WHAM: A High-throughput Sequence Alignment Method

Yinan Li

Allison Terrell

Jignesh M. Patel

. University of_Wisconsin—Madis.on
{yinan, aterrell, jignesh}@cs.wisc.edu

ABSTRACT

Over the last decade the cost of producing genomic sequéases
dropped dramatically due to the current so called “next-gen
guencing methods. However, these next-gen sequencingpdseth
are critically dependent on fast and sophisticated dategssing
methods for aligning a set of query sequences to a referammnge
using rich string matching models. The focus of this workrigtee
design, development and evaluation of a data processirigrnsys
for this crucial “short read alignment” problem. Our systealled
WHAM, employs novel hash-based indexing methods and bitwis
operations for sequence alignments. It allows richer matotiels
than existing methods and it is significantly faster thaneisting
state-of-the-art method. In addition, its relative spgeduer the
existing method is poised to increase in the future in whieddr
sequence lengths will increase.

The WHAM code is available at http://www.cs.wisc.edu/wham

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information search
and retrieval-search procesdd.2.4 [Database Managemerit Sys-
tems—textual databases

General Terms
Algorithms, performance

Keywords

Sequence alignment, approximate string matching, bedjgdism

1. INTRODUCTION

Last summer marked the #Gnniversary of the sequencing of
the first human genome [1, 21]. This key scientific discoveag h
been a turning point for modern life sciences and has draaibti
changed the way in which researchers approach nearly egery a
pect of biomedical sciences, ranging from decipheringdesi-
lular mechanisms to drug discovery and drug design for patso
ized medicine. A crucial part of this first human genome afbgm
was using advanced data processing methods to assemble-the e
tire genome from vast sets of data items, each of which deestri

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’11,Junel2-16, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

only a small portion (called a “read") of the genome. The huma
genome project delivered its first draft ahead of scheduimapily
because of the use of advanced data processing methods.

Existing sequencing technology has come a long way from the
technology of 10 years ago, both in terms of speed (with which
they can read parts of the genome) and the cost of readingofach
the 3 hillion “bases” that make up the whole human genome. As a
consequence, while the first human genome took a few billadn d
lars to assemble, today with the help of next-generationesezjng
machines an entire genome can be read for a few thousandsdolla

Interestingly, data processing techniques are an even onore
cial aspect of assembling genomes today. The pressinggmnobl
now with the next-generation of sequencing is the so calheckt*
generation gap” — namely, the data processing cost assdaciath
genomic analysis is now the dominating cost of producing@ges
sequence [15]. A key component of this data processing sablei
alignment of short sequence reads [15]. The focus of thigpap
is on the design and evaluation of a novel data processirtgrays
for speeding up this alignment task by an order of magnitutdt a
more, while accommodating flexible match models. Our system
is called WHAM — an acronym fowisconsin'sHigh-throughput
AlignmentM ethod. WHAM employs novel database-style index-
ing, optimization and query processing techniques.

Atits heart, the short sequence read alignment problermigssi
to the common substring matching problem in data processisg
tems. At a high-level, the next-gen sequencing works asvisii
First the (DNA) sample to be sequenced is broken (by treatitiy
restriction enzymes or using mechanical force) into a nunolfe
short pieces. These pieces are then cut into equal-leragimints
called “reads”. The bases/characters in each fragmeneatkhy
the sequencing machine. From the computational perspeittés
set of reads/fragments can be modeled as a set of stringefsses.
The subsequent data processing task involves aligningreadrse-
guence against some scaffolding/reference genome sexjuenc

For example, when assembling the genome for a specific indi-
vidual to look for variations that cause specific diseadesyéfer-
ence genome is often the publicly available human genomes,Th
from the string matching perspective, one can view the caatimun
task as matching a set of equal-length short strings (readshst a
large reference string (the entire genome), using somegstratch-
ing model, as described below.

When a read is compared to the reference genome, it is either
deemed as a valid or an invalid alignment. The validity of kgna
ment is measured in terms of mismatches and gaps. A mismatch
occurs when a base on the reference genome and a base ordthe rea
are aligned, but aren’t the same base. A gap occurs when a base
is aligned with an empty space. Either or both of these algmm
may be the “right answer” when aligning a read if it is advanta

geous to do so, such as when it allows many other base pairs in Reference
the set of reads to be aligned with the reference genome segue Sequence Reads
Often, aligners use two mismatches and no gaps as the defioiti

a valid alignment, but these models are likely to get morénisbip WHAM
cated in the future [15].

Previous methods for sequencing reads include Mag [12],’SOA Prober
[13], and Bowtie [6]. These techniques employ a compact in- Index Optimizer @
dex that works well for aligning so called “short reads”, redyn ’ N —

. . ndexer ‘ ’ Pairwise Aligner

reads that are typically around 30-50 characters long. iticoa ‘
lar, Bowtie — the leading state-of-the-art method — hasgedwon]
utilizing the properties of Burrows-Wheeler Transform&\(B) [7] S N E——
to index the reference sequence. A BWT-based index has & smal
memory footprint, making Bowtie feasible on computers vuitily ndex] |Index
2GB of memory. However, memory is quickly becoming cheaper
(while the genome size is constant), making it unnecessaplate Figure 1: Architecture of WHAM
such tight memory restrictions on the alignment softwaread-

dition, BWT-based methods use a prefix matching technigae th 0 unknown character, namét The unknown character symbol,

Output
=

requires only a few iterations to produce a valid alignméthile N, indicates that there is either uncertainty about whicHeutile
this technique works well with short reads, its performadee belongs there, or that there is a repetitive region in theogen
grades rapidly as the read length increases. Unfortupately and all nucleotldgs in that.reglon are turneq |hB)(S|nce for the
pending technological advances with the next-generatouenc- genome sequencing task, it does not make biological semsat
ing machines are expected to push up the read lengths toqerodu €ads to these known repetitive “junk” regions).

