Supporting Nested Transactional
Memory in LogTM

Michelle J. Moravan, Jayaram Bobba,
Kevin E. Moore, Luke Yen, Mark D. Hill,
Ben Liblit, Michael M. Swift, David A. Wood

Twelfth International Conference on
Architectural Support for Programming
Languages and Operating Systems

© 2006 Mulitfacet Project University of Wisconsin-Madison

Motivation

« Composability
— Complex software built from existing modules

« Concurrency

— “Intel has 10 projects in the works that contain
four or more computing cores per chip”
-- Paul Otellini, Intel CEO, Fall ‘05

« Communication
— Operating system services
— Run-time system interactions

ASPLOS'06 10/25 2 Wisconsin Multifacet Project

Nested LogTM

Closed nesting:

transactions remain isolated

until parent commits

Open nesting: transactions

commit independent of
parent

Escape actions: non-

transactional execution for

system calls and 1/O

S

*Replicates R/W bits

S

naturally executes

CO

Nested LogTM

plits log into “frames”

oftware abort processing

mpesating actions

Header

Undo record Level O

Undo record

f» Header
Log Frame Undo record Level 1
Log Pt \ Undo record
—

ASPLOS'06 10/25

Wisconsin Multifacet Project

Composabillity

© 2006 Mulitfacet Project University of Wisconsin-Madison

Composability: Closed Nested Transactions

ASPLOS'06 10/25 S Wisconsin Multifacet Project

Composability: Closed Nested Transactions

 Modules expose interfaces, not implementations

ASPLOS'06 10/25 S Wisconsin Multifacet Project

Composability: Closed Nested Transactions

 Modules expose interfaces, not implementations
« Must allow transactions within transactions

ASPLOS'06 10/25 S Wisconsin Multifacet Project

Composability: Closed Nested Transactions

 Modules expose interfaces, not implementations
« Must allow transactions within transactions

 Example
— Insert() calls getlD() from within a transaction

— The getlD() transaction is nested inside the insert()
transaction

ASPLOS'06 10/25 S Wisconsin Multifacet Project

Composability: Closed Nested Transactions

 Modules expose interfaces, not implementations
« Must allow transactions within transactions

 Example
— Insert() calls getlD() from within a transaction

— The getlD() transaction is nested inside the insert()
transaction

volid insert (object 0)/{ int getID() {
begin transaction(); begin transaction();
n = find node () ; id = global id++;
n.insert (getID(), 0); commit transaction();
commit transaction(); return id;

ASPLOS'06 10/25 S Wisconsin Multifacet Project

Composability: Closed Nested Transactions

 Modules expose interfaces, not implementations
« Must allow transactions within transactions

 Example
— Insert() calls getlD() from within a transaction

— The getlD() transaction is nested inside the insert()
transaction

Parent Child
volid insert (object 0)/{ int getID() {
begin transaction(); begin transaction();
n = find node () ; id = global id++;
n.insert (getID(), 0); commit transaction();
commit transaction(); return id;

ASPLOS'06 10/25 S Wisconsin Multifacet Project

Closed Nesting

Child transactions remain isolated until parent commits

« On Commit child transaction is merged with its parent

* Flat

— Nested transactions “flattened” into a single transaction
— Only outermost begins/commits are meaningful
— Any conflict aborts to outermost transaction
« Partial rollback
— Child transaction can be aborted independently

— Can avoid costly re-execution of parent transaction

— But child merges transaction state with parent on commit
« So most conflicts with child end up affecting the parent

ASPLOS'06 10/25 6 Wisconsin Multifacet Project

Conflict Detection in Nested LogTM

Flat LogTM detects
conflicts with directory
coherence and Read (R)
and Write (W) bits in
caches

Nested LogTM replicates
R/W bits for each level
Flash-Or circuit merges
child and parent R/W bits

ASPLOS'06 10/25

Directory
PO P1
M (RW) I (--)
~ AN
U\T\mnﬂict!
R(W| Tag Data

Data Caches

Wisconsin Multifacet Project

Conflict Detection in Nested LogTM

Flat LogTM detects
conflicts with directory
coherence and Read (R)
and Write (W) bits in
caches

