

OU Supercomputing Center for Education & Research

Disasters

May 3 1999 Oklahoma

http://abyss.ecs.umass.edu/tornado/may-3-99.html

http://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake

Congressional Anthrax 2001

http://en.wikipedia.org/wiki/2001_anthrax_attacks

OKC Wildfires Jan 2006

http://www.usatoday.com/weather/news/2006-01-01-grass-fires x.htm?POE=WEAISVA

The Problem and the Solution

- **The Problem**: Problems will happen.
- The problem is that <u>we don't know the problem</u>.
- The solution is to be able to <u>respond to unknown</u> <u>problems with unknown solutions</u>.
- Unknown problems that have unknown solutions may <u>require lots of resources</u>.
- But, we <u>don't want to buy</u> resources just for the unknown solutions to the unknown problems – <u>which might not even happen</u>.
- The Solution: Be able to use existing resources for emergencies.

Who Knew?

http://www.ncdc.noaa.gov/oa/climate/research/2005/katrina.html Cyberinfrastructure for Distributed Rapid Response to National Emergencies Neeman & Severini, OSCER/University of Oklahoma, Condor Week 2006

National Emergencies

Natural

- Severe storms (e.g., hurricanes, tornadoes, floods)
- Wildfires
- Tsunamis
- Earthquakes
- Plagues (e.g., bird flu)

Intentional

- Dirty bombs
- Bioweapons (e.g., anthrax in the mail)
- Poisoning the water supply
- (See Bruce Willis/Harrison Ford movies for more ideas.)

How to Handle a Disaster?

Prediction

Forecast phenomenon's behavior, path, etc.

Amelioration

- Genetic analysis of biological agent (find cure)
- Forecasting of contaminant spread (evacuate whom?)

OSCER's Project

NSF Small Grant for Exploratory Research (SGER)

- Configure machines for rapid switch to Condor
- Maintain resources in state of readiness
- Train operational personnel: maintain, react, analyze
- Fire <u>drills</u>
- Generate, conduct and analyze <u>scenarios</u> of possible incidents

@ OU: Available for Emergencies

- 512 node Xeon64 cluster (6.5 TFLOPs peak)
- 135 node Xeon32 cluster (1.08 TFLOPs peak)
- 32 node Itanium2 cluster (256 GFLOPs peak)
- Desktop Condor pool growing to 750 Pentium4 PCs (4.5 TFLOPs peak)

TOTAL: 12.4 TFLOPs

Dell Xeon64 Cluster

1,024 Pentium4 Xeon64 CPUs 2,180 GB RAM 14 TB disk (SAN+IBRIX)

Infiniband & Gigabit Ethernet

Red Hat Linux Enterprise

Peak speed: 6.5 TFLOPs

Usual scheduler: LSF

Emergency Scheduler:

Condor

topdawg.oscer.ou.ed

DEBUTED AT #54 WORLDWIDE, #9 AMONG US UNIVS, #4 EXCLUDING BIG 3 NSF CENTERS

#4 EXCLUDING BIG 3 NSF CENTERS
Cyberinfrastructure for Distributed Rapid Response to National Emergencies
Neeman & Severini, OSCER/University of Oklahoma, Condor Week 2006

Aspen Systems Xeon32 Cluster

270 Xeon32 CPUs

270 GB RAM

~10 TB disk

Myrinet2000

Red Hat Linux

Peak speed: 1.08 TFLOPs

Scheduler: **Condor**

Will be owned by High Energy Physics group

DEBUTED at #197 on the Top500 list in Nov 2002

www.top500.org

boomer.oscer.ou.edu

Aspen Systems Itanium2 Cluster

64 Itanium2 1.0 GHz CPUs
128 GB RAM
5.7 TB disk
Infiniband & Gigabit Ethernet
Red Hat Linux Enterprise 3

Peak speed: 256 GFLOPs

Usual scheduler: LSF

Emergency scheduler: **Condor**

schooner.oscer.ou.edu

Dell Desktop Condor Pool

OU IT is deploying a large Condor pool (750 desktop PCs) over the course of the 2006:

3 GHz Pentium4 (32 bit), 1 GB RAM, 100 Mbps network connection.

When deployed, it'll provide

4.5 TFLOPs (peak) of additional computing power – more than is currently available at most supercomputing centers.

Currently, the pool is 136 PCs in a few of the student labs.

National Lambda Rail @ OU

Oklahoma has just gotten onto NLR; the pieces are all in place but we're still configuring.

MPI Capability

- Many kinds of national emergencies weather forecasting, floods, contaminant distribution, etc. use fluid flow and related methods, which are tightly coupled and therefore require MPI.
- Condor provides the MPI universe.
- Most of the available resources 7.9 TFLOPs out of 12.8 are clusters, ranging from ¹/₄ TFLOP to 6.5 TFLOPs.
- So, <u>providing MPI capability is straightforward</u>.

Fire Drills

- Switchover from production to emergency Condor:
 - 1. Shut down all user jobs on the production scheduler.
 - 2. Shut down the production scheduler (if not Condor; e.g., LSF).
 - 3. Start Condor (if necessary).
- **Condor jobs** for national emergency **discover** these resources and start themselves.
- We've done this several times at OU.
 - Only during scheduled downtimes!
 - Switchover times range from 9 minutes down to 2.5 min.
 - Pretty much we have this down to a science.

Thanks for your attention!

Questions?

