not conflict. If T1 commits 

first, it will abort T2 but let T3 continue.



more-common commits. Conversely, eager version management
stores old values elsewhere, for example in a log. This makes com-
mits faster, because the new values are already in place, but slows 
aborts and may exacerbate the effects of contention.

The third design dimension is conflict resolution: what to do 
when a conflict is detected. Eager conflict detection must resolve 
the conflict as soon as a requester seeks data that conflicts with one 
or more other transactions. The resolution policy can stall the 
requester, abort the requester, or abort the others. Lazy conflict 
detection must resolve conflicts when a committer seeks to commit 
a transaction that conflicts with one or more other transactions. 
The resolution policy can abort all others, stall or abort the com-
mitter.

Previously proposed HTM systems fall into three regions of the 
design space:

•LL: lazy conflict detection, lazy version management, com-
mitter wins [4, 10],

•EL: eager conflict detection, lazy version management, 
requester wins [2, 22], and

•EE: eager conflict detection, eager version management, 
requester stalls with conservative deadlock avoidance [2, 19].

Using three generic HTM systems built on a common chip 
multiprocessor framework that represent the three points in the 
design space (Section 2), we find that the design point has a first-
order effect on performance and that no one design point performs 
best for all workloads. Figure 1 illustrates the relative performance 
of these generic systems for three benchmarks on 32 processors, 
normalized to EE. (Section 4 presents details of the workloads and 
simulation setup.) On Radiosity, which executes few conflicting 
transactions, all the systems perform similarly (i.e. no statistically 
significant difference). Barnes and Cholesky, on the other hand, 
exhibit significant contention and the relative performance of these 
systems varies widely with EE performing best for Cholesky and 
LL for Barnes. EL performs poorly for both, actually livelocking
on Cholesky.

Despite the recent interest in transactional memory, there has 
been no systematic evaluation of these important HTM design 
tradeoffs. Developers of HTM systems have shown that their 
designs can perform well compared to lock-based synchronization 
and in some cases to other HTM implementations—Ceze et al. [4] 
compared their HTM to one other design alternative. Others have 
examined overflow cases [6, 7]. However, it is difficult to compare 
results due to differences in many other design decisions (e.g., 
cache and coherence policies). 

Without real transactional memory workloads, we do not 
attempt to determine which of these systems is best. Instead, this 
paper seeks to identify (1) execution behaviors, which we call 
pathologies, that can degrade performance through stalls or aborts 
in HTM systems and (2) program characteristics that provoke 
these pathologies in existing TM workloads (Section 3). A key 
insight from this analysis is that, as Scherer and Scott [24] found 
for STMs, conflict resolution (a.k.a., conflict management) is cen-
tral to avoiding many pathologies. We use this insight to develop 
four enhanced systems (EEP, EEHP, ELT and LLB) that use differ-

ent combinations of known techniques—write-set prediction, 
timestamps, and backoff—to achieve good performance across all 
our workloads.

This paper makes three contributions. First, it performs the first 
comparison of three well known HTM design points on the same 
base, albeit idealized, hardware. Second, it identifies seven perfor-
mance pathologies that explain much of the performance differ-
ences between these designs on various workloads: 
FRIENDLYFIRE, STARVINGWRITER, SERIALIZEDCOMMIT, 
FUTILESTALL, STARVINGELDER, RESTARTCONVOY, and DUE-

LINGUPGRADES. Finally, it demonstrates that addressing these 
pathologies improves overall performance.

The following section describes the three HTM design points, 
and in Section 3 we develop the performance pathologies. Section 
4 presents the implementation details of our HTM systems, work-
loads, and methodology. In Section 5 we present the results of sim-
ulation experiments and analyze the pathologies that cause 
performance differences between these systems.

2. PREVIOUS
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Figure 1. Relative performance of generic HTM policies
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 HTM DESIGN POINTS
Previously published HTM systems not only make different 

design decisions regarding conflict detection, version manage-
ment, and conflict resolution, but also different system assump-
tions that also affect performance (e.g., write-though vs. write-
back caches, system interconnects, and even instruction set archi-
tectures). Here we describe three high-level design points chosen 
from previously proposed HTM systems. We present the specific 
implementation details of our generic HTM systems based on 
these design points later in Section 4.
Lazy CD/Lazy VM/Committer Wins (LL). LL systems, such 
as TCC [9] and Bulk [4], buffer new values until a transaction 
commits. A completing transaction arbitrates for a commit token 
[10] or commit bus [4], in order to achieve a global serial order, 
and then commits by informing other transactions of its write-set 
and revealing its updates. If another transaction has read a location 
in the committing transaction’s write-set, the HTM detects a con-
flict and aborts the reader’s transaction. Thus the committing trans-
action always wins. This policy has two advantages. First, it 
guarantees forward progress by always ensuring that some transac-
tion commits even if other transactions abort. Second, the commit-
ting transaction is never delayed by an aborting transaction.