Nested LogTM replicates
R/W bits for each level
Flash-Or circuit merges
child and parent R/W bits

ASPLOS'06 10/25

Directory
PO P1
M (RW) I (--)
~ AN
U\T\mnﬂict!
R|(W|R|W| Tag Data
1 0

Data Caches

Wisconsin Multifacet Project

Conflict Detection in Nested LogTM

Flat LogTM detects
conflicts with directory
coherence and Read (R)
and Write (W) bits in
caches

Nested LogTM replicates
R/W bits for each level
Flash-Or circuit merges
child and parent R/W bits

ASPLOS'06 10/25

Directory
PO P1
M (RW) I (--)
~ AN
U\T\mnﬂict!
R|(W|R|W| Tag Data
1
1 0

Data Caches

Wisconsin Multifacet Project

Conflict Detection in Nested LogTM

Flat LogTM detects
conflicts with directory
coherence and Read (R)
and Write (W) bits in
caches

Nested LogTM replicates
R/W bits for each level
Flash-Or circuit merges
child and parent R/W bits

ASPLOS'06 10/25

Directory
PO P1
M (RW) I (--)
~ AN
U\T\mnﬂict!
R|(W|R|W| Tag Data
1
1
1 0

Data Caches

Wisconsin Multifacet Project

Conflict Detection in Nested LogTM

Flat LogTM detects
conflicts with directory
coherence and Read (R)
and Write (W) bits in
caches

Nested LogTM replicates
R/W bits for each level
Flash-Or circuit merges
child and parent R/W bits

ASPLOS'06 10/25

Directory
PO P1
M (RW) I (--)
~ AN
U\T\mnﬂict!
R|(W|R|W| Tag Data
1
1
1 0

Data Caches

Wisconsin Multifacet Project

Conflict Detection in Nested LogTM

Flat LogTM detects
conflicts with directory
coherence and Read (R)
and Write (W) bits in
caches

Nested LogTM replicates
R/W bits for each level
Flash-Or circuit merges
child and parent R/W bits

ASPLOS'06 10/25

Directory

PO P1
I (--)
R W| Tag Data
1 0

Data Caches

Wisconsin Multifacet Project

Version Management in Nested LogTM

Header
LogBase E o
Undo record
LogPtr \ Undo record
TM count 1

ASPLOS'06 10/25 8 Wisconsin Multifacet Project

Version Management in Nested LogTM

 Flat LogTM’s log is a single frame (header + undo records)

Header

LogBase
Undo record

_/-‘»
LogPtr \ Undo record
TM count 1

ASPLOS'06 10/25 8 Wisconsin Multifacet Project

Version Management in Nested LogTM

Flat LogTM'’s log is a single frame (header + undo records)
Nested LogTM’s log is a stack of frames

Header
LogBase oy
Undo record
LogPtr \ Undo record
TM count 1

ASPLOS'06 10/25 8 Wisconsin Multifacet Project

Version Management in Nested LogTM

Flat LogTM'’s log is a single frame (header + undo records)
Nested LogTM’s log is a stack of frames

Header
LogFrame e
Undo record
LogPtr \ Undo record
TM count 1

ASPLOS'06 10/25 8 Wisconsin Multifacet Project

Version Management in Nested LogTM

Flat LogTM'’s log is a single frame (header + undo records)
Nested LogTM’s log is a stack of frames

A frame contains:
— Header (including saved registers and pointer to parent’s frame)

Header

LogFrame
Undo record
LogPtr Undo record
TM count 2 Header

ASPLOS'06 10/25 8 Wisconsin Multifacet Project

Version Management in Nested LogTM

 Flat LogTM’s log is a single frame (header + undo records)
 Nested LogTM’s log is a stack of frames

« A frame contains:
— Header (including saved registers and pointer to parent’s frame)
— Undo records (block address, old value pairs)

Header

LogFrame
Undo record
LogPtr Undo record
TM count 2 Header

Undo record

Undo record

ASPLOS'06 10/25 8 Wisconsin Multifacet Project

Version Management in Nested LogTM

Flat LogTM'’s log is a single frame (header + undo records)
Nested LogTM’s log is a stack of frames

