To appear at the 2001 ACM Symposium on Interactive 3D Graphics

Non-Invasive, Interactive, Stylized Rendering

Alex Mohr *

Michael Gleicher *

University of Wisconsin, Madison

Abstract

In this paper, we show how many interactive 3D applications’ vi-
sual styles can be changed to new, different, and interesting visual
styles non-invasively. Our method lets a single stylized renderer
be used with many applications. We implement this by intercept-
ing the OpenGL graphics library and changing the drawing calls.
Even though OpenGL only receives low-level information from an
application, computation on this data and assumptions about the
application can give us enough information to develop stylized ren-
derers.

Keywords: Non-photorealistic rendering, Real-time, Stylized, Interactive, 3D

1 Introduction

Many different visual styles are now possible for interactive 3D
applications. To date, most applications’ visual styles have been
tightly coupled to the applications themselves. This makes proto-
typing new visual styles and experimenting with different visual
styles difficult. In this paper, we show that we can change many
interactive 3D applications’ visual styles non-invasively. This ef-
fectively divorces an application’s visual style from the application
itself. Using this method, we develop interesting stylized renderers.

Visual style is a key element of a graphical application and often
dictates much of the design and development of an application. For
example, computer video games often seek to immerse their play-
ers in rich, believable environments. Accomplishing this requires
the visual style of the game to reflect the environment. Significant
amounts of design and artwork are often necessary and in many
cases the game’s code and data are specifically designed to achieve
a certain style. In id Software’s Quake 111 Arena, for example, many
texture maps and programmable shaders create a richly detailed, fu-
turistic, techno-gothic world. While typically less extreme, other
kinds of applications also exhibit carefully designed styles.

Because visual style is such an intrinsic component of an appli-
cation, it must typically be designed in from the core. Extensive
changes are required to explore alternate styles, making exploration
of new application/style pairings extremely difficult.

Our goal is to explore varying visual styles with existing applica-

* {amohr,gleicher } @cs.wisc.edu, http://www.cs.wisc.edu/graphics

tions. This requires us to alter the visual style of applications non-
invasively, as we rarely have access to the source code of existing
software. To achieve these alterations, we are limited to intercept-
ing the output of applications at a common level: calls to the graph-
ics library. We must “hijack” a program’s drawing calls, and rein-
terpret them to create alternate styles.

This paper describes our system and methods for non-invasive vi-
sual style changes. Standard operating system mechanisms allow
us to intercept calls to a graphics library. The challenge, however,
is that the only information we receive from the application is low-
level drawing commands and primitives. This lack of high-level
information precludes many current stylized rendering techniques.
The contribution of this paper is to show that despite only getting
low-level information, interesting stylized renderers are possible,
enabling non-invasive style alterations.

We first present a brief overview of the mechanics involved in in-
tercepting the OpenGL graphics library and providing for pluggable
renderers. We then show some alterations that illustrate how sim-
ple transformation techniques lead to relatively uninteresting vi-
sual styles. To create more interesting styles, we devise methods
to gather more information. We demonstrate a set of renderers of
increasing quality, all operating non-invasively. The most sophisti-
cated are capable of providing plausible artistic styles. While these
methods may not produce imagery to rival state of the art non-
photorealistic rendering systems, we can dynamically apply them
to applications without access to the source code.

2 Related Work

All programs have a visual style, to some degree. In the early his-
tory of computer graphics, visual style was dominated by either per-
formance limitations or attempts to achieve photorealism. A move-
ment within the community to display images in non-photorealistic,
artistic styles began to gain momentum with Haeberli’s impression-
ist painting programs [6] and Saito and Takahashi’s Comprehensi-
ble Renderering paper [16]. These were soon followed by commer-
cial tools such as Fractal Painter [3].

Since then, there has been an explosion of new styles presented
at SIGGRAPH and other venues. Just a few examples include im-
pressionist painting [12], technical illustration [5], pen and ink [17],
engraving [14], watercolor, and even the style of Dr. Seuss [9].

As stylized renderers improved in performance due to hardware ad-
vances and clever algorithms, interactive stylized rendering became
practical. An early example was demonstrated in the Sketch sys-
tem [18] that employed a sketchy look to augment their sketching
interaction technique. Many other techniques have been employed
to acheive interactive rates. Hertzmann and Zorin demonstrate a
real-time method to find all silhouettes in a model [7]. Lake, Mar-
shall et al. [10] also present techniques for interactive 3D stylized
rendering. The work of Markosian, Kowalski, et al. [13] empha-
sized speed for interactive non-photorealistic rendering. Several
other systems also demonstrate interactive non-photorealistic ren-
dering techniques. The work of Kaplan et al. [8] describes a method



To appear at the 2001 ACM Symposium on Interactive 3D Graphics

for interactively rendering non-photorealistic subdivision surfaces.