what are called “long reads”, and loosely refer to read gtrithat WHAM takes as input a set of query sequences of equal length,
are many factors longer than the “short reads”. This trerpliés a database of reference sequence(s), and an error moderiohe
that the existing BWT-based aligners will likely become gorta- model specifiealignment const.ralntsn three types of errors that
tionally infeasible in the near future. In addition, sequealigners ~ are commonly used for read alignment. These three typesater
of the future will also need to accomodate more errors in them are: substitutions which change characters in a sequenoser-
models (for long reads) [9, 15], and the performance of st tions and_deletlon_s_whlch add or remove ch_aracters respectlyely.
methods rapidly deteoriates when using these richer matctets. WHAM finds all (it is not a heuristic) valid alignments that satisfy

Our WHAM method addresses the short-comings of the existing the constraint on the number of errors in the setlof queryeRIps.
methods. It uses a novel hash-based index built on the refere A Valid alignment is formally defined as follows:

genome that accommodates complex string matching mod#is th periniTion 1. Given an error model specifyingsubstitutions,

are natural for read alignments. This hash index is optichipe i insertions, andl deletions, avalid alignmentor a given query se-
space and speed, and to work efficiently with long reads. Bséh gyence(is all the subsequences in the reference sequéntteat
index quickly finds potential hits for each read. This lispoen- can pe aligned by applying up tosubstitutions; insertions, and
tial hits may contain some false positives that have to belat d deletions betwee@ and each matched subsequenceRin
using a precise test. This test for an actual hit is essgnéialom-))
plex string matching function, which is computationallypexsive. The following example demonstrates alignments between two
Another novel aspect of WHAM is the use of bitwise operations duery sequences and a reference sequence. Suppose we allow 1
to perform this string matching test efficiently. Finally, &M substitution, 1 insertion, and 1 deletion. The first queryussce
uses a novel architecture that incorporates an optimipeoygti- can be aligned with 1 substitution (shown as the underlireotac-
mize the indices that are built) and a compressor to rediwesitie ter) and 1 insertion (shown as a dash in the query sequenh@g, w
of the input data, providing a complete data processing ama-m the second query sequence can be aligned with 1 substiatiba
agement module that fits into existing computational pipesdifor deletion (shown as a dash in the reference sequence). Both al
high-throughput genomic sequencing. ments satisfy the alignment constraint.

We have compared WHAM using a number of real datasets against Reference Sequence ATGGCCACAGAAGT T- GCGA
the leading and commonly used read alignment method — Bowtie Query Sequence 1 GACCACA- AAGTT
Our results show that WHAM is often orders of magnitude faste Query Sequence 2 ACAGTAGTTAGC

than Bowtie, and allows for richer match models. The regativ
speedup of WHAM over Bowtie increases as the read length as
well as the number of errors increases, which bodes welh®fu-

ture in which we expect to see longer reads that need to benathtc

with more relaxed/richer match models. 2.2 System Architecture

m;ﬂiéﬁrsnzggﬂgéhiﬁ Féaer(’:?irolrsl grg;rgzﬁﬁsazgﬂog]sélgengvziM Flgure 1 shows the arc_hnecture of the WHAM system. WHAM
pirical evaluation are presented iﬁ Section 3. Section dudises pr.owdes an |nterface to ingest a set of reads as they con.t.ee)ff
related work, and Section 5 contains our conéluding remarks alignment machine and manages the computation associated w
' ’ matching the reads to a specified reference genome. WHAM typ-
ically sits as a module in a larger computational pipelinehe T

The error model is sometimes aggregated to a gerkeaor
model which implies that the total number of substitutiansger-
tions and deletions is no more thérin the alignment.

2. METHOD WHAM system builds various indices (as described below) and
also keeps track of various data management needs suchras sto
2.1 Problem Statement ing the indices on disk, tracking the usage, reporting tootrezall

A sequence is a series of characters. For genomes, eachtelnara workflow management system, etc. In this paper, we only focus
is either a nucleic acid represented by the symBols, C, or T, or the components related to the sequence matching parts.

Theindexeris responsible for building indices on the reference
genome. At any given time, WHAM may have stored indices for
multiple genomes (e.g. human, mouse, rat, etc.). Theseasdi
persist on disk, and are built only once when the referennerge
sequence is loaded into WHAM. When the WHAM module is in-
voked, a single reference genome is specified (e.g. humarthan
entire index for that reference genome is loaded into maimang
Note that in current next-gen sequence assembly, whenzngly
multiple read sets, often the reference genome remainsathe,s
so this index can stay loaded in main memory across multipis.r

While the indices persist on disk, the indices are optimited
access in main memory. Since main memory capacities are in-
creasing quickly and since WHAM builds indices on the refieese
genome (which is of a constant length), this design choiceréges
the technological trend that makes it practical and ecooahto fit
the entire genome index in main memory. The WHAM indexing
method is described in Section 2.3.

The indexer relies on an indexing configuration setting $pat-
ifies the parameters that affect the index performance. ihbisx
configuration is generated by threlex optimizeby comparing var-
ious indexing schemes whose costs are computed bgualkia-
tor based on an analytical model (described in Section 2.7). The

index, each hash bucket in the index contains on averagerou
170 entries. When a probe is performed on the hash index, each of
these entries needs to be scanned and verified one by ondy whic
degrades the search performance significantly.

To address this problem, we extend the basic indexing sckeme
a more general one based on Lemma 1 by relaxing the limit on the
number of fragments.

LEMMA 1. If two sequencesk and Q, match withink errors
and f(f > k) non-overlapping fragments are taken frd then
the matching sequence@ contains at leasf — k fragments which
match exactly with fragments iR.

We omit a detailed proof of Lemma 1 (in the interest of space),
but it is easy to see that if more thanfragments contain errors,
then the complete match must have more thamrors.

Based on Lemma 1, indices are built n- £ fragments of all
[-character subsequencesRfrather than on one fragment, where
[is the length of the query sequences. In particular, each sub
sequence in the reference genome is split iftaon-overlapping
fragments of length & |, from which we selecif — k fragments.