A frame contains:
— Header (including saved registers and pointer to parent’s frame)
— Undo records (block address, old value pairs)
— Garbage headers (headers of committed closed transactions)
— Commit action records
— Compensating action records

Header

LogFrame
Undo record
LogPtr Undo record
TM count 2 Header

Undo record

Undo record

ASPLOS'06 10/25 8 Wisconsin Multifacet Project

Closed Nested Commit

LogFrame
LogPtr

TM count

ASPLOS'06 10/25

Merge child’s log frame with parent’s

Header

Undo record

Undo record

NS

Header

Undo record

Undo record

Wisconsin Multifacet Project

Closed Nested Commit

* Merge child’s log frame with parent’s
— Mark child’s header as a “garbage header”

TM count 1 5

Undo record

Undo record

ASPLOS'06 10/25 9 Wisconsin Multifacet Project

Closed Nested Commit

* Merge child’s log frame with parent’s
— Mark child’s header as a “garbage header”
— Copy pointer from child’s header to LogFrame

. — Header
LogFrame
Undo record
LogPtr Undo record

TM count 1 %////%%Zé/%///////%

Undo record

Undo record

ASPLOS'06 10/25 9 Wisconsin Multifacet Project

Concurrency

© 2006 Mulitfacet Project University of Wisconsin-Madison

Increased Concurrency: Open Nesting

ASPLOS'06 10/25 1 Wisconsin Multifacet Project

Increased Concurrency: Open Nesting

insert (int key, 1int wvalue) {
begin transaction();
leaf = find leaf (key);
entry = 1insert into leaf (key, value);
// lock entry to isolate node

commit_transaction();

}

insert set (set S) {
begin transaction();
while ((key,value) = next (S)){
insert (key, value);

}

commit_transaction();

ASPLOS'06 10/25 1 Wisconsin Multifacet Project

Open Nesting

Child transaction exposes state on commit
(i.e., before the parent commits)

* Higher-level atomicity
— Child’s memory updates not undone if parent aborts
— Use compensating action to undo the child’s forward action

at a higher-level of abstraction
« E.g., malloc() compensated by free()

* Higher-level isolation
— Release memory-level isolation
— Programmer enforce isolation at higher level (e.g., locks)
— Use commit action to release isolation at parent commit

ASPLOS'06 10/25 12 Wisconsin Multifacet Project

Increased Concurrency: Open Nesting

insert (int key, 1nt value) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1;
open commit (abort action (delete (key)),

commit action (unlock(key)));

}

insert set(set S) {
open begin;

while ((key,value) = next(S))
insert (key, wvalue);
open commit (abort action (delete set(S)));

ASPLOS'06 10/25 13 Wisconsin Multifacet Project

Increased Concurrency: Open Nesting

insert (int key, 1nt value) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1;
open commit (abort action (delete (key)) ,& Delete entry if

ancestor aborts
commit action (unlock(key)));

}

insert set(set S) {
open begin;

while ((key,value) = next(S))
insert (key, wvalue);
open commit (abort action (delete set(S)));

ASPLOS'06 10/25 13 Wisconsin Multifacet Project

Increased Concurrency: Open Nesting

insert (int key, 1nt value) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1; < Isolate entry at higher-level of abstraction
open commit (abort action (delete (key)) ,& Delete entry if

ancestor aborts
commit action (unlock(key)));

}

insert set(set S) {
open begin;

while ((key,value) = next(S))
insert (key, wvalue);
open commit (abort action (delete set(S)));

ASPLOS'06 10/25 13 Wisconsin Multifacet Project

Increased Concurrency: Open Nesting

insert (int key, 1int wvalue) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1; < Isolate entry at higher-level of abstraction
open commit (abort action (delete (key)) ,& Delete entry if

ancestor aborts
commit _action (unlock(key))) ;& Release high-level

} isolation on ancestor commit

insert set (set S) {
open begin;
while ((key,value) = next (S))
insert (key, value);
open commilt (abort action (delete set(S)));