In all of these cases, a new rendering style was explored in the con-
text of a single, specific application. At least one commercial appli-
cation, ViewPoint corporation’s LiveArt 98 [4], has allowed users
to switch among multiple drawing styles, and even add new styles
to the application. NPRQuake [1] also demnostrates pluggable ren-
derers for stylized rendering. However, these applications were ex-
plicitly designed for internal switchable renderers—they cannot be
applied to other applications.

The key challenge of non-invasive stylization—creating styles with
limited information—was also addressed by Litwinowicz [12]. His
work creates impressionist styles from unstructured video but re-
lies on computer vision techniques to gain information required to
drive image-based effects. Unfortunately, such techniques are too
computationally expensive for interactive applications.

3 Intercepting OpenGL

To change applications’ visual styles non-invasively, we intercept
the OpenGL graphics library. We chose OpenGL because we want
our technique to apply to a broad class of applications and OpenGL
is used by a large number of interactive 3D applications. To inter-
cept OpenGL, we rely on standard operating system services.

Most modern operating systems, including Windows and today’s
Unix systems, rely on dynamic library loading to allow system li-
braries to be updated independently of applications. This provides
our mechanism to intercept applications’ calls to OpenGL: we re-
place the OpenGL system library with one of our own. While some
newer systems, such as Windows 2000 attempt to avoid such se-
curity loopholes, under many systems (such as Windows NT) this
replacement simply requires naming our library the same as the ex-
pected system library, and insuring that our library precedes the real
library in the search path.

There are two engineering considerations in performing library in-
terception. First, our library must fully implement the same inter-
face as the system library. Second, since our library needs to call
the real system library, we need to load the real library and provide
a name mapping mechanism.

We have created our own Windows OpenGL shared library
(opengl32.d11)that can dynamically load rendering algorithms
to specify the behavior of drawing commands. Because we have
faithfully recreated the documented OpenGL interface, applications
are unaware that such alterations occur. We note that the function-
ality we replace the drawing calls with is not limited to drawing.
For example, we have created a plug-in renderer that logs graphics
calls to a file, allowing us to capture 3D geometry.

Our pluggable rendering architecture handles many of the engineer-
ing concerns and low-level data processing for plug-in renderers. It
handles intercepting OpenGL commands, distilling the myriad of
library calls to a smaller, more manageable set, managing OpenGL
state, providing user interfaces for dynamically switching and con-
figuring renderers, providing plug-in renderers access to the real
OpenGL, and perfoming common functions such as the data buffer-
ing and coordinate system conversions discussed in the following
sections.

4 Plug-in Renderers

A plug-in renderer has access to all of the infromation that a pro-
gram sends to the graphics library, but it can only receive this in-

formation. We get no information about the meaning or intent of
drawing operations, only a stream of commands.

The simplest transformations just change individual calls or insert
additional commands into the drawing stream. Color masking or
disabling texture mapping are examples. While such alterations
clearly change the look of an application, they are far from pro-
ducing compelling visual styles.

More complex effects require the renderer to examine more than
one library call. Buffering a number of calls allows for both
transformations on groups of commands as well as analysis of the
OpenGL command stream to get more information.

4.1 Simple Techniques

The simplest buffering scheme, implemented in our first prototype,
buffers a single geometric primitive at a time. In OpenGL, this re-
quires recording each vertex in a polygon as it is specified along
with its associated data. This scheme permits each geometric prim-
itive to be altered but does not allow for effects that require infor-
mation about groups of primitives.

This section presents three of our initial pluggable renderers. They
produce some interesting results but serve to show that we are lim-
ited without high-level information.

4.1.1 Depth-cued Wireframe

The depth-cued wireframe renderer, shown in Figure 4 on a stu-
dent’s introductory graphics course assignment, illustrates a simple
visual style transformation that can be achieved with very little in-
formation from an application.

Mimicing an old calligraphic display is certainly not a traditional
artistic style. However, a wireframe renderer has utility: it is very
good for seeing a scene’s underlying geometry. For example, the
tessellation of the trees in Figure 4 is apparent with the wireframe
renderer. Also, a drawing error in this student’s project is visible—
the black line intended to outline the train cars is too high. This is
normally invisible, since the background is also black. Our wire-
frame renderer exposes this flaw.