 
Eager CD/Lazy VM/Requester Wins (EL). EL systems, such 
as LTM [2] and the eager system evaluated by Ceze et al. [4], 
detect conflicts on individual memory references, but defer updates 
until commit. On a conflicting request, the requester always suc-
ceeds and the conflicting transactions must abort. Like LL, the EL 
policy simplifies aborts because old values remain in place until 
commit. The EL policy appeals to early adopters because it is com-
patible with existing coherence protocols that always respond to 
coherence requests. 
Eager CD/Eager VM/Requester Stalls (EE). EE systems,
such as LogTM variants [19, 20, 26], also detect conflicts on indi-
vidual memory references, but perform updates in place, writing 
old values to a per-thread log. EE resolves conflicts by stalling the 
requester, and aborts only if a stall would create a potential dead-
lock cycle. EE timestamps transactions to detect potential cycles 
(i.e. when a transaction that has stalled an older transaction would 
itself stall on an older transaction). Eager version management 
streamlines commit, especially for transactions that overflow pri-
vate caches because new values need not be speculatively buffered. 
Conversely, aborts are slowed by the need to process the log. 
HMTM [12] is similar to EE systems and stores both new and old 
values in the cache and, like EE, favors responders in a conflict. 
Unlike EE, HMTM aborts requesters instead of stalling them.

3. PERFORMANCE PATHOLOGIES
The interaction of TM system design and program transactions 

lead to interesting patterns of execution that can impact perfor-
mance. Under light load, when transactions are infrequent or do 
not access contended data, all systems behave similarly. However, 
when many transactions execute concurrently and actively share 
data, conflicts arise and performance may suffer. In this section, 
we describe a set of performance pathologies that arise in the 
dynamic execution of TM programs on the different systems. 
Pathologies harm performance by preventing a transaction from 
making progress or by performing useless work that is discarded 
on transaction abort. In evaluating the performance of an HTM, we 
find that these pathologies help explain the performance differ-
ences between HTM systems. While we find our pathologies valu-
able, they are not (yet) mutually exclusive or complete. 

Figure 2. HTM Performance Pathologies
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Below we give each pathology a name, describe which TM sys-
tems it can affect, describe how it arises (description), identify pro-
gram characteristics that could induce it (program characteristic), 

and suggest an indicator to diagnose when it occurs (indicator). 
Figure 2 presents a summary illustration of the pathologies. 

Pathology FRIENDLYFIRE

Conflict Detection: Eager

Version Management: Any

Conflict Resolution: Requester Wins

Description: This pathology arises when one transaction con-
flicts with and aborts another, which then subsequently aborts 
before committing any useful work. Figure 2a illustrates this 
pathology. In the worst case, this pathology repeats indefinitely, 
with concurrent transactions continually aborting each other, 
resulting in livelock. Because a simple requester-wins policy 
exhibits the FRIENDLYFIRE pathology and frequently results in 
livelock under high contention [4, 21, 24], our baseline EL policy 
uses randomized linear backoff after an abort. VTM [22] also 
employs eager conflict detection and lazy version management, but 
does not specify a conflict resolution policy. 

Program Characteristic: Concurrent transactions that con-
flict.

Indicator: A transaction that causes another transaction to 
abort also aborts.

Pathology STARVINGWRITER

Conflict Detection: Eager

Version Management: Any

Conflict Resolution: Stall w/ Conservative Deadlock Avoidance

Description: This pathology arises when a transactional writer 
conflicts with a set of concurrent transactional readers. The writer 
stalls waiting for the readers to finish their transactions and release 
isolation. As with simple reader-writer locks, the writer may starve 
if new readers arrive before existing readers commit [8]. Figure 2b 
illustrates this pathology. The writer is starved by a series of com-
mitting readers. Splitting a node near the root of a B-Tree can trig-
ger this behavior because many threads may read the node during 
the attempted split. In some cases of this pathology, the readers 
make progress and only the writer starves. In the worst case, none 
of the transactions make progress because the readers encounter a 
cyclic dependence with the writer after reading the block, abort 
(releasing isolation), but then retry before the writer acquires 
access.

Program Characteristic: Transactions that modify a widely 
read shared variable.



Indicator: Writer continues to stall after initial set of readers 
commits. 

Pathology SERIALIZEDCOMMIT

Conflict Detection: Lazy

Version Management: Lazy

Conflict Resolution: Any

Description: HTM systems that use lazy conflict detection 
serialize transactions during commit to ensure a global serial order. 
Thus, committing transactions may stall waiting for other transac-
tions to commit. The performance impact may be significant in a 
program with many small transactions. However, the overhead is 
reduced if the completing transaction is guaranteed to commit by a 
committer-wins resolution policy [4, 10]. Figure 2c portrays this 
pathology. In this example, none of the transactions conflict so all 
could safely commit simultaneously, but instead the commits seri-
alize due to limitations of the HTM system.