ASPLOS'06 10/25 13 Wisconsin Multifacet Project

Increased Concurrency: Open Nesting

insert (int key, 1int wvalue) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1; < Isolate entry at higher-level of abstraction
open commit (abort action (delete (key)) ,& Delete entry if

ancestor aborts
commit _action (unlock(key))) ;& Release high-level

} isolation on ancestor commit

insert set (set S) {

open begin;

while ((key,value) = next (S))
insert (key, value);

open_commit (abort action(delete set (S))); &« Replace

} compensating action with higher-
level action on commit

ASPLOS'06 10/25 13 Wisconsin Multifacet Project

Commit and Compensating Actions

e Commit Actions

— Execute in FIFO order when innermost open
ancestor commits
« Outermost transaction is considered open

« Compensating Actions
— Discard when innermost open ancestor commits
— Execute in LIFO order when ancestor aborts

— Execute “in the state that held when its forward
action commited” [Moss, TRANSACT ‘06]

ASPLOS'06 10/25 14 Wisconsin Multifacet Project

Timing of Compensating Actions

// initialize to 0
counter = 0;
transaction begin(); // top-level 1
counter++; // counter gets 1
open_begin(); // level 2
counter++; // counter gets 2
open commit(abort action(counter--));

// Abort and run compensating action
// Expect counter to be restored to 0

transaction commit(); // not executed

ASPLOS'06 10/25 15 Wisconsin Multifacet Project

Condition O1

Condition O1: An open nested child transaction never
modifies a memory location that has been modified by any

ancestor.

 If condition O1 holds programmers need not reason
about the interaction between compensation and

undo

« All implementations of nesting (so far) agree on
semantics when O1 holds

ASPLOS'06 10/25 16 Wisconsin Multifacet Project

Open Nesting in LogTM

« Conflict Detection
— R/W bits cleared on open commit
— (no flash or)

* Version Management
— Open commit pops the most recent frame off the log
— (Optionally) add commit and compensating action records
— Compensating actions are run by the software abort handler
— Software handler interleaves restoration of memory state
and compensating action execution

ASPLOS'06 10/25 17 Wisconsin Multifacet Project

Open Nested Commit

Discard child’s log frame

Header
LogFrame
Undo record
LogPtr Undo record
TM count 2 Header

Undo record

Undo record

ASPLOS'06 10/25 18 Wisconsin Multifacet Project

Open Nested Commit

Discard child’s log frame

> Header
LogFrame
Undo record
LogPtr Undo record
TM count 1 Header

Undo record

Undo record

ASPLOS'06 10/25 18 Wisconsin Multifacet Project

Open Nested Commit

Discard child’s log frame

> Header

Undo record

LogPtr \ Undo record
TM count 1

LogFrame

ASPLOS'06 10/25 18 Wisconsin Multifacet Project

Open Nested Commit

Discard child’s log frame

(Optionally) append commit and compensating
actions to log

> Header

Undo record

LogPtr \ Undo record
TM count 1

LogFrame

ASPLOS'06 10/25 18 Wisconsin Multifacet Project

Open Nested Commit

Discard child’s log frame

(Optionally) append commit and compensating
actions to log

> Header

LogFrame
Undo record
LogPtr Undo record
TM count 1 Commit Action

Comp Action

ASPLOS'06 10/25 18 Wisconsin Multifacet Project

Timing of Compensating Actions

// initialize to 0 LogTM behaves correctly:
counter = 0;

transaction begin(); // top-level 1
counter++; // counter gets 1
open_begin(); // level 2

counter++; // counter gets 2

Compensating action sees the
state of the counter when the
open transaction committed (2)

open commit(abort action(counter--));

‘e Decrement restores the value
// Abort and run compensating action to what it was before the open
// Expect counter to be restored to 0 nest executed (1)

transaction commit(); // not executed Undo of the parent restores the

value back to (0)

ASPLOS'06 10/25 19 Wisconsin Multifacet Project

Timing of Compensating Actions

// initialize to 0 LogTM behaves correctly:
counter = 0;
transaction begin(); // top-level 1
counter++; // counter gets 1
open_begin(); // level 2
counter++; // counter gets 2

Compensating action sees the
state of the counter when the
open transaction committed (2)

open commit(abort action(counter--));

‘e Decrement restores the value
// Abort and run compensating action to what it was before the open
// Expect counter to be restored to 0 nest executed (1)

transaction commit(); // not executed Undo of the parent restores the

value back to (0)

Condition O1: No writes to blocks written by an
ancestor transaction.