A selected (unselected) fragment is calledratexed (unindexed)
fragment An unindexed segment between two indexed fragments

prober takes as input a set of query sequences (reads), and usess called arinterval. For each selection, we concatenate the k

the same indexing configuration to break up each query segquen
and probes the indices (on the reference genome) to findtgdign
matching reference subsequences. fdiewise aligneris then per-
formed to verify that the reference subsequence actuatipsto
the query sequence under the alignment constraint (Seztion
WHAM also employs aompressotto remove all unnecessary
characters in the reference sequence before building ax.ind

2.3 Indexing Method

The WHAM indexing method is motivated by the observation
that the inexact alignment between two sequences can beddow
the exact alignments on the fragments of sequences [19].

2.3.1 Indexing Schemes

We first introduce a basic indexing scheme based on the follow
ing observation: If two sequenceR,and, match withink errors
andk + 1 non-overlapping fragments are taken frdtn then the
matching sequend@ contains at least one fragment that will match
exactly with one fragment ik. This property is evident, sinde
errors cannot be placed into thet 1 non-overlapping fragments.

Using this observation, given the lendtbf the query sequences,
all I-character subsequences in the reference sequerce split
into k& 4+ 1 uniform-sized fragments of Iengt{hki—lj. A hash in-
dex is built on all the fragments. To align a query sequenae, w
break down the query sequen@einto fragments in an analogous
way, and search against the fragments on the hash index tthénd
potential matching subsequencesiin

A problem with this indexing scheme is that the index keyadfr
ments) may be short and may have relatively low diversitsulite
ing in long chains in the hash index, which in turn degrades pe
formance. For example, suppose a 38lpsery sequence is to be
aligned within 2 errors. Three fragments are taken from the s

selected fragments into@ncatenation All concatenations are of
the same lengtlif — &) - L%J, and are inserted into hash indices.
To search using these indices, we break the query seqdgrnne
fragments in an analogous way (see Section 2.3.3 below for de
tails). Note that the extended indexing scheme is ident@ahe
simple indexing scheme, wheh= k + 1.

Taking the 36bps example again, if four fragments are tatan f
the sequence, the concatenations contain two fragmerdsaran
18bps long. There aw'® = 68,719, 476, 736 possible values for
18bps concatenations, many more than the characters inhible w
human genome sequence. Consequently, the hash collisionis
dramatically mitigated.

2.3.2 Building Indices

The indexercomponent in WHAM is responsible for building
indices on all concatenations of fragments for all subsecg® of
lengthl in the reference genom®. The goal of the indexer is a) to
separate the concatenations into several hash indiceduoa¢he
collisions in the bucket for each hash index, and b) to renaive
duplicated concatenations to reduce the space cost.

We observe that the concatenations can be categorizedfieto a
groups based on the intervals between the indexed fragniEmes
concatenations in a group are matched with others by slitfiag
concatenations. As an example, Figure 2 illustrates thegosiza-
tion on six concatenations of choosing two indexed fragsyéotn
four fragments. The indexed fragments are representeddty re
angles, whereas the unindexed fragments are representec gy
Among these concatenations, concatenation 1, 3, and 6Gictwta
contiguous indexed fragments, and are categorized intgpgrdn
concatenation 2 and 5, there is an unindexed fragment betiiee
two indexed fragments. These concatenations belong tgpditou
Concatenation 4 contains a two fragment gap between therntwo i

guence, each of length 12bps. Now, for the moment assume thatdexed fragments, and is categorized into group Ill.

each character has only four possible values, G C, andT —

(so ignoreNs for this example), then the 12bps fragment has a
maximum of4'? = 16,777,216 possible values. However, the
reference human genome sequence contains around 3 biiasn ¢
acters. When loading these 3 billion 12bps fragments intasinh

1The term “bps” is commonly used in genomics and refers to base
pairs. The bps is essentially the sequence length.

To achieve the first goal (i.e. to separate concatenatidasav-
eral hash indices), the indexer separately loads the camatdns
of all subsequences iR into various hash indices on the basis of
groups. The number of hash indices (groups) that is reqdialed
lows from Lemma 2.

LEMMA 2. If f-fragment query sequences are aligned within
errors, thenCIf’1 indices are required for the alignments.

Concatenations

nmnmc————3

Figure 2: Categorization of six concatenations [= 4, k = 2)

PROOF The number of indices is equal to the number of groups.
One way to count the number of groups is to count the number of
ways to seleck unindexed fragments frorfi fragments so that the
first fragment is an indexed fragment, because other sefectn
the group can be matched to this kind of selection by slidiegse-
guence. The number of these selections corresponds to rhigenu
of ways to seleck unindexed fragments frorfi— 1 fragments (the
first fragment is fixed to be an indexed fragment). This is gibeg
the formulaCy ~'. O

To achieve the second goal (i.e. to reduce the indexing ¥pace
only one representative concatenation in each group ietbado
the hash index, for each subsequenc&.irDther concatenations in
the group will be loaded (as a representative concatenatiben
sliding the subsequence, because a concatenation isdaletui
other concatenations in the same group when sliding theesubs
guence by one or a few fragments.

To build the indices, we slidelacharacter window along the ref-
erence sequende (an analysis of various sliding window schemes
may be found in [8]). TheC]{’1 concatenations associated with
the C]f’l groups are extracted from the subsequence in the win-
dow and separately loaded irttiif*1 hash indices. The number of
entries in each hash table roughly equals the number of cieasa
in the reference sequence.

ExampLE 2.1. Figure 3 illustrates the process of building in-
dices on a sample sequence for alignments with two errorp- Su
pose that the query sequences contain 12 characters ancbhire s
into 4 fragments, each of length 3 characters. Thus, theexare
built on concatenations of length 6. For each subsequenctken
reference sequence, we generate three concatenationsahsist
of two indexed fragments with zero, one, and two unindexa fr
ments in the interval, respectively. The three concatenatiare
then inserted into the three indices as the index keys.