Program Characteristic: Threads frequently use short, con-
current transactions.

Indicator: Transactions wait to enter their validation phase.

Pathology FUTILESTALL

Conflict Detection: Eager

Version Management: Any

Conflict Resolution: Requester Stalls

Description: Eager conflict detection may cause a transaction 
to stall for another transaction that ultimately aborts. In this case, 
the stall represents wasted time, because it did not resolve a con-
flict with a transaction that performed useful work. Eager version 
management exacerbates this pathology, because the HTM system 
must maintain isolation on its write-set while it restores the old 
values. Thus a transaction could stall on another transaction that 
ultimately aborts and continues to stall while the system restores 
the old values from the log. Figure 2d depicts this case. The trans-
action on the right is stalled waiting for a transaction (left) that 
ultimately aborts.

Program Characteristic: Transactions that read and then later 
modify highly contended data.

Indicator: Transaction stalls attempting to read (write) a mem-
ory location modified (read or modified) by a transaction that ulti-
mately aborts. 

Pathology STARVINGELDER

Conflict Detection: Lazy

Version Management: Lazy

Conflict Resolution: Committer Wins

Description: Systems that use lazy conflict detection and a 
committer-wins policy may allow small transactions to starve 
longer transactions [10]. This arises because small transactions 
naturally reach their commit phase faster and the committer-wins 
policy allows repeated small transactions to always abort the 
longer transaction. The resulting load imbalance may have broad 
performance repercussions. In Figure 2e, the transaction illustrated 
on the left is repeatedly aborted by small transactions executed by 
the thread on the right.

Program Characteristic: Conflicting accesses by a long trans-
action and a sequence of short transactions.

Indicator: A transaction is aborted by multiple committing 
transactions from any single thread. 

Pathology RESTARTCONVOY

Conflict Detection: Lazy

Version Management: Lazy

Conflict Resolution: Committer Wins

 

Description: Convoys arise in HTM systems with lazy conflict 
detection when one committing transaction conflicts with (and 
aborts) multiple instances of the same static transaction. The 
aborted transactions restart simultaneously, compete for system 
resources, and, due to their similarity, finish together. The crowd of 
transactions compete to commit, and the winner aborts the others. 
Convoys can persist indefinitely if a thread that commits a transac-
tion rejoins the competition before all other transactions have had a 
chance to commit [3]. A transaction convoy degrades performance 
in two ways. First, convoys force the program to serialize on a sin-
gle transaction when there may be other portions of the program 
that could execute concurrently. Second, the transactions that are 
restarted increase contention for system resources. Figure 2f illus-
trates the convoy effect that can arise in restarting transactions. As 
the transaction on the left commits, the other threads’ transactions 
abort. Those threads restart and complete at nearly the same time, 
and again one commits and the rest abort. The convoy may persist 
if threads that made it past the transaction return and re-enter the 
convoy.

Program Characteristic: Repeated instances of a transaction 
that updates a contended memory location.

Indicator: A set of transactions is aborted by a committing 
transaction. A transaction from this set again is aborted by another 
transaction from the same set. 

Pathology DUELINGUPGRADES

Conflict Detection: Eager

Version Management: Eager

Conflict Resolution: Requester Stalls

Description: This pathology arises when two concurrent trans-
actions read and later attempt to modify the same cache block. 
Since both transactions add the block to their read-sets, only one 
can succeed, causing the other to abort. While this behavior mani-
fests in any TM system, it is pathologic only for EE systems 
because of their slower aborts. The requester-stalls resolution pol-
icy further exacerbates the problem, because the committing trans-
action may first stall on one that aborts (i.e. the FUTILESTALL

pathology). Figure 2g illustrates DUELINGUPGRADES. The two 
transactions begin and read the same block, then the transaction on 
the left attempts to upgrade (i.e. get write permission to) the block 
and stalls due to the conflict. Deadlock is detected when the trans-
action on the right also tries to upgrade, and the system resolves 
the deadlock by aborting the younger transaction, in this case the 
left one. When the left transaction restarts, it stalls trying to read 
the now-exclusive block until the right transaction commits. If the 
right thread immediately starts another identical transaction, it can 
repeat the conflict, but will lose the conflict resolution because it is 
now the younger transaction.



Program Characteristic: Concurrent transactions that first 
read a common set of blocks, and then update one or more of them.

Indicator: A transaction aborts while attempting to upgrade a 
block from its read-set to its write-set.

4. PLATFORMS AND METHODOLOGY
In this section, we describe the implementation of the various 

systems presented in Section 2. We also discuss our simulation 
methodology and the workloads used for our study. 

