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Motivation

« Composability
— Complex software built from existing modules

« Concurrency

— “Intel has 10 projects in the works that contain
four or more computing cores per chip”
-- Paul Otellini, Intel CEO, Fall ‘05

« Communication
— Operating system services
— Run-time system interactions
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Composabillity
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Composability: Closed Nested Transactions
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Composability: Closed Nested Transactions

 Modules expose interfaces, not implementations
« Must allow transactions within transactions

 Example
— Insert() calls getlD() from within a transaction

— The getlD() transaction is nested inside the insert()
transaction
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Composability: Closed Nested Transactions

 Modules expose interfaces, not implementations
« Must allow transactions within transactions

 Example
— Insert() calls getlD() from within a transaction

— The getlD() transaction is nested inside the insert()
transaction

volid insert (object 0)/{ int getID() {
begin transaction(); begin transaction();
n = find node () ; id = global id++;
n.insert (getID(), 0); commit transaction();
commit transaction(); return id;
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Composability: Closed Nested Transactions

 Modules expose interfaces, not implementations
« Must allow transactions within transactions

 Example
— Insert() calls getlD() from within a transaction

— The getlD() transaction is nested inside the insert()
transaction

Parent Child
volid insert (object 0)/{ int getID() {
begin transaction(); begin transaction();
n = find node () ; id = global id++;
n.insert (getID(), 0); commit transaction();
commit transaction(); return id;
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Closed Nesting

Child transactions remain isolated until parent commits

« On Commit child transaction is merged with its parent

* Flat

— Nested transactions “flattened” into a single transaction
— Only outermost begins/commits are meaningful
— Any conflict aborts to outermost transaction
« Partial rollback
— Child transaction can be aborted independently

— Can avoid costly re-execution of parent transaction

— But child merges transaction state with parent on commit
« So most conflicts with child end up affecting the parent
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Conflict Detection in Nested LogTM

Flat LogTM detects
conflicts with directory
coherence and Read (R )
and Write (W ) bits in
caches

Nested LogTM replicates
R/W bits for each level
Flash-Or circuit merges
child and parent R/W bits
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Conflict Detection in Nested LogTM

Flat LogTM detects
conflicts with directory
coherence and Read (R )
and Write (W ) bits in
caches

Nested LogTM replicates
R/W bits for each level
Flash-Or circuit merges
child and parent R/W bits
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Version Management in Nested LogTM

Header
LogBase E o
Undo record
LogPtr \ Undo record
TM count 1
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Version Management in Nested LogTM

 Flat LogTM’s log is a single frame (header + undo records)

Header

LogBase
Undo record

_/-‘»
LogPtr \ Undo record
TM count 1
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Version Management in Nested LogTM

Flat LogTM'’s log is a single frame (header + undo records)
Nested LogTM’s log is a stack of frames
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Version Management in Nested LogTM

Flat LogTM'’s log is a single frame (header + undo records)
Nested LogTM’s log is a stack of frames
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Version Management in Nested LogTM

Flat LogTM'’s log is a single frame (header + undo records)
Nested LogTM’s log is a stack of frames

A frame contains:
— Header (including saved registers and pointer to parent’s frame)

Header

LogFrame
Undo record
LogPtr Undo record
TM count 2 Header

ASPLOS'06 10/25 8 Wisconsin Multifacet Project



Version Management in Nested LogTM

 Flat LogTM’s log is a single frame (header + undo records)
 Nested LogTM’s log is a stack of frames

« A frame contains:
— Header (including saved registers and pointer to parent’s frame)
— Undo records (block address, old value pairs)

Header

LogFrame
Undo record
LogPtr Undo record
TM count 2 Header

Undo record

Undo record
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Version Management in Nested LogTM

Flat LogTM'’s log is a single frame (header + undo records)
Nested LogTM’s log is a stack of frames

A frame contains:
— Header (including saved registers and pointer to parent’s frame)
— Undo records (block address, old value pairs)
— Garbage headers (headers of committed closed transactions)
— Commit action records
— Compensating action records

Header

LogFrame
Undo record
LogPtr Undo record
TM count 2 Header

Undo record

Undo record
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Closed Nested Commit
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Closed Nested Commit

* Merge child’s log frame with parent’s
— Mark child’s header as a “garbage header”

TM count 1 5

Undo record

Undo record
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Closed Nested Commit

* Merge child’s log frame with parent’s
— Mark child’s header as a “garbage header”
— Copy pointer from child’s header to LogFrame