The space complexity of each hash inde®is:), wheren is the
number of characters in the reference sequddc&he number of
hash indices that are built for a reference sequence istelictay
Lemma 2.

2.3.3 Searching Indices

The prober (see Figure 1) is responsible for searching the query
sequences (reads) against the indices. First, we deshels=arch
procedure of the prober for alignments with only substitosi, and
then (in the next paragraph) extend it to support indele (s or
deletions). To align a query sequer@eit is split and concatenated
in an analogous way as the subsequencd?.iAll C,{ concatena-
tions are assembled with— k fragments in various combinations.
Next, we search each concatenation on its associated sdiben,
the positions of the matched concatenationskirare retrieved.
With these positions, we extrattharacter subsequences frdin
as “candidate” occurrences, which are then checked usagti-
nique described in Section 2.5.

Next, we extend our technique to support indels. First,tal t
C’}: concatenations used for alignments with only substitstiare
generated. Then, for each concatenation, we extend it to af se

O~ NMIOONODOT—NOT

Offset

Reference GGCCACAGAAGTTGC Concatenation Offset IndexID
sequence

 —— GGCCAC 0 I
FZZA—F777) GGCAGA 0 i
—H—{ - GGCAGT 0 il
 — — GCCACA 1 1
ZZA—774: s GCCGAA 1 11
—C——7 GCCGTT 1 1
 — — CCACAG 2 I
EZZA—774 CCAAAG 2 1l
——17 CCATTG 2 11
CT—J-s. CACAGA 3 1
FZz3—+777 -~ CACAGT 3 11
———1 1 CACTGC 3 11

Figure 3: Building three hash indices (f = 4, k = 2)

new concatenations that are used to align the query sequétice
indels. The basic idea is to slide some indexed fragmentsfew a
characters. More specifically, if the error model specifi@sser-
tions andd deletions, we place up toinsertions and up td dele-
tions in all intervals in the query sequence. The concaiemagre
then assembled with indexed fragments whose offsets aaéctec
lated based on the number of indels in the intervals. Thegzrabe
performed on all possible placements of indels in all irdésv
The numbers of probes is formally given by Lemma 3.

LEMmA 3. If f-fragment query sequences are aligned within
errors including: insertions andd deletions, then the number of
probes for each query sequence is given by:

k

Nprobe = Z(Cﬁii

h=0

k—1

+205 7+ e e et

In particular, when: = d = 0, the number of probes @If.

PROOF We have two main tasks to accomplish. The first task
is to count how many ways can one selkainindexed fragments
from f fragments to composk intervals (the unindexed segments
between indexed segments). LEtf, k, k) be the number of se-
lections. The second task is to count the number of probescm e
selection withi intervals, denoted &S(h, i, d). Thus, we sum the
products ofF'(f, k, h) andG (h, i, d) to compute the total number
of probes, obtaining

k
Nprove = Y F(f,k,h) - G(h,i,d).
h=0
First, we count the number of selections withintervals. A
selection can be viewed as interleaved segments betwesnmaht
and indexed segments. Given a selection Withtervals, there are
four possible arrangements lintervals,h + 1 indexed segments,
and (0, 1 or 2) unindexed segments at the ends, as shown in the
following figure:

@)

Partitions
Case 1: —b— . —F—1—
Case2: —— }V—— - F+———1]
Case 3: —FVb— —— 1+
Case4: —(— +— - F+H—1T"1+—

In case 1, these kind of selections havéntervals andh + 1
indexed segments. The number of selections is equal to theeu
of ways to partitionk unindexed fragments inth intervals, and
partition f — k indexed fragments inth+ 1 indexed segments. The
formula for the number of partitioning elements inta non-empty
sets is given by>"~'. Thus, there ar€’F~! andC;{ "' ways to
partition unindexed fragments and indexed fragments eicisgly.
By the multiplication principle, there a€’~1C;} ~*~" partitions

in this case. Similarly, in case 2 and case 3, we need toipartit Concatenations Offsets 180 Buckets Overflow array

unindexed fragments info+ 1 sets { intervals and one unindexed GGCAGT 0 Val3ues o 2
segment at one end), and partitipa k indexed fragment intb+ 1 GCCGTT 1 1 = T [T 3]
indexed segments. There at&~'C/ " partitions in case 2 or CCATTG 2 0 o[0

CACTGC 3 1 o[X

case 3. In case 4, we need to partitioanindexed fragments into

h + 2 sets intervals and two unindexed segments at the both
ends). The number of partitions is given B 1C/ "', By
applying the addition principle to cases 1-4, we have

Figure 4: Hash table of index Ill shown in Example 2.1

ExampLE 2.3. Figure 4 illustrates the hash table for Index IlI
F(f.k,h) = (Ch i +20s P+ ool shown in Example 2.1 (Figure 3). The offsets of the four cnca
nations in the reference sequence are numbered from O totBeln
bucket slots 0 and 3, only one concatenation is hashed ietelt.
As a result, the concatenation positions are directly stdrethe
slots withcol | i si on bit = 0. Inthe bucket slot 1, we main-
tain a pointer to the starting position of the slot’s overfltist in
the overflow array, wittcol i sion bit = 1. Slots 2 and 4
are empty.