CPU L1 I & D

L2 Cache Bank

Memory Controller Memory Controller

Memory ControllerMemory Controller System Model

Processor Cores 5 GHz in-order single-issue

L1 Cache 32KB 4-way split, 64-byte blocks, 
writeback, 1-cycle latency

L2 Cache 8 MB 8-way unified, 64-byte 
blocks, writeback, 34 cycle latency

Memory 4 GB, 500-cycle latency

L2 Directory Bit vector of sharers, 6-cycle 
latency

Interconnect Tiled, 64-byte links, 3-cycle link 
latency

Figure 3. Simulated CMP system

4.1  Base CMP system
Figure 3 illustrates the baseline 32-core CMP system we model 

for our simulation results and summarizes the system parameters. 
We choose a 32 processor system to illustrate the differences 
between HTM designs, which are more pronounced under heavy 
loads on larger systems. The in-order, single-issue cores each have 
32 KB private writeback L1 I & D caches. All cores share a multi-
banked 8 MB L2 cache consisting of 32 banks interleaved by block 
address. A packet-switched interconnect connects the cores and 
cache banks in a tiled topology consisting of 8 clusters, each made 
up of 4 cores. The interconnect uses 64-byte links and adaptive 
routing. Four on-chip memory controllers connect to standard 
DRAM banks. On-chip cache coherence is maintained via an on-
chip directory (at L2 cache banks) which maintains a bit vector of 
sharers and implements the MESI protocol. 

4.2  HTM Systems
Our HTM systems use idealized structures to isolate the key 

differences between points in our design space. As a result, we do 
not limit the size of transactions or penalize systems for larger 
transactions. Each processor records exact transactional read- and 
write-sets to approximate ideal hardware and remove artifacts of 
approximations. All transactional conflict detection is done on 
cache block granularity. The on-chip cache coherence protocol is 
enhanced to support negative acknowledgements (Nacks) to enable 
stalling. The directory also supports sticky states to enable conflict 
detection on overflowed transactional blocks [19].

4.3  Base HTM Systems
We examine three base HTM systems derived from published 

designs, as previously described in Section 2. We now present the 
implementation details of each system.
Lazy CD/ Lazy VM/ Committer Wins (LL). In an LL sys-
tem, a transactional store writes the new value into a private per-
processor transactional write buffer. In keeping with our idealized 
assumptions, we simulate an infinite write buffer in order to elimi-
nate transactional buffer overflows. Note that the old value contin-
ues to reside in cache-coherent shared memory and is not affected 
by the transactional store. A transactional load first acquires shared 
coherence permissions for the accessed cache block, then the 
transaction adds the block to its read-set. The actual data returned 
by the load is bypassed from the transactional write buffer, if 
present, otherwise, it is taken from cache-coherent shared memory. 

Transaction commits are serialized using a commit token [17]. 
Processors arbitrate for the commit token on an idealized zero-
latency broadcast bus. A transaction that acquires the commit 
token enters the committing phase. It then issues coherence 
requests for exclusive access to the cache blocks corresponding to 
the data in its transactional write buffer. These exclusive requests 
invalidate all the readers in the system, aborting any transactional 
readers. As a committing transaction gains exclusive access to a 
block, it flushes the corresponding data from its transactional write 
buffer to coherent memory. When the transactional write buffer is 
completely flushed, the transaction commits by clearing its read/
write-sets and releasing the commit token. While we model a 
directory-based system, commits in broadcast-based lazy VM sys-
tems are potentially faster, since a single message could carry 
information about the entire write-set to the other processors. In 
order to be fair to the LL system, we use a zero-cycle latency com-
mit token bus which helps compensate for the increased commit 
latency (the write-sets for most transactions in this study are fairly 
small). 
Eager CD/ Lazy VM/ Requester Wins (EL). In the EL sys-
tem, a transactional store writes the new value into a private per-
processor transactional write buffer. In addition, it also acquires 



exclusive access to the cache block that is being modified. It then 
adds the cache block to the write-set in order to detect future con-
flicting accesses from other transactions. We again simulate an 
infinite transactional write buffer in order to avoid buffer over-
flows. The actions taken on a transactional load are identical to the 
actions taken on a transactional load in an LL system. When a pro-
cessor receives a coherence request that conflicts with its read or 
write-set, the transaction aborts and then delays using randomized 
linear backoff to avoid livelock due to FRIENDLYFIRE.

When a transaction reaches commit, it flushes the data from its 
transactional write buffer into cache-coherent shared memory by 
writing back each block. Since the transaction has already obtained 
exclusive access to the blocks, it can complete this operation with-
out any conflicts. To ensure commit atomicity, any conflicting 
requests during this period are stalled using Nacks. However, con-
flicting requests prior to commit cause the transaction to abort.
Eager CD/ Eager VM/ Requester Stalls (EE). In the EE sys-
tem, a transactional store first acquires exclusive coherence per-
mission for the cache block being updated. The old value of the 
block is saved to a per-thread log in cacheable memory and the 
block is updated in place with the new value. The cache block is 
added to the write-set to prevent other transactions from seeing the 
uncommitted new values. A transactional load acquires shared 
coherence permission for the block, adds its address to the read-
set, and satisfies the load directly (since transactional stores occur 
in place). 