ASPLOS'06 10/25 19 Wisconsin Multifacet Project

Communication

© 2006 Mulitfacet Project University of Wisconsin-Madison

Communication: Escape Actions

e “Real world” is not transactional
e Current OS’s are not transactional

« Systems should allow non-transactional

escapes from a transaction
* |nteract with OS, VM, devices, etc.

ASPLOS'06 10/25 21 Wisconsin Multifacet Project

Escape Actions

Escape actions bypass transaction isolation and version
management.

* Escape actions never:
— Abort
— Stall
— Cause other transactions to abort
— Cause other transactions to stall
« Commit and compensating actions
— similar to open nested transactions

Not recommended for the average programmer!

ASPLOS'06 10/25 22 Wisconsin Multifacet Project

Case Study: System Calls in Solaris

Category i Examples

Read-only o7 | getpid, times, stat, access, mincore,
sync, pread, gettimeofday

Undoable (without 40 | chdir, dup, umask, seteuid, nice,
global side effects) seek, mprotect
Undoable (with 27 | chmod, mkdir, link, mknod, stime

global side effects)

Calls not handled 89 | kill, fork, exec, umount
by escape actions

ASPLOS'06 10/25 23 Wisconsin Multifacet Project

Escape Actions in LogTM

 Loads and stores to non-transactional blocks behave
as normal coherent accesses

« Loads return the latest value in coherent memory

— Loads to a transactionally modified cache block triggers a
writeback (sticky-M state)

— Memory responds with an uncacheable copy of the block

« Stores modify coherent memory

— Stores to transactionally modified blocks trigger writebacks
(sticky-M)
— Updates the value in memory (non-cacheable write through)

ASPLOS'06 10/25 24 Wisconsin Multifacet Project

Methods

« Simulated Machine: 32-way non-CMP
« 32 SPARC V9 processors running Solaris 9 OS
1 GHz in-order processors w/ ideal IPC=1 & private caches
16 kB 4-way split L1 cache, 1 cycle latency
4 MB 4-way unified L2 cache, 12 cycle latency
4 GB main memory, 80-cycle access latency
Full-bit vector directory w/ directory cache
Hierarchical switch interconnect, 14-cycle latency

« Simulation Infrastructure
— Virtutech Simics for full-system function

— Multifacet GEMS for memory system timing (Ruby only)
GPL Release: http://www.cs.wisc.edu/gems/

— Magic no-ops instructions for begin transaction () etc.

ASPLOS'06 10/25 25 Wisconsin Multifacet Project

B-Tree: Closed Nesting

18 -

16

14

—&— Closed-1
Flat-1

Speedup

0 T T T T T 1
0 5 10 15 20 25 30 35

Threads

ASPLOS'06 10/25 26 Wisconsin Multifacet Project

B-Tree: Closed Nesting

18
16
14
12
a / Closed-100
3 10
B /l' —— Flat-100
g_ 8 —&— Closed-1
6 . p
N4
0 _ I I I I I
0 10 15 20 25 30 35
Threads
ASPLOS'06 10/25 27 Wisconsin Multifacet Project

B-Tree: Open Nesting

12 /

_§' 10 Open-1

8 / —li— Closed-100
6:)- 8 —&— Closed-1

0 5 10 15 20 25 30 35
Threads

ASPLOS'06 10/25 28 Wisconsin Multifacet Project

Conclusions

« Closed Nesting (partial rollback)

— Easy to implement--segment the transaction log (stack of log
frames)/Replicate R & W bits

— Small performance gains for LogTM
 Open Nesting

— Easy to implement--software abort handling allows easy
execution of commit actions and compensating actions

— Big performance gains
— Added software complexity
« Escape Actions
— Provide non-transactional operations inside transactions
— Sufficient for most Solaris system calls

ASPLOS'06 10/25 29 Wisconsin Multifacet Project

BACKUP SLIDES

ASPLOS'06 10/25 30 Wisconsin Multifacet Project

How Do Transactional Memory Systems Differ?