Next, we count the number of probes on a selection with-
tervals. Consider the following correspondence. We putaup t
insertions and up td deletions intoh intervals. The number of
placements is equal to the number of probes, because we meed t
perform one lookup for each placement. One way to solve thie-pr
lem is to add a “virtual” interval where all the unselectedets
are placed. Thus the task is to decide how to partitiotsertions
into h + 1 intervals, and partitio@ deletions intoh + 1 intervals.
Given the formulaC?**~! on the number of ways to partition
elements intos sets, there ar€ ™" andC4™" ways to partition
insertions and/ deletions, respectively. By applying the multipli-
cation principle, we have’; ™" C4*" different kinds of partitions
on the combinations of insertions and deletions, obtaining

Both space and time cost are taken into consideration inghe d
sign of the hash index. The design of the overflow array makes
effective use of CPU caching, since the overflow entries tred
in sequential memory positions. In addition, to save spheeale-
sign doesn't use next pointers that are required by linkstd.liThe
collision bits save both time and space spent on the overfkiw |

G(h,i,d) = CHhodth, A3) when a bucket slot contains only one concatenation. Morgtive
hash table only stores the positions of concatenationsdrreft

Finally, we complete the derivation by substituting Eqoat erence sequenck, rather than the actual concatenations, to save
and 3 into Equation 1. [space, because the size of concatenations is typically airfess

) larger than that of the positions.
EXAMPLE 2.2. We align a query sequend8A\CCACAAAGTT

with one substitution and one insertion to the sample sezmen 2.5 Pairwise Alignments
shown in Figure 3. The query sequence is split into 4 fragent \wHAM relies on thepairwise aligner(see Figure 1) to exam-
as GAC| CAC| AAA| GTT. Then, we concatenate two of the four jne if the query sequena@ can be aligned to a potential matched
fragments into concatenations: (GAC| CAC, (2) GAC| AAA, (3) subsequence in the reference sequeRaeithin s substitutions;
CAC| AAA, (4) GAC| GTT, (5) CAC| GTT, (6) AAA| GTT. In addi- insertions, and deletions. Conventional pairwise alignment tech-
tion, we generate concatenations that are used to find alegns pjgues are based on the Needleman-Wunsch dynamic programmi
with one insertion. Since the concatenations 2, 4, and 5 Bave method and také)(1?) time to compute the optimal alignment [16].
interval between the two indexed fragments, we move theowind Thjs alignment step can quickly become the bottleneck. WHAM
of the second indexed fragment one character left to ap@lyrth ses an alternative technique that stores the sequencesoim-a
sertion, and then get three more concatenationsGRJ| CAA, (8) pact binary representation and leverages the ability ofemogro-
GAC| AGT, and (9)CAC| AGT. Following the relationship between cessors to compute bitwise operations fast. These two Espee
the concatenations and groups as shown in Figure 2, we probe ¢ described next.
catenation 1, 3, and 6 on index I, concatenation 2, 5, 7, and 9 0 \wHAM uses three bits to represent each base/symbol. The sym-
index II, 4 and 8 on index Ill. The concatenation (@AC| AGT bolsA, C, G T, andN are encoded as 000, 001, 010, 011, and 100
in index Il is found and the subsequenceRrwith 13 characters respectively. For example, the sequel@ACT is encoded as the
GGCCACAGAAGTT is returned. binary string= (010000001011)5.
A sequence in WHAM is packed into a binary representation
2.4 Hash Index Structure that can be fit into one or a few computer words. The proposed
WHAM uses tailored compact hash tables to index all concate- bitwise-based techniques (described below) manipulagejaesce
nations generated by tliedexer(see Figure 1). Hash indices are as a whole, rather than manipulating the characters one dyAm

designed as static cache-efficient structures. The hadtetsuare aresult, the alignment cost is not related to the length gfiseces
32-bit integer arrays. For each slot in a bucket, the mosifsignt if they can fit into a word, but scales with the number of errors

bit (MSB) is used as a collision bit. If only one concatenatis For ease of presentation, below we first introduce the alagrtm
hashed into a slot, then the collision bit of the slot is séd.tdhe algorithms using a binary domain (each bit in a binary stiing
remaining 31 bits represent the positions of the concateratn viewed as a base — so first consider a domain with only two sym-
the reference sequend®’. Otherwise, if several concatenations bols), and then extend our technique for the general cabdanifer

are hashed into the same slot, then the collision bit is skt Tthe number of symbols in the domain (approximately 5 in our case)
remaining 31 bits point to an array that contains the pasitief all In Section 2.5.1, we first introduce three basic bitwise mani
concatenations hashed into that slot. The MSB of the lasyémt |ations, that leverage the ability of modern processorsotapute

the overflow listis set to 1 to indicate the end of the slogs. li bitwise operations fast. Based on these manipulationgjitivise-

2The offsets in the compressed reference sequence can lee repr baseq allgnmgnt techmques to handle SL.JbSt'tUt.'()ns’therand
sented by 31-bit integers in most cases. See Section 2.@faitsi deletions on binary string are presented in Section 2.55232and

We also support 32-bit offsets by storing the MSBs of buckeis 2.5.4, respectively. Then, in Section 2.5.5 we describertbthod
overflow entries in separate bit vectors. for combining all three kinds of errors. In Section 2.5.& theth-

ods are extended to the general case when the domains hage mor

than two symbols.

2.5.1 Basic Bitwise Manipulations

Given the basic bitwise operations, e.g. AND)(OR (), XOR
(@), and SHIFT &, >>), some of the combinations of these basic
operations produce important bitwise manipulation teghes that
we use in this paper. In particular, we have three bitwiseipudar-
tions that provide a fast way to find and manipulate the rigistm.
bit [10]. The notation®R, S, andRS are used to denote the three
manipulations, respectively.

z&(x — 1) : remove the rightmost 1 im. [R]
x| —x : smear the rightmost 1 to the leftin [S]
x @ —x : remove and smear the rightmost lzin [RS]

EXAMPLE 2.4. The example demonstrates how the three bit-
wise operations apply on a binary sequence

2 = (100011110101110010000),
2&(z — 1) = (100011110101110000000)2 [R]
2| — 2z = (111111111111111110000), [S]

()

r@® —x = (111111111111111100000)- [RS]

2.5.2 Alignments with Substitutions

A bitwise alignment with substitutions is used to check \kleet
two binary sequences can be aligned with up sobstitutions. The
idea is that we first apply a bitwise XOR operation to identfg
mismatched bits in the two given binary sequences, and temntc
the number of 1s in the resulting binary sequence, usingitivisk
techniqueR. (described above). After performing= x @ y, we
continue removing the rightmost 1 affor s iterations. If the re-
sulting binary sequence only contains 0-bits, the originadntains
up tos ones. This implementation executebitwise AND opera-
tions ands subtraction instructions. The complexity of this step is
O(s), because steps are taken to remogepossible substitutions
before checking equality of the two strings.