Commits are fast in EE, since the new data is already in place. 
The EE system only needs to reset some transactional bookkeeping 
state and clear the read/write-sets. During transaction execution,
conflicting accesses are stalled by sending Nacks. The EE system 
detects potential deadlocks using timestamps: a necessary condi-
tion for deadlock is that a processor both stalls an older transaction 
and stalls for an older transaction. Each processor records a unique 
timestamp when it initially begins a transaction and passes this 
timestamp with coherence requests and Nacks. A processor sets a 
bit if it Nacks an older transaction. If it in turn receives a Nack 
from an older transaction, this represents a potential cycle and it 
aborts. The abort traps to a software handler, which walks the 
transaction log and restores the old values into memory. Like EL, 

EE uses randomized linear backoff to reduce contention after an 
abort.

4.4  Enhanced HTM Systems 

Table 1:  Workload Parameters

Benchmark Input Unit of Work Units Measured
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Barnes 512 bodies Whole parallel phase 1 2,646 6.1 4.3

Cholesky tk14.O Factorization 1 60,017 3.5 1.7

Mp3d 128 mol 1 step 1,024 36,306 2.2 1.6

Radiosity batch 1 task 1,024 20,614 1.9 1.5

Raytrace teapot Whole parallel phase 1 47,781 5.2 2.0

Btree Uniform random BTree operation 100,000 100,000 13.2 0.6

LFUCache Zipf random Page access 8,192 8,184 5.4 2.2

The pathologies of Section 3 exemplify cases in which our base 
systems favor aborting and stalled transactions over the transac-
tions performing useful computation. This observation encouraged 
us to develop four HTM variants that avoid or mitigate these 
pathologies by addressing each system’s conflict resolution policy.
Eager/Eager/Predictor (EEP). The EEP system targets the 

DUELINGUPGRADES pathology using a small write-set predictor to 
selectively request exclusive permission and add the block to the 
transaction’s write-set [19]. Similar to Kaxiras and Goodman’s 
migratory sharing predictor [13], this predictor eliminates the 
coherence upgrades that result when transactions read, modify, and 
write the same block. Without this optimization, two transactions 
that concurrently read, modify, and write the same block force one 
to abort. With this optimization, the requester-stall policy allows 
the transactions to serialize, and thus mitigates this pathology.
Eager/Eager/Hybrid (EEHP). EEHP extends EEP in an attempt

to also reduce STARVINGWRITER, by allowing an older writer to 
simultaneously abort a number of younger readers. In this case, the 
readers abort themselves and allow the older writer to proceed with 
its transactional execution. For all other conflicts, we stall the 
requester and rely on conservative deadlock avoidance to ensure 
forward progress. 
Eager/Lazy/Timestamp (ELT). ELT targets FRIENDLYFIRE, the 

major pathology affecting EL. ELT behaves the same as EL, but 

instead of always aborting in favor of the requester, transaction 
conflicts are resolved according to the logical age of the transac-
tion, as has been done before for implicit transactions [21] and 
Ceze et al.’s eager alternative [4]. At transaction begin, each trans-
action is marked with a logical timestamp. Each memory request is 
marked with the logical timestamp of its transaction. Non-transac-
tional requests carry their own timestamp (i.e. they are treated as 
single-instruction transactions). Processors executing logically 
younger (i.e. lower priority) transactions abort their transaction 
when conflicting memory requests arrive from logically older 
transactions. This change eliminates FRIENDLYFIRE by ensuring 
that at least one transaction makes useful progress on every cycle.



Lazy/Lazy/Backoff (LLB). LLB addresses RESTARTCONVOY.

Like LL, LLB is based on the committer-wins policy. However, 

restarting transactions use randomized linear backoff to delay the 
restart of an aborted transaction. By staggering the restart of each 
transaction in the group of transactions aborted by a given commit, 
LLB mitigates convoy formation.

4.5  Simulation Methodology
The systems described in the paper are simulated using the 

Simics [15] full-system simulation infrastructure in conjunction 
with customized memory models built with the Wisconsin GEMS 
[16] toolset. Simics accurately models the SPARC architecture. We 
add support for transactional memory in the memory models. The 
HTM interface is implemented using Simics “magic” instructions: 
special no-ops that are caught by Simics and passed onto the mem-
ory model. The software components of the TM systems are 
implemented using hand-coded assembly routines and C functions. 
Simics provides functional correctness for the SPARC ISA, which 
allows us to run unmodified Solaris 9 on our target system. Each 
simulation was pseudo-randomly perturbed to produce error bars 
of 95% confidence on performance results [1].