. — Header
LogFrame
Undo record
LogPtr Undo record

TM count 1 %////%%Zé/%///////%

Undo record

Undo record
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Concurrency
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Increased Concurrency: Open Nesting
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Increased Concurrency: Open Nesting

insert (int key, 1int wvalue) {
begin transaction();
leaf = find leaf (key);
entry = 1insert into leaf (key, value);
// lock entry to isolate node

commit_transaction();

}

insert set (set S) {
begin transaction();
while ((key,value) = next (S)){
insert (key, value);

}

commit_transaction();
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Open Nesting

Child transaction exposes state on commit
(i.e., before the parent commits)

* Higher-level atomicity
— Child’s memory updates not undone if parent aborts
— Use compensating action to undo the child’s forward action

at a higher-level of abstraction
« E.g., malloc() compensated by free()

* Higher-level isolation
— Release memory-level isolation
— Programmer enforce isolation at higher level (e.g., locks)
— Use commit action to release isolation at parent commit

ASPLOS'06 10/25 12 Wisconsin Multifacet Project



Increased Concurrency: Open Nesting

insert (int key, 1nt value) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1;
open commit (abort action (delete (key)),

commit action (unlock(key)));

}

insert set(set S) {
open begin;

while ((key,value) = next(S))
insert (key, wvalue);
open commit (abort action (delete set(S)));
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Increased Concurrency: Open Nesting

insert (int key, 1nt value) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1; < Isolate entry at higher-level of abstraction
open commit (abort action (delete (key)) ,& Delete entry if

ancestor aborts
commit action (unlock(key)));

}

insert set(set S) {
open begin;

while ((key,value) = next(S))
insert (key, wvalue);
open commit (abort action (delete set(S)));
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Increased Concurrency: Open Nesting

insert (int key, 1int wvalue) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1; < Isolate entry at higher-level of abstraction
open commit (abort action (delete (key)) ,& Delete entry if

ancestor aborts
commit _action (unlock(key))) ;& Release high-level

} isolation on ancestor commit

insert set (set S) {
open begin;
while ((key,value) = next (S))
insert (key, value);
open commilt (abort action (delete set(S)));
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Increased Concurrency: Open Nesting

insert (int key, 1int wvalue) {
open begin;
leaf = find leaf (key);
entry = 1nsert into leaf (key, value);
// lock entry to isolate node
entry->lock = 1; < Isolate entry at higher-level of abstraction
open commit (abort action (delete (key)) ,& Delete entry if

ancestor aborts
commit _action (unlock(key))) ;& Release high-level

} isolation on ancestor commit

insert set (set S) {

open begin;

while ((key,value) = next (S))
insert (key, value);

open_commit (abort action(delete set (S))); &« Replace

} compensating action with higher-
level action on commit
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Commit and Compensating Actions

e Commit Actions

— Execute in FIFO order when innermost open
ancestor commits
« Outermost transaction is considered open

« Compensating Actions
— Discard when innermost open ancestor commits
— Execute in LIFO order when ancestor aborts

— Execute “in the state that held when its forward
action commited” [Moss, TRANSACT ‘06]
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Timing of Compensating Actions

// initialize to 0
counter = 0;
transaction begin(); // top-level 1
counter++; // counter gets 1
open_begin(); // level 2
counter++; // counter gets 2
open commit(abort action(counter--));

// Abort and run compensating action
// Expect counter to be restored to 0

transaction commit(); // not executed
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Condition O1

Condition O1: An open nested child transaction never
modifies a memory location that has been modified by any

ancestor.

 If condition O1 holds programmers need not reason
about the interaction between compensation and

undo

« All implementations of nesting (so far) agree on
semantics when O1 holds
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Open Nesting in LogTM

« Conflict Detection
— R/W bits cleared on open commit
— (no flash or)

* Version Management
— Open commit pops the most recent frame off the log
— (Optionally) add commit and compensating action records
— Compensating actions are run by the software abort handler
— Software handler interleaves restoration of memory state
and compensating action execution
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Open Nested Commit

Discard child’s log frame

Header
LogFrame
Undo record
LogPtr Undo record
TM count 2 Header

Undo record

Undo record
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Open Nested Commit

Discard child’s log frame

> Header
LogFrame
Undo record
LogPtr Undo record
TM count 1 Header

Undo record

Undo record
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Open Nested Commit

Discard child’s log frame

> Header

Undo record

LogPtr \ Undo record
TM count 1

LogFrame

ASPLOS'06 10/25 18 Wisconsin Multifacet Project



Open Nested Commit

Discard child’s log frame

(Optionally) append commit and compensating
actions to log

> Header

Undo record

LogPtr \ Undo record
TM count 1

LogFrame
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Open Nested Commit

Discard child’s log frame

(Optionally) append commit and compensating
actions to log

> Header

LogFrame
Undo record
LogPtr Undo record
TM count 1 Commit Action

Comp Action
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Timing of Compensating Actions