EXAMPLE 2.5. An example of an alignment with at most 2 sub-
stitutions between andy is shown below.

2 = (100011110101110010110)2
y = (101011110100110010110),
u =2 @&y = (001000000001000000000)2
u = u&(u — 1) = (001000000000000000000)2 [R]
u = u&(u — 1) = (000000000000000000000)2 [R]
(u=0)=true

2.5.3 Alignments with Insertions
A bitwise alignment with insertions is used to determine whether
a binary sequencg can be matched te by adding at most gaps.
This algorithm is based on the following greedy algorithne tweat

the rightmost mismatches as insertions, and then examine whether

the remaining prefix of is the same as that gf

Table 1 demonstrates the first steps of the bitwise alignmlent
gorithm with up toi insertions. First, a bitwise XOR operation is
applied between right-alignedandy, e.g.uo = = @ y. Suppose
that the rightmost 1 im is at positionzo, then the binary sequence
uo can be represented By~ ~110%0),3, wherex is an arbitrary

3We use exponentiation to denote bit repetition, g4!0%), =
(111100)z.

Table 1: Identifying the first two insertion positions (x is an
arbitrary binary value)

(2nd insert) (st insert)
Index ai ao ...0
+1 -1 +1 -1
u =Py * ok ok *10 0
u=@x<Kl)dy x10 0 * Cok
mo = uo & —uo 111 100 ...0
ur = u1 &mo *10 000 0

value in{0, 1}. Since thexo-th bits inz andy are mismatchedso
can be treated as an insertion positiong iandy can be aligned
with only insertions.

In the next step, we need to find the second insertion position
Since the subsequencex0bn the left of the first insertion position
must be shifted one character left to be aligned wittve compute
up = (x < 1) @ y. Inuy, all bits between the first and second
insertion position are 0s, whereas the bits at other positive ar-
bitrary binary values. If the second insertion is at positi@, then
w1 can be represented Ky~ 1711071~ 0~ x0T), Next, we
generate a masko = uo & —uo by removing and smearing the
rightmost 1 to the left ofuo (apply RS), which is of the form of
(1m0 ~1tgeot1), The maskny is applied onu; to clear all bits
to the right of the first insertion position. Them; can be repre-
sented by "~ %17110%1),. Thus, the position of the rightmost 1 in
us is the second insertion position. Continuing this#derations,
we will find all the insertion positions.

Finally, we get a bit-difference sequenecgbetween the two se-
guences for all bits on the left of alinsertion positions. If and only
if all bits in u; are Os, then: can be aligned tg with ¢ insertions.

The algorithm can also examine alignments with less thian
sertions. To verify this claim, suppose thatan be aligned tg
with 7/ (i’ < i) insertions. After executing the firstiterations, we
getu;; = (...000)2. In the next iteration, we have

Mir = Uy O —U;r = (.. 000)2
Ui = (2 << k) Dy =(...%xx)2
Uit 41 = ui/+1&mi/ = (.. 000)2

Continuing this computation, b4’ iterations, we have; ,, =
Uy = -+ = u; = (...000)2. According tou; = (...000)2,
the algorithm identifies an alignment with at mostsertions.

The pseudocode for this technique is shown in Algorithm Je Th
complexity of this algorithm i£)(4), because we takiesteps to re-
move the effects of all possible insertions before checkipgality
of the two strings.

EXAMPLE 2.6. This example demonstrates how we can use 12
bitwise operations to align two binary stringsandy with at most
two insertions.

= (100011110101110010110),

y = (10001111011011100010110),

uy =z &y = (10101100101110010000000),

u = (z < 1) @ y = (11001000110000000111010),
mo = uo ® —uo = (11111111111111100000000)2 [RS]

wr = u1&mo = (11001000110000000000000)2

us = (z < 2) @ y = (00000000001100101001110),
mi = ® —u = (11111111100000000000000)2 [RS]

()

00000000000000000000000)2
(ug =0) =true

U = UQ&ml =

Algorithm 1 Sequence alignment withinnsertions

ug — Dy,

cfor k — 1...2.do
Mp—1 — Up—1 D —Uk—1;
up — (< k) @y
Up — up&myg_1;

return wu; = 0;

/I remove and smear the rightmost 1

ogrwnE

2.5.4 Alignments with Deletions

The algorithm for a bitwise alignment withdeletions is similar
to that of alignments withil insertions, except for two differences.
First, we replace all left shifts by right shifts. Given theoperty
r < (—k) = = > k, we usex < —Fk to represent shifting:
right by & bits. Second, the mask_; is generated by the bitwise
techniqueS instead of the bitwise techniqgugS. We smear the
rightmost 1 to the left, but do not remove the rightmost 1 beea
this position is not skipped by an insertion.

2.5.5 Alignments with all the Three Types of Errors

The final algorithm to align withins substitutions; insertions
andd deletions simply enumerates all possible orders of these th
types of errors, and then verifies each permutation. Algori2
shows the pseudocode. In the outer loop, all permutatiotts avi
substitutions; insertions and deletions are enumerated. We use -
1, 0, +1 to denote a deletion, a substitution, and an insentéspec-
tively. A permutation represents the order of the error $yfiat
occurred in an alignment. For examptgpz0100 = —1,0,+1,0
implies an alignment with four errors, which are a subdtitutan
insertion, another substitution, and a deletion, in righteft order.