4.6  Workloads 
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In order to understand the dynamic behavior of HTM systems, 
we select a subset of multi-threaded TM workloads from the 
SPLASH [25] benchmark suite and two concurrent data structures. 
Table 1 presents the input sets and the measurement intervals for 
the various workloads, as well as dynamic transaction characteris-
tics.

While these workloads do not represent the entire spectrum of 
transactional behavior, they do possess interesting, different 
behaviors that allow us to analyze the differences between pro-
posed HTM designs.

Barnes, Cholesky, Mp3d, Radiosity and Raytrace. These 
scientific programs are taken from the SPLASH benchmark suite 
and were selected because they show significant critical-section 
based synchronization. We replace the critical sections with trans-
actions while retaining barriers and other synchronization mecha-
nisms. Raytrace was modified to eliminate false sharing between 

transactions. To reduce simulation times, we do not measure the 
entire parallel segment of the program for Cholesky, Mp3d and 
Radiosity. Instead, we take representative sections of the program 
and measure performance in terms of well-defined units of work 
[1]. 

BTree: The BTree microbenchmark represents a common class 
of concurrent data structures found in many applications. Each 
thread makes repeated accesses to a shared tree, randomly per-
forming a lookup (with 80% probability) or an insert (20%). The 
tree is a 9-ary B-tree initially 6 levels deep. We use per-thread pri-
vate memory allocators for scalability. 

LFUCache: The LFUCache microbenchmark is based on the 
workload presented by Scherer et al. [24]. It uses common concur-
rent data structures, a hash table and a priority queue heap, to sim-
ulate cache replacement in a HTTP web proxy using the least 
frequently used (LFU) algorithm. The hash table holds pointers 
into the priority queue. Each thread in the microbenchmark 
requests “pages” with a Zipf distribution and then updates the 
cache, potentially replacing old data. The hash table is an array of 
2k pointers and the priority queue is a fixed size heap of 255 
entries (8-level deep binary tree) with lower frequency values near 
the root.

5. RESULTS 
In this section, we present a performance analysis of the base 

and enhanced HTM systems using the TM workloads described in 
the previous section. In particular, we focus on understanding the 
system behaviors and pathologies which favor one system over 
another.

5.1  Base HTMs Results
As foreshadowed in Figure 1, we observe that the relative per-

formance of our base systems varies widely between workloads 
and none always performs best. Figure 4 shows the performance of 
each of the three base HTM systems, normalized to the EE system. 
LL is the top performer, with significant improvements for Mp3d,
BTree, and LFUCache. EL significantly lags LL and EE on all 
benchmarks and livelocks while executing Cholesky. EE outper-
forms LL for Cholesky.



To understand why some workloads favor one HTM design 
point over another, we study the fraction of cycles they spend in 
different transactional states for each system. Figure 5 breaks the 
execution of each benchmark into eight components: non-transac-
tional work (NonTrans), un-stalled transactional execution (Trans), 
waiting at a barrier (Barrier), stalling after an abort to reduce con-
tention (Backoff), stalling to resolve a transaction conflict, or arbi-
trating for the commit token (Stall), the cycles spent flushing out 
the write buffer after acquiring the commit token (Committing), 
transactional work that is discarded when the transaction aborts 
(Aborted), and rolling back transactional state during an abort 
(Aborting). Each component is normalized to the number of non-
transaction-overhead cycles (NonTrans + Trans + Barrier). As a 
result, the height of each bar represents the overhead of serializing 
conflicting transactions for a given system on a given benchmark. 
Note that although the systems generally have similar non-transac-
tion-overhead cycles, cache and scheduling effects introduce some 
variability. This is most noticeable for LFUCache, where the dif-
ferent transaction commit orders result in significantly different 
cache miss ratios (specifically, the C library function random()
causes EE and LL to have more cache misses than EL).

Figure 5 shows that the EL system, for all workloads but Radi-
osity, spends at least half of its execution time performing wasted 
work or backing off after an abort to avoid livelock. We also note 
that EL without the backoff (not shown) fails to complete (due to 
livelock) for all workloads. 

Turning to EE and LL, we see that these systems generally 
spend much less time than EL in transaction overhead. EE exhibits 
significant stall, aborted, and backoff overheads for Mp3d, Ray-
trace, and LFUCache, with more modest overheads for BTree. 
Backoff is the largest single factor, accounting for 30-38% of total 
execution time. LL exhibits significant overheads only for Mp3d
and Raytrace, where high contention results in both commit stalls 
and significant work being discarded (Aborted). Commit stalls are 

the largest factor for LL, accounting for 27% of total execution 
time in Raytrace.
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Figure 5. Execution Time Breakdown for Base HTM Systems

 

5.2  Pathology Analysis
In order to shed some light on the causes of inefficient transac-

tion execution, we investigate how often the pathologies we identi-
fied earlier actually occur. We measure the frequency of a 
pathology by generating a trace file for each execution and post-
processing it to find which cycles match the specific indicator. 
Thus we report each processor cycle as being due to zero, one or 
more pathologies, normalized by the total number of execution 
cycles. Note that the pathologies are not completely independent, 
for example, a read transaction causing STARVINGWRITER may 
also cause FUTILESTALL. 

