Distinguished Lecture: Big Data @ Microsoft

Thursday, February 4, 2016 -
4:00pm to 5:00pm
Computer Sciences, Room 1240

Speaker Name: 

Raghu Ramakrishnan

Speaker Institution: 

Microsoft

Cookies: 

Yes

Cookies Location: 

Room 1240

Description: 

Until recently, data was gathered for well-defined objectives such as auditing, forensics, reporting and line-of-business operations; now, exploratory and predictive analysis is becoming ubiquitous, and the default increasingly is to capture and store any and all data, in anticipation of potential future strategic value. These differences in data heterogeneity, scale and usage are leading to a new generation of data management and analytic systems, where the emphasis is on supporting a wide range of very large datasets that are stored uniformly and analyzed seamlessly using whatever techniques are most appropriate, including traditional tools like SQL and BI and newer tools, e.g., for machine learning and stream analytics. These new systems are necessarily based on scale-out architectures for both storage and computation.

Hadoop has become a key building block in the new generation of scale-out systems. On the storage side, HDFS has provided a cost-effective and scalable substrate for storing large heterogeneous datasets. However, as key customer and systems touch points are instrumented to log data, and Internet of Things applications become common, data in the enterprise is growing at a staggering pace, and the need to leverage different storage tiers (ranging from tape to main memory) is posing new challenges, leading to caching technologies, such as Spark. On the analytics side, the emergence of resource managers such as YARN has opened the door for analytics tools to bypass the Map-Reduce layer and directly exploit shared system resources while computing close to data copies. This trend is especially significant for iterative computations such as graph analytics and machine learning, for which Map-Reduce is widely recognized to be a poor fit.

While Hadoop is widely recognized and used externally, Microsoft has long been at the forefront of Big Data analytics, with Cosmos and Scope supporting all internal customers. These internal services are a key part of our strategy going forward, and are enabling new state of the art external-facing services such as Azure Data Lake and more. I will examine these trends, and ground the talk by discussing the Microsoft Big Data stack.

BIO: Raghu Ramakrishnan is a Technical Fellow and CTO for Data at Microsoft. He also heads engineering for Big Data platforms and services. From 1987 to 2006, he was a professor at University of Wisconsin-Madison, where he wrote the widely-used text “Database Management Systems” and led a wide range of research projects in database systems (e.g., the CORAL deductive database, the DEVise data visualization tool, SQL extensions to handle sequence data) and data mining (scalable clustering, mining over data streams). In 1999, he founded QUIQ, a company that introduced a cloud-based question-answering service. He joined Yahoo! in 2006 as a Yahoo! Fellow, and over the next six years served as Chief Scientist for the Audience (portal), Cloud and Search divisions, driving content recommendation algorithms (CORE), cloud data stores (PNUTS), and semantic search (“Web of Things”). Ramakrishnan has received several awards, including the ACM SIGKDD Innovations Award, the SIGMOD 10-year Test-of-Time Award, the IIT Madras Distinguished Alumnus Award, and the Packard Fellowship in Science and Engineering. He is a Fellow of the ACM and IEEE. He has served as Chair of ACM SIGMOD and the Board of the VLDB Foundation, and is on the Board of ACM SIGKDD.