For each permutationsy;+4—10s+it+d—2 - - - 0100, WE €xamine
whether the two given sequences can be aligned with theredmist
on the number and the order of error types. In the beginning,
the current binary sequenaeis initialized as the bit-difference
sequence between the right-alignedandy (Line 4). In the in-
ner loop, we clear all the errors in the permutation from trigh
left. In iterationk, we manipulate the sequeneeaccording to
the error type indicated by,. If the error is supposed to be a
substitution, then we remove the rightmost LuifLine 6). Thus,
the substitution is cleared so that we can continue identifthe
next error by finding the next rightmost 1. Otherwise, we first
generate a maske by removing and smearing the rightmost 1 in
u if the error is an insertion (Line 9), or by smearing the right
most 1 inw if the error is a deletion (Line 11). Next, we update
u — (x <€ (00 + 01 + ... + 0r)) ® y, and use the masi on
u to clear the rightmost bits that have arbitrary values (L13§.
As a result, the rightmost 1 in the updatedmplies the next error
position. Continuing this fos + ¢ + d iterations, if the resulting
sequence: contains only 0s, we produce a successful alignment.

The algorithm also examines alignments with fewer than ¢ime ¢
strained number of errors. Suppose thatan be aligned tq
with s'(s" < s) substitutionsj’ (i’ < 1) insertions, andl’ (d’' <
d) deletions. Then, there exists a permutati®rsuch thatP =
Os+i+d05+i+d71...05/+i/+d/+205/+i/+d/+1pl, whereP’ is a per-
mutation ofs’ substitutions;’ insertions, and’ deletions that can
produce an alignment betwegrandy. After (s’+i’'+d’) iterations
of permutationP’, we getu = (...000)2. Regardless of whether
the next error is a substitution (= u&(u — 1) = (...000)z),
an insertion ¢ = (... * *x)2&(u& — u) = (...000)2), or a
deletion ¢¢ = (... * *x)2&(u ® —u) = (...000)2), we get
u = (...000)2 in the end of the next iteration. Continuing this
step fors +i+d — s’ —i’ — d' iterations, we have = (... 000)2,
and return true for this alignment.

Algorithm 2 Sequence alignment withis substitutions,i inser-
tions, and{ deletions

1: for each permutationg 4 ;+4—1,0s4i+d—2,- - -, 01,00 With s substi-
tutions (0),z insertions (+1) and deletions (-1do

2: m=(111111...)9;

3 u=zdy;

4: fork«—0...s+i+d—1do

5: if o, = 0then

6: u «— u&(u — 1); [/ remove the rightmost 1

7. else

8: if o, = +1then

9: m «— u@® —u; [/ remove and smear the rightmost 1
10: else

11: m < u| —w; /] smear the rightmost 1 to the left
12: u— (x < (00 + 014 ... + 0k)) Dy

13: u — u&m

14: if u = 0then

15: return true;

16: return false;

(s+i4d)!

The time complexity of this algorithm i9 (- (s +i+d)),
where "D is the number of permutations, asd- i + d is the
number of steps for processing each permutation. Recalthiba
complexity of the Needleman-Wunsch algorithma$l?), where
1 is the length of sequences. Given the fact that sequenaeealig
typically chooses 2 or 3 erroré & s + i + d) for a sequence with
50~100 charactersl (= 50 ~ 100), our method is much faster
than the Needleman-Wunsch algorithm.

EXAMPLE 2.7. This example shows the steps for an alignment
with at most one substitution and one deletion between segse
2 andy. This alignment requires a total of 16 bitwise instructions
2 = (100011110101010010110)2
y = (10101111010110010110)
up =z @y = (110110001111100000000)2
u = (z < —1)®y = (00100000000011011101)
Case—1,0:

v1 = uo&(uo — 1) = (110110001111000000000)2 [R]
my = v1| — v = (111111111111000000000)2 [S]
wo = u1&my = (001000000000000000000)2
Case0, —1:
my = uo| — up = (111111111111100000000)2 [S]
v1 = u1&my = (001000000000000000000)2
w1 = v1&(v1 — 1) = (000000000000000000000)> [R]

(wo = 0)|(w1 = 0) =true

2.5.6 Alignments on the Genome Domain

We extend our bitwise techniques presented above to support
alignments on sequences with more than two base types irothe d
main. Suppose that each character in the domain can beeefeds
by D bits (in our caseD = 3 to to encode the symbok, C, G,

T, andN). As we mentioned before, the techniques described in
previous sections cannot be directly applied on the encbawdy
strings of genome sequences. For example, given two seegienc
GACT = (010000001011)2 andGAGT = (010000010011)-, there

are two different bits between the two sequences, because:
(010000001011)2(010000010011)2 = (000000011000)2. With
this test, it seems that the sequences match with two errms:-
ever, the sequences can actually be aligned with one ckaexcor
(C—0G).

All our bitwise alignment algorithms discussed in the poexa
sections (see Sections 2.5.2-2.5.5) begin with one or a fisviske
XOR operations (in the form af = (z > i) @ y) to identity the
different bits between the two sequences. To support akgtson
the domain, we add one additional step

v=(v> D —1]...Jv > 1|v)&u, wherey = (...0° 1107 1),

immediately after each of these operations to compute actear
difference sequence based on the bit-difference sequént@R
operation is performed on the bits representing the same charac-
ter, to reflect that if any pair of bits is different, then tHeacacters
are different. We then mask it by to generate a binary sequence
in the form: (...0° 10,0 =101, 0P ~1wy)2, wherew; indicates the
inequality between théth characters in the two sequences. For
example, if we apply this formula on the bit-difference sege
(000000011000)2 in the example shown abové®(= 3), the re-
sulting sequence i©00000001000)z .