Table 2 presents the percent of total cycles for each workload 
and system configuration identified as part of each pathology, and 
highlights in bold those configurations that spend at least 20 % of 
their cycles in transaction overheads. As expected, the results in 
Table 2 demonstrate that these pathologies occur most frequently 
on benchmarks for which a particular system is inefficient. Unfor-
tunately, reliable measurements of DUELINGUPGRADES are not 
currently available.

For the EL system, all six of the benchmarks that perform 
poorly exhibit significant incidence of FRIENDLYFIRE: ranging 
from 61%-73% of total execution time (excluding Cholesky). For 
Cholesky, investigation shows that FRIENDLYFIRE accounts for the 
livelock, with readers spinning on an empty task queue continually 
aborting the queue writers. Conversely, Radiosity, which performs 
comparably on EE, EL, and LL, spends only 12% of it execution 
time in this pathology.

For the LL system, Mp3d and Raytrace are the least efficient 
benchmarks, each devoting a significant number of cycles to stall-
ing and aborted transactions. Many of these wasted cycles can be 
attributed to SERIALIZEDCOMMIT, STARVINGELDER, and RESTART-

CONVOY. 



Identifying pathologies for EE systems proved more problem-
atic. Without (as yet) being able to obtain reliable results for DUE-

LINGUPGRADES, the largest pathology accounts for only 6% of the 
execution time (STARVINGWRITER for LFUCache), while 
FUTILESTALL accounts for 1% or less on all benchmarks. However, 
manual inspection shows that almost all aborts in Mp3d, Raytrace, 
and LFUCache result from four transactions that read-modify-and-
write various counters, exactly the kind of program behavior that 
can lead to DUELINGUPGRADES. Figure 5 further shows that 
Aborted and Backoff account for most of EE’s transaction over-
head, strongly suggesting that DUELINGUPGRADES accounts for 
most of the overhead.

5.3  Enhanced HTMs Results
Section 4.4 presents four enhanced HTMs (EEP, EEHP, ELT and 

LLB) that aim to mitigate the impact of specific pathologies. EEP 

tries to address DUELINGUPGRADES, while EEHP further tries to 

reduce STARVINGWRITER. Specifically, EEP uses write-set predic-

tion to reduce upgrades and EEHP additionally enables a transac-

tional writer to win a conflict with multiple readers simultaneously, 
thus reducing the ill effects of multiple readers stalling a writer. 
LLB uses backoff to reduce contention to address RESTARTCON-

VOY and indirectly SERIALIZEDCOMMIT and STARVINGELDER. ELT 

uses timestamps to improve conflict resolution in favor of the old-
est transaction, thereby eliminating FRIENDLYFIRE.

The results in the right side of Table 2 indicate how well the 
enhanced HTM systems address the targeted pathologies. Only a 
few configurations remain in bold, indicating that few configura-
tions have transaction overhead exceeding 20%. We now analyze 
the performance of the enhanced HTM systems (

Table 2:  Pathologies (% total execution time; in bold if total overhead exceeds 20% of execution time)
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Barnes 0.2 0.3 67 2.1 1.0 1.9 0.21 0.6 0.3 0.2 1.0 1.7 1.0 1.5

Cholesky 0.2 <0.1 n/a 9.6 2.4 0.5 <0.1 <0.1 0.1 <0.1 0.2 8.7 3.1 0.5

Mp3d 2.5 0.9 67 21 36 30 1.0 0.3 0.8 0.2 33 9.0 28 25

Radiosity 0.2 0.2 12 0.4 <0.1 0.4 0.2 0.3 0.2 0.1 0.1 0.3 <0.1 0.3

Raytrace 4.6 1.0 73 27 45 5.2 0.6 0.1 0.3 <0.1 0.2 0.3 0.1 1.0

BTree 1.2 <0.1 61 4.5 <0.1 0.2 1.4 <0.1 0.2 <0.1 0.1 4.5 <0.1 0.2

LFUCache 5.8 1.0 67 0.2 <0.1 <0.1 0.5 <0.1 1.2 <0.1 0.3 0.1 <0.1 0.1

Figure 6) as well 
as their execution time breakdowns (Figure 7).
EEP and EEHP reduce DUELINGUPGRADES, 

STARVINGWRITER. For EEP, the least efficient benchmarks on 

EE—Mp3d, Raytrace, and LFUCache—all have transaction 
behavior that strongly suggests the DUELINGUPGRADES pathology. 
Figure 6 shows that write-set prediction dramatically improves 

performance, achieving speedups of 2.1, 2.3, and 1.8, respectively 
over EE. Figure 7 further shows that EEP largely eliminates 