The only information this renderer requires is the location of each
line and triangle’s vertices. Only lines and triangles are necessary
because our system can convert quadrilaterals and arbitrary poly-
gons to triangles. The operation of this pluggable renderer is sim-
ple. When it receives a primitive, if itis a line, it is drawn. Ifitis a
triangle, its edges are drawn.

4.1.2 Simple Sketch

Our jittered line renderer tries to mimic a gestural pencil sketch
style. In this style, artists typically trace the same contour several
times with fast strokes. The fast strokes lead to inaccuracies in line
placement, which gives some of the appeal to gestural drawings. In
Figure 3, we see the jittered line renderer running on id Software’s
popular game, Quake 111 Arena. This renderer requires only a little
more information than the wireframe renderer, but provides a crude
approximation to the artistic style.

Our jittered lines renderer behaves as the wireframe renderer, ex-
cept that it draws underlying triangles, jitters the locations of the
geometry lines, and draws each line several times. In order for this
renderer to work, the jittering must be done in screen space. If lines
were jittered by constant amounts in eye or world space, lines close



To appear at the 2001 ACM Symposium on Interactive 3D Graphics

to the near clip plane would have wildly changing locations while
objects far from the near clip plane would experience almost no
jitter.

To create screen space jitter, a system must record more infor-
mation. The camera transformation must be known such that the
screen space position of each point can be determined. Our ren-
dering framework was augmented to record the transformation ma-
trices and compute the screen space positions of all vertices in a
manner identical to OpenGL’s pipeline. First an incoming vertex in
object coordinates is transformed by the current modelview matrix,
then transformed by the projection matrix, and finally normalized
by its homogeneous coordinate. It is important to clip geometry to
the view volume or this computation can give incorrect results.

The jittered-line renderer creates a more interesting visual effect by
buffering and computing more information than the simpler wire-
frame renderer. While its results would not be mistaken for a hand-
drawn sketch, or even a common non-photorealistic renderer, it did
work with a wide variety of applications and provide inspiration for
the techniques that follow.

4.1.3 Simple Colored Pencil

A simple extension to the jittered line renderer attempted to simu-
late a sketchy colored pencil style. By making some assumptions
about the scene geometry and computing more information, this
more interesting renderer is possible. An illustration of this ren-
derer is shown in Figure 5.

The simple colored pencil renderer assumes that it is drawing a 3D
scene that makes sense to be lit from above. The renderer com-
putes a false face normal for each triangle by calculating the cross
product of two vectors in the directions of two different sides of the
triangle. If the normal is pointing away from the viewer, the normal
is flipped to point toward the viewer. This must be done because
there is no reliable way to distinguish front faces from back faces.
Once a face normal 77 is computed, the renderer simply scales each
vertex’s color values by (7i, 4+ 1)/2. This simulates a directional
light from the top of the viewport. The resulting colors are quan-
tized to simulate a restricted color palette. Finally, lines are drawn
from near each vertex to random points jittered along the opposite
side of the triangle. Texture is used to simulate paper grain.

This renderer is significantly more interesting than the jittered lines
renderer, but it requries no new information. This demonstrates
that making assumptions about applications can give enough infor-
mation to implement interesting rendering styles. This renderer is
indeed the most interesting so far, but again, falls far short of both
real artistic styles and existing non-photorealistic art renderers.

4.2 Limitations of These Techniques

The problem with these simple renderers most obvious in the static
frames is that they expose the underlying scene geometry. For ex-
ample, the lines drawn by the jittered line renderer in Figure 3 are
not chosen because they most effectively convey overall shape. In-
stead, they are the boundaries of the geometric primitives—artifacts
due to the low-level nature of the information we get.

Some of the problem stems from insufficient buffering: because the
renderer only treats individual primitives, it must draw each one
independently. It cannot choose to discard an edge adjacent to an-
other primitive because it does not know the other primitives ex-
ist. This leads to the excess lines that show the underlying mesh
structure (clearly visible in Figures 3 and 5). It also leaves us with-
out a mechanism to avoid drawing discontinuities across primitive

groups. In the next section, we will demonstrate how additional
buffering can alleviate these issues.