« (Data) Version Management
— Eager: record old values “elsewhere”; update “in place”

— Lazy: update “elsewhere”; keep old values “in place”

ASPLOS'06 10/25 31 Wisconsin Multifacet Project

How Do Transactional Memory Systems Differ?

« (Data) Version Management
— Eager: record old values “elsewhere”; update “in place” < Fas

commi
— Lazy: update “elsewhere”; keep old values “in place”

ASPLOS'06 10/25 31 Wisconsin Multifacet Project

How Do Transactional Memory Systems Differ?

« (Data) Version Management
— Eager: record old values “elsewhere”; update “in place” < Fas

commi
— Lazy: update “elsewhere”; keep old values “in place”

« (Data) Conflict Detection

— Eager: detect conflict on every read/write

— Lazy: detect conflict at end (commit/abort)

ASPLOS'06 10/25 31 Wisconsin Multifacet Project

How Do Transactional Memory Systems Differ?

« (Data) Version Management
— Eager: record old values “elsewhere”; update “in place” < Fas

commi
— Lazy: update “elsewhere”; keep old values “in place”

« (Data) Conflict Detection

— Eager: detect conflict on every read/write < Less

wasted work
— Lazy: detect conflict at end (commit/abort)

ASPLOS'06 10/25 31 Wisconsin Multifacet Project

Microbenchmark Analysis

« Shared Counter BEGIN TRANSACTION () ;
— All threads update

the same counter new total = total.count + 1;
]) private datal id] .count++;
— High contention total.count = new total;

— Small Transactions
COMMIT TRANSACTION () ;

 LogTM v. Locks

— EXP - Test-And-Test-And-
Set Locks with Exponential
Backoff

— MCS - Software Queue-
Based Locks

ASPLOS'06 10/25 32 Wisconsin Multifacet Project

Locks are Hard

// WITH LOCKS

volid move (T s, T d, Obj key){
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key);
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

ASPLOS'06 10/25 33 Wisconsin Multifacet Project

Locks are Hard

// WITH LOCKS

volid move (T s, T d, Obj key){
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key);
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

Thread 0
move (a, b, keyl); Thread 1

move (b, a, key2);

ASPLOS'06 10/25 33 Wisconsin Multifacet Project

Locks are Hard

// WITH LOCKS

volid move (T s, T d, Obj key){
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key);
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

Thread 0
move (a, b, keyl); Thread 1

move (b, a, key2);

DEADLOCK!

ASPLOS'06 10/25 33

Wisconsin Multifacet Project

Locks are Hard

// WITH LOCKS

volid move (T s, T d, Obj key){
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key);
d.insert (key, tmp); Moreover
UNLOCK (d) ;

UNLOCK (s) ; : : .
) Coarse-grain locking limits

concurrency

Thread 0

move (a, b, keyl); Thread 1
rea Fine-grain locking difficult

move (b, a, key2);

DEADLOCK!

ASPLOS'06 10/25 33 Wisconsin Multifacet Project

Eager Version Management Discussion

Advantages:
— No extra indirection (unlike STM)

— Fast Commits
* No copying
« Common case

Disadvantages

— Slow/Complex Aborts
« Undo aborting transaction

— Relies on Eager Conflict Detection/Prevention

ASPLOS'06 10/25 34 Wisconsin Multifacet Project

New values stored in
place (even in main
memory)

Old values stored in a
thread-private
transaction log

Aborts processed in
software

Virtual Memory

New
Values

4//

=

old
Values

Log-Based Transactional Memory (LogTM)

Transaction
Logs

HPCA 2006 - LogTM: Log-Based Transactional
Memory, Kevin E. Moore, Jayaram Bobba, Michelle

J. Moravan, Mark D. Hill and David A. Wood

ASPLOS'06 10/25

35 Wisconsin Multifacet Project

Strided Array

ASPLOS'06 10/25 36 Wisconsin Multifacet Project

Cache State

Sticky States

Directory State
M S |
M M
E E
S S
I Sticky-M Sticky-S I
ASPLOS'06 10/25 37 Wisconsin Multifacet Project

Flat LogTM (HPCA'06)