Aborted and Backoff cycles, while slightly increasing Stall cycles. 
Conversely, EEP has little impact on BTree, which still has about 

20% transaction overhead, mostly due to Backoff. 
EEHP targets STARVINGWRITER in EE by allowing a transac-

tional writer to win a conflict with multiple readers simultaneously. 
Even though STARVINGWRITER accounts for only 1.2% of BTree’s 
cycles, EEHP performs comparably to the best systems (Figure 6) 

and eliminates most transaction overhead (Figure 7). This appears 
to occur because BTree’s lookup transactions starve the insert 
transactions, increasing their window of vulnerability to conflict 
with another insert transaction (i.e. DUELINGUPGRADES). Write-set 
prediction does not help prevent DUELINGUPGRADES in this case, 
since lookups (80%) dominate inserts (20%). 
ELT largely eliminates FRIENDLYFIRE. The most striking dif-
ference in the performance of our enhanced systems is that ELT

dramatically outperforms EL for all benchmarks except Radiosity. 
Table 2 shows that using timestamps essentially eliminates 
FRIENDLYFIRE for all workloads except Mp3d, where it drops from 
67% to 33% of total execution time. Figure 6 shows that the ELT

performs within 10% of the best system on all workloads, except 
Mp3d. Figure 7 shows that ELT not only reduces wasted work, it 

eliminates the Backoff cycles in exchange for a smaller fraction of 
Stall cycles. 
LLB reduces SERIALIZEDCOMMIT, STARVINGELDER, and 
RESTARTCONVOY. For LL systems, Raytrace demonstrates the 
clearest results: LLB reduces SERIALIZEDCOMMIT from 27% to 

0.3%, STARVINGELDER from 45% to 0.1%, and RESTARTCONVOY

from 5.2% to 1.0%. As illustrated in Figure 7, LLB with Raytrace 

wastes negligible time in these pathologies. Mp3d shows a similar, 
if less dramatic improvement. SERIALIZEDCOMMIT, STARVIN-

GELDER, and RESTARTCONVOY reduce from 21%, 36%, and 30%, 
respectively, to 9%, 28%, and 25%. Figure 6 shows that while LL 
achieves a speedup of 1.3 relative to EE, LLB increases this to a 



speedup of 1.6. Since significant pathologies and transaction over-
heads remain for Mp3d, this suggests there may be further 
enhancements to LL and LLB that could further improve perfor-

mance on this workload. One possible enhancement would be a 
version of parallel commit [5]. 
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Figure 6. Performance Comparision for enhanced HTM systems

LLB improves performance by eliminating RESTARTCONVOY. 

In Raytrace and Mp3d, LLB significantly reduces SERIALIZED-

COMMIT by eliminating RESTARTCONVOY. In Cholesky, RESTART-

CONVOY does not occur thus LLB does not affect 

SERIALIZEDCOMMIT. Hence there is no significant change in per-
formance. 

6. CONCLUSIONS 

Many hardware transactional memory systems have been pro-
posed, yet there has not been a systematic evaluation of the 
tradeoffs involved in each design. In this paper, we map several 
designs onto a common platform and evaluate performance across 
a variety of different workloads. While performance under light 
transactional loads is similar across designs, under heavy loads 
with a high duty cycle or frequent contention, performance varies 
by up to 80%.
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Figure 7. Execution Time Breakdown for Enhanced HTM Systems

To understand these differences, we describe seven perfor-
mance pathologies that afflict different HTM systems: FRIENDLY-

FIRE, STARVINGWRITER, SERIALIZEDCOMMIT, FUTILESTALL, 
STARVINGELDER, RESTARTCONVOY, and DUELINGUPGRADES. 



In the best case, these pathologies result in slight delays, and in the 
worst case, total livelock. Our evaluation demonstrates that lazy 
version management systems suffer mostly from RESTARTCON-

VOY, a phenomenon typically associated with lock-based programs 
and not transactional memory. Conversely, our results indicate that 
eager systems suffer from FRIENDLYFIRE, where transactions abort 
each other without making progress, and DUELINGUPGRADES, 
where read-modify-write transactions cause many aborts and sig-
nificant wasted work. While we find our pathologies valuable, they 
are not (yet) mutually exclusive or complete.

These results highlight the importance of considering patholog-
ical behavior in HTM designs. We demonstrate that addressing 
specific pathologies with improved conflict avoidance and conflict 
resolution mechanisms improves performance for each of the 
design points we investigate. Additionally, the four enhanced sys-
tems we evaluate perform well across all our benchmarks. While 
we present a performance analysis of seven alternative HTM sys-
tems about a common CMP design point to identify seven perfor-
mance pathologies, future work should explore richer workloads 
and other design points to both refine the current performance 
pathologies and identify new ones.
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