A deeper issue is that OpenGL only gets low-level information
about primitives in a scene and we are therefore fundamentally lim-
ited in our ability to correctly stylize applications. The key issue
is intent. With no notion of the intent of drawing commands, we
are forced to make assumptions about the underlying application.
For example, there is no way to know whether the triangles in a
scene comprise a large mesh, twenty small meshes, or faces of but-
tons in a user interface. The next section will explain how we have
dealt with this limitation, and present two renderers of much higher
quality than those already shown.

5 Getting More Information

Because we had access to little direct information, we redesigned
our system with a new execution model. The second version of our
system intercepts all OpenGL calls and buffers and performs com-
putations on the incoming data for an entire frame at a time. The
plug-in renderer is only executed when a frame is completed. A
plug-in renderer requests the data it requires for the whole scene at
once, processes it, and emits OpenGL calls to draw a frame. Buffer-
ing all the data for whole frames allows our system to do computa-
tions on entire scenes and gather more meaningful information than
just the data associated with each primitive.

Upon intercepting an OpenGL command, our system stores the data
in a hash table. Hashing is done so we can gather higher level
data about frames being generated. To use any techniques that give
us meaningful global information, we need to detect repeated data
passed to OpenGL. For example, to detect silhouette edges or find
distinct objects, we must know mesh connectivity. Often, OpenGL
programs draw connected meshes as digoint primitives. For in-
stance, cubes are frequently drawn as six distinct quadrilaterals.
Thus, if we take each location to be distinct, we will not accurately
reconstruct the connected cube.

Our system buffers data until a command that requires a com-
plete image arrives. The most common command in this class is
SwapBuffers () for a double buffered application, but other ex-
amples include commands that read the framebuffer into a texture,
or copy parts of the framebuffer onto itself. Since an image is re-
quired at this point, our system calls the plug-in renderer to generate
the image. Plug-in renderers are free to examine all scene data and
render a frame. After this, the data buffers are flushed the process
begins again.

To reduce drawing discontinuities in our stylized renderers (see the
tiled plane in Figure 5), we compute and record per-vertex normals
in eye space. We assume that vertex normals will vary consistently
across meshes, so if we write our renderer to draw triangles that
vary smoothly with vertex normals, we will reduce drawing dis-
continuity across objects.

To address the visible geometry problem, we implemented a naive
silhouette edge detector. We simply keep a hash table of winged-
edges that the application has drawn. As primitives are drawn, we
continually update a list of silhouette edges in this winged-edge
list. When a frame is complete, we have a complete list of all the
silhouette edges. We implemented this brute-force method because
it was easy to do in our system. A technique like those presented
in [7] or [2] could be more efficient.



To appear at the 2001 ACM Symposium on Interactive 3D Graphics

5.1 Colored Pencil and Pencil Sketch

Our second colored pencil renderer, shown in Figure 2 running on a
research animation system, takes advantage of the this information.
A thick dark line is drawn for every silhouette edge in the scene,
which suggests a hand-drawn look and gives a good indication of
shape and contour. This helps make form apparent without showing
objects’ internal structures.

The triangle rendering routine has been revised to improve triangle-
to-triangle continuity. This is done by taking the triangle’s surface
normal as the average of every vertex normal in eye space, and
crossing it with a direction vector that represents an incoming di-
rectional light. The result is used as a drawing direction for the
triangle. The triangle is then shaded with lines that are parallel to
this drawing direction, but slightly jittered. Assuming the geome-
try has vertex normals, this drawing direction will change slowly
and smoothly across a smooth surface. Even though the ends of the
shading lines do not match up from triangle to triangle, the shading
trend is consistent across large areas. Compare the checkered plane
in Figure 5 to that in Figure 1. While the individual triangles are
still visible upon close inspection, the quality is much improved.

The pencil sketch renderer shown in Figure 1 uses techniques sim-
ilar to the colored pencil renderer. However, the pencil sketch ren-
derer takes advantage of all the vertex normals in eye space. The
more a vertex normal becomes more aligned with the light direc-
tion, shading lines not only become lighter, but also become more
sparse.

Although the images from these renderers in Figures 1 and 2 do
not match the quality of many application-specific renderers due
to lack of high-level information, we consider them of sufficient
quality to be termed “artistic” styles. Some of the internal structure
in Figure 2 is still visible, but is much improved from Figure 5.
Similarly, while the renderer shown in Figure 1 is not perfect, it can
produce plausible pencil-sketch images.

6 Conclusion

We have shown that applications’ visual styles can be changed to
different and interesting styles without modifying the applications
themselves. Instead, we intercept graphics library calls and re-
interpret the stream of commands to create images in the desired
style.