// initialize to 0 LogTM behaves correctly:
counter = 0;

transaction begin(); // top-level 1
counter++; // counter gets 1
open_begin(); // level 2

counter++; // counter gets 2

Compensating action sees the
state of the counter when the
open transaction committed (2)

open commit(abort action(counter--));

‘e Decrement restores the value
// Abort and run compensating action to what it was before the open
// Expect counter to be restored to 0 nest executed (1)

transaction commit(); // not executed Undo of the parent restores the

value back to (0)
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Timing of Compensating Actions

// initialize to 0 LogTM behaves correctly:
counter = 0;
transaction begin(); // top-level 1
counter++; // counter gets 1
open_begin(); // level 2
counter++; // counter gets 2

Compensating action sees the
state of the counter when the
open transaction committed (2)

open commit(abort action(counter--));

‘e Decrement restores the value
// Abort and run compensating action to what it was before the open
// Expect counter to be restored to 0 nest executed (1)

transaction commit(); // not executed Undo of the parent restores the

value back to (0)

Condition O1: No writes to blocks written by an
ancestor transaction.
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Communication

© 2006 Mulitfacet Project University of Wisconsin-Madison



Communication: Escape Actions

e “Real world” is not transactional
e Current OS’s are not transactional

« Systems should allow non-transactional

escapes from a transaction
* |nteract with OS, VM, devices, etc.
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Escape Actions

Escape actions bypass transaction isolation and version
management.

* Escape actions never:
— Abort
— Stall
— Cause other transactions to abort
— Cause other transactions to stall
« Commit and compensating actions
— similar to open nested transactions

Not recommended for the average programmer!
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Case Study: System Calls in Solaris

Category i Examples

Read-only o7 | getpid, times, stat, access, mincore,
sync, pread, gettimeofday

Undoable (without 40 | chdir, dup, umask, seteuid, nice,
global side effects) seek, mprotect
Undoable (with 27 | chmod, mkdir, link, mknod, stime

global side effects)

Calls not handled 89 | kill, fork, exec, umount
by escape actions
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Escape Actions in LogTM

 Loads and stores to non-transactional blocks behave
as normal coherent accesses

« Loads return the latest value in coherent memory

— Loads to a transactionally modified cache block triggers a
writeback (sticky-M state)

— Memory responds with an uncacheable copy of the block

« Stores modify coherent memory

— Stores to transactionally modified blocks trigger writebacks
(sticky-M)
— Updates the value in memory (non-cacheable write through)
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Methods

« Simulated Machine: 32-way non-CMP
« 32 SPARC V9 processors running Solaris 9 OS
1 GHz in-order processors w/ ideal IPC=1 & private caches
16 kB 4-way split L1 cache, 1 cycle latency
4 MB 4-way unified L2 cache, 12 cycle latency
4 GB main memory, 80-cycle access latency
Full-bit vector directory w/ directory cache
Hierarchical switch interconnect, 14-cycle latency

« Simulation Infrastructure
— Virtutech Simics for full-system function

— Multifacet GEMS for memory system timing (Ruby only)
GPL Release: http://www.cs.wisc.edu/gems/

— Magic no-ops instructions for begin transaction () etc.
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B-Tree: Closed Nesting
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B-Tree: Closed Nesting
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B-Tree: Open Nesting
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Conclusions

« Closed Nesting (partial rollback)

— Easy to implement--segment the transaction log (stack of log
frames)/Replicate R & W bits

— Small performance gains for LogTM
 Open Nesting

— Easy to implement--software abort handling allows easy
execution of commit actions and compensating actions

— Big performance gains
— Added software complexity
« Escape Actions
— Provide non-transactional operations inside transactions
— Sufficient for most Solaris system calls
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BACKUP SLIDES
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How Do Transactional Memory Systems Differ?

« (Data) Version Management
— Eager: record old values “elsewhere”; update “in place”

— Lazy: update “elsewhere”; keep old values “in place”
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How Do Transactional Memory Systems Differ?

« (Data) Version Management
— Eager: record old values “elsewhere”; update “in place” < Fas

commi
— Lazy: update “elsewhere”; keep old values “in place”

« (Data) Conflict Detection

— Eager: detect conflict on every read/write

— Lazy: detect conflict at end (commit/abort)
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How Do Transactional Memory Systems Differ?