VA

. Data Block R W
 New values stored in place
« Old values stored in the
transaction log 00 Lemmmmmmmm e O
— A per-thread linear (virtual)
address space (like the stack) I 54 1T
— Filled by hardware (during
transactions)
— Read by software (on abort) c0 R o1t
« R/W bits
| 000 c034mmmmmmeeeees
Log Base 1000]
1040 —= 40 == Transacti
Log Ptr 1090 ‘Y ——23 - Log
TM count - _/
<example>

ASPLOS'06 10/25

38 Wisconsin Multifacet Project

Conflict Detection in LogTM

« Conflict Detection
— Nested LogTM replicates
R/W bits for each level
— Flash-Or circuit merges
child and parent R/W bits

* Version Management
— Nested LogTM segments
the log into frames Register
— (similar to a stack of Checkpoint

activation records)

LogPtr

ASPLOS'06 10/25 39 Wisconsin Multifacet Project

Conflict Detection in LogTM

« Conflict Detection
— Nested LogTM replicates
R/W bits for each level
— Flash-Or circuit merges
child and parent R/W bits

* Version Management
— Nested LogTM segments
the log into frames Register
— (similar to a stack of Checkpoint

activation records)

LogPtr

ASPLOS'06 10/25 39 Wisconsin Multifacet Project

Conflict Detection in LogTM

« Conflict Detection
— Nested LogTM replicates
R/W bits for each level
— Flash-Or circuit merges
child and parent R/W bits

* Version Management
— Nested LogTM segments
the log into frames Register
— (similar to a stack of Checkpoint

activation records)

LogPtr

ASPLOS'06 10/25 39 Wisconsin Multifacet Project

Conflict Detection in LogTM

« Conflict Detection
— Nested LogTM replicates
R/W bits for each level
— Flash-Or circuit merges
child and parent R/W bits

* Version Management
— Nested LogTM segments
the log into frames Register
— (similar to a stack of Checkpoint

activation records)

LogPtr

ASPLOS'06 10/25 39 Wisconsin Multifacet Project

Conflict Detection in LogTM

« Conflict Detection
— Nested LogTM replicates
R/W bits for each level
— Flash-Or circuit merges
child and parent R/W bits

* Version Management
— Nested LogTM segments
the log into frames Register
— (similar to a stack of Checkpoint

activation records)

LogPtr

ASPLOS'06 10/25 39 Wisconsin Multifacet Project

Conflict Detection in LogTM

« Conflict Detection
— Nested LogTM replicates
R/W bits for each level
— Flash-Or circuit merges
child and parent R/W bits

* Version Management
— Nested LogTM segments
the log into frames Register
— (similar to a stack of Checkpoint

activation records)

LogPtr

ASPLOS'06 10/25 39 Wisconsin Multifacet Project

Motivation: Transactional Memory

 Chip-multiprocessors/Multi-core/Many-core are here

ASPLOS'06 10/25 40 Wisconsin Multifacet Project

Motivation: Transactional Memory

 Chip-multiprocessors/Multi-core/Many-core are here

— “Intel has 10 projects in the works that contain four
or more computing cores per chip” -- Paul Otellini,
Intel CEO, Fall ‘05

ASPLOS'06 10/25 40 Wisconsin Multifacet Project

Motivation: Transactional Memory

Chip-multiprocessors/Multi-core/Many-core are here

— “Intel has 10 projects in the works that contain four
or more computing cores per chip” -- Paul Otellini,
Intel CEO, Fall ‘05

We must effectively program these systems
— But programming with locks is challenging

— “Blocking on a mutex is a surprisingly delicate
dance”
-- OpenSolaris, mutex.c

ASPLOS'06 10/25 40 Wisconsin Multifacet Project

Conclusions

 Nested LogTM supports:
— Closed nesting facilitates software composition
— Open nesting increases concurrency (but adds complexity)
— Escape actions support non-transactional actions

* Nested LogTM Version Management

— Segments the transaction log (stack of log frames)

— Software abort handling allows easy execution of commit
actions and compensating actions

* Nested LogTM Conflict Detection

— Replicates R/W in caches
— Flash-Or merges closed child with parent

ASPLOS'06 10/25 41 Wisconsin Multifacet Project