A unique challenge of this approach is that the graphics library gets
no high-level information from applications. Renderers must rely
on buffering, analysis, and assumption to create the required infor-
mation. This last category leads to a number of failure modes. If
an application uses OpenGL to draw user interface elements like
buttons and scrollbars or to display text to a user, stylizing these
elements may render parts of the application unusable. Another ex-
ample is evident in the work of [15]. Their multipass shading tech-
nique treats OpenGL as a general SIMD computer. There are also
applications that use OpenGL for things other than graphic display
of images such as robot path planning [11]. Our technique could
cause such an application to fail.

At present, the image quality of our results falls short of state
of the art non-photorealistic renderers. This is not suprising: we
have more limited information, are operating with more strict per-
formance goals, and have not adequately explored different tech-
niques. In time, we hope to develop improved analysis techniques
and rendering algorithms that will allow us to approach current non-
photorealistic renderers, but to provide these results across a much
broader class of applications.

Acknowledgments

Andrew Gardner, Erik Bakke, Steve Dutcher, and Christopher Herrman helped build
NPRQuake, which was much of the impetus for this work.

Dr. John Hughes provided invaluable suggestions and advice for revision. Rob Iverson
and Min Zhong assisted with paper production. The baby model depicted in Figures 1,
5, and 6 was provided by Hou Soo Ming. Figure 3 contains a scene from the freely
available Quake 111 Arena Demo, Copyright id Software, 2000. The general model
shown in Figure 2 is freely downloadable courtesy ViewPoint Corp.

This research is supported by an NSF Career Award “Motion Transformations for
Computer Animation” CCR-9984506, support from Microsoft, equipment donations
from IBM and Intel, and software donations from Microsoft, Intel, Alias/Wavefront,
Softlmage, Autodesk and Pixar.

References

[1] Erik Bakke, Steven Dutcher, Christopher Herrman, Andrew Gardner, and Alex
Mohr. NPRQuake. Computer Science Course Project, 2000.

[2] John W. Buchanan and Mario C. Sousa. The edge buffer: A data structure for
easy silhouette rendering. NPAR 2000 : First International Symposium on Non
Photorealistic Animation and Rendering.

[3] Fractal Designs Corp. Fractal painter. Computer Software, 1991-1997.
[4] ViewPoint Corp. Liveart 98. Computer Software, 1998.

[5] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and Rich Riesen-
feld. Interactive technical illustration. 1999 ACM Symposium on Interactive 3D
Graphics.

[6] Paul E. Haeberli. Paint by numbers: Abstract image representations. Computer
Graphics (Proceedings of SGGRAPH 90), 24(4).

[7]1 Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. Proceedings of
SIGGRAPH 2000.

[8] Matthew Kaplan, Bruce Gooch, and Elaine Cohen. Interactive artistic rendering.
NPAR 2000 : First International Symposium on Non Photorealistic Animation
and Rendering.

[9] Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bourdev, Ronen
Barzel, Loring S. Holden, and John Hughes. Art-based rendering of fur, grass,
and trees. Proceedings of SGGRAPH 99.

[10] Adam Lake, Carl Marshall, Mark Harris, and Marc Blackstein. Stylized render-
ing techniques for scalable real-time 3d animation. NPAR 2000 : First Interna-
tional Symposium on Non Photorealistic Animation and Rendering.

[11] Jed Lengyel, Mark Reichert, Bruce R. Donald, and Donald P. Greenberg. Real-
time robot motion planning using rasterizing computer graphics hardware. Com-
puter Graphics (Proceedings of SGGRAPH 90), 24(4).

[12] Peter Litwinowicz. Processing images and video for an impressionist effect.
Proceedings of SGGRAPH 97.

[13] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev,
Daniel Goldstein, and John F. Hughes. Real-time nonphotorealistic rendering.
Proceedings of SGGRAPH 97.

[14] Victor Ostromoukhov. Digital facial engraving. Proceedings of SSGGRAPH 99.

[15] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive multi-
pass programmable shading. Proceedings of SSGGRAPH 2000.

[16] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d
shapes. Computer Graphics (Proceedings of S GGRAPH 90), 24(4).

[17] Georges Winkenbach and David H. Salesin. Rendering parametric surfaces in
pen and ink. Proceedings of S GGRAPH 96.

[18] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. Sketch: An inter-
face for sketching 3d scenes. Proceedings of SGGRAPH 96.