« (Data) Version Management
— Eager: record old values “elsewhere”; update “in place” < Fas

commi
— Lazy: update “elsewhere”; keep old values “in place”

« (Data) Conflict Detection

— Eager: detect conflict on every read/write < Less

wasted work
— Lazy: detect conflict at end (commit/abort)
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Microbenchmark Analysis

« Shared Counter BEGIN TRANSACTION () ;
— All threads update

the same counter new total = total.count + 1;
] ) private datal id] .count++;
— High contention total.count = new total;

— Small Transactions
COMMIT TRANSACTION () ;

 LogTM v. Locks

— EXP - Test-And-Test-And-
Set Locks with Exponential
Backoff

— MCS - Software Queue-
Based Locks
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Locks are Hard

// WITH LOCKS

volid move (T s, T d, Obj key){
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key);
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;
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Locks are Hard

// WITH LOCKS

volid move (T s, T d, Obj key){
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key);
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

Thread 0
move (a, b, keyl); Thread 1

move (b, a, key2);
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Locks are Hard

// WITH LOCKS

volid move (T s, T d, Obj key){
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key);
d.insert (key, tmp);
UNLOCK (d) ;
UNLOCK (s) ;

Thread 0
move (a, b, keyl); Thread 1

move (b, a, key2);

DEADLOCK!

ASPLOS'06 10/25 33

Wisconsin Multifacet Project



Locks are Hard

// WITH LOCKS

volid move (T s, T d, Obj key){
LOCK (s) ;
LOCK (d) ;
tmp = s.remove (key);
d.insert (key, tmp); Moreover
UNLOCK (d) ;

UNLOCK (s) ; : : .
) Coarse-grain locking limits

concurrency

Thread 0

move (a, b, keyl); Thread 1 . . . .
rea Fine-grain locking difficult

move (b, a, key2);

DEADLOCK!
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Eager Version Management Discussion

Advantages:
— No extra indirection (unlike STM)

— Fast Commits
* No copying
« Common case

Disadvantages

— Slow/Complex Aborts
« Undo aborting transaction

— Relies on Eager Conflict Detection/Prevention
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New values stored in
place (even in main
memory)

Old values stored in a
thread-private
transaction log

Aborts processed in
software

Virtual Memory

New
Values

4//

=

old
Values

Log-Based Transactional Memory (LogTM)

Transaction
Logs

HPCA 2006 - LogTM: Log-Based Transactional
Memory, Kevin E. Moore, Jayaram Bobba, Michelle

J. Moravan, Mark D. Hill and David A. Wood
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Strided Array
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Cache State

Sticky States

Directory State
M S |
M M
E E
S S
I Sticky-M Sticky-S I
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Flat LogTM (HPCA'06)

VA

. Data Block R W
 New values stored in place
« Old values stored in the
transaction log 00 Lemmmmmmmm e O
— A per-thread linear (virtual)
address space (like the stack) I 54 1T
— Filled by hardware (during
transactions)
— Read by software (on abort) c0 R o1t
« R/W bits
| 000 c034mmmmmmeeeees
Log Base 1000 ]
1040 —= 40 == Transacti
Log Ptr 1090 ‘Y ——23 - Log
TM count - _/
<example>
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Conflict Detection in LogTM

« Conflict Detection
— Nested LogTM replicates
R/W bits for each level
— Flash-Or circuit merges
child and parent R/W bits

* Version Management
— Nested LogTM segments
the log into frames Register
— (similar to a stack of Checkpoint

activation records)

LogPtr
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Motivation: Transactional Memory

 Chip-multiprocessors/Multi-core/Many-core are here
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— “Intel has 10 projects in the works that contain four
or more computing cores per chip” -- Paul Otellini,
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Motivation: Transactional Memory

Chip-multiprocessors/Multi-core/Many-core are here

— “Intel has 10 projects in the works that contain four
or more computing cores per chip” -- Paul Otellini,
Intel CEO, Fall ‘05

We must effectively program these systems
— But programming with locks is challenging

— “Blocking on a mutex is a surprisingly delicate
dance”
-- OpenSolaris, mutex.c
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Conclusions

 Nested LogTM supports:
— Closed nesting facilitates software composition
— Open nesting increases concurrency (but adds complexity)
— Escape actions support non-transactional actions

* Nested LogTM Version Management

— Segments the transaction log (stack of log frames)

— Software abort handling allows easy execution of commit
actions and compensating actions

* Nested LogTM Conflict Detection

— Replicates R/W in caches
— Flash-Or merges closed child with parent
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