EXAMPLE 2.8. This example demonstrates an alignment with
at most one substitution and one deletion betweend y. The
procedure is similar to that of example 2.7, except for theadded
lines (shown as underlined).

x = GCTCGAC
y = GATCAC
z = (010001011001010000001)2
y=(010000011001000001)s
wo =z &y = (010011011010011000000)2

up = (uo > 2|uo > 1|uo)&p
ur = (z <K -3)Py

ur = (u1 > 2|ur > 1|ur)&p
Case—1,0:

v1 = uo&(uo — 1) = (001001001001000000000)
(111111111111000000000)2
(000000001000000000000)2

001001001001001000000)2
000001000000010001)
)

2

~ o~~~ —~

000001000000001001)2

mi = ’U1| — V1 =
wop = ul&M1 =
Case0, —1:

mi :u0|—u0

= (111111111111111000000)2
v1 = u1&m1 = (000000001000000000000)2
wy = v1&(v; — 1) = (000000000000000000000)2
(wo = 0)|(w1 =0) =true

2.6 Compressing Genome Sequences

Some areas of any typical genome are filled vigh(recall from
Section 2.1, the symbad\ll represent unknown or a repetitive re-
gion). For example, within the repeat-masked human genabhmejt
50.5% of the 3 billion nucleotides aNs, because entire repetitive
regions are masked out &s. These Ns can represent any of the
nucleotides -A, C, Gor T, and are always treated as an error in
alignments. This property provides an opportunity to cagsprthe
genome sequence by removing unnecesiiarynd is exploited by
the compressor component shown in Figure 1.

A naive way of compression is to directly remove I8l in the
reference sequence. However, this method introducessestogn
a query sequence can be aligned to the portions to the imteedia
left and right of a series dfls in the reference sequence. The fol-
lowing example shows a wrong alignment on the naive comptess

Reference Seq. GGCCACAGAANNNNNNTACTACG
Naive Compressed Seq. GGCCACAGAATACTACG
Query Seq. 1 CCACAGAATACT

To guarantee the correctness of alignments, WHAM uses an ac-
curate compression method to remove unnecessary charather
length of the compressed sequence is comparable to theauaive
pressed sequence, but the aligner generates the exact bgme a
ments on the compressed sequence as on the original sequence

Suppose the alignment constraintigrrors. Then, the portion
in the original sequence that consists of at léast 1 consecutive
Ns is calledN-series WHAM cuts all N-series intd: + 1 Ns.

Taking the above example again, if we allow 2 errors, then the
N-series that consists of I§s is cut to a shorter series withNs.

As shown below, query sequence 1, which cannot be aligned to
the original sequence within 2 errors, also cannot be atigo¢he
compressed sequence within 2 errors (the best alignmerithissw
substitutes, shown by the underlined characters).

Reference Seq. GGCCACAGAANNNNNNTACTACG
WHAM Compressed Seq. GGCCACAGAANNNTACTACG
Query Seq. 1 CCACAGAATACT

The position of a matched portion in the compressed sequence
needs to be mapped to the position in the original sequenea wh
WHAM outputs results. This can be done by building an index
on all position pairs of N-series in the original and the coasged
sequences. To obtain the original position of a matchedqmort
we search against the index using its position in the corspres
sequence as a search key to find the rightmost N-series tioahis
left of the matched portion. The original position is theicaéated
based on the distance to the N-series and the original pogifi
the N-series. In our implementation, we employ a cacheieffic
B-tree [18] to index the position mapping.

2.7 Analytical Model and Index Optimizer

In this section, we present an analytical model of WHAM'gati
ment performance. This model is used by the index optimizer
shown in Figure 1 to pick an ideal number of fragments (suel th
performance when probing is maximized).

WHAM's indexing technique is based on a hashing method that
is known to have low memory reference locality, which imglie
that the total execution time is likely to be dominated by @freU
cache stall time. Therefore, we use the number of cache snisse
the metric in our model. The model relies on the input paranset
including the length of query sequenkdhe number of fragments
f, the number of error&, and outputs the estimated number of
cache misses for each alignment.

Total alignment costMaigrn IS SIMPlY Nprobe - Mprove, Where
Nprobe 1S the number of probes, and has been derived in Lemma 3.

Next, we analyze the cost of a probe on a hash indéx,u..

The random variablé& is used to represent the number of records
that are hashed into a particular bucket slot. When seaycbgords

in a hash table, cache misses can be incurred as it accesses th
bucket table, the overflow list, as well as the reference esecgs in

the database. X = 0, the bucket slot is empty, and we only need
to access one slot in the bucket table (1 cache miss). \&hen1,

an extra cache miss is incurred when reading the sequenélieo
reference sequence following the pointer stored in the d&usliot.
WhenX = i(i > 1), we first access the bucket (1 cache miss),
and then scan the overflow list£] cache misses, whei is the
block size of the CPU cache, also known as the cache line. size)
For each entry in the overflow list, we go to the reference segel

sequence. Query sequence 1 cannot be aligned to the referenc(R) to verify the alignmenti cache misses). By taking the three

sequence, but it can be aligned to the naive compressedremque

cases into consideration, the number of cache misses fabe i

Q< Q< 2
3 ‘ ‘ 3 ‘ ‘ 3 ‘ ‘
g WHAM — g WHAM m— g WHAM m——
S 1000 F Bowtie i S 1000 b 7.6X Bowtie i € 1000 k Bowtie i
° 3.3X = 41.2X = 8.4X 301X
¢) 3.5% & 43.2X 3 414X
S 100 ¢ _ ; E S 100 ¢ — E S 100 ¢ E
3 N 4.8X S =N S
z 2 z N ¥ N
5 10 E 5 10 N E 5 10 ¢ E
< N < N 2 o
s LM W E g MmO M g LM M W
= = =
= 1 2 3 = 1 2 3 = 1 2 3
Number of substitutions Number of substitutions Number of substitutions
(a) 36bps (b) 60bps (c) 74bps

Figure 5: Throughput comparison between WHAM and Bowtie varying the number of substitutions

given as follows: -
500 2 substitutions m— |

n i g 1 substitution + 1 insertion
Mprope = P(X = 0)+2-P(X = 1)+Z(1+(§}+i)~P(X =) S 400 2insertions —]
i— 3
= ¥ 300 f 1
In a hash tablen records occupy buckets. We assume that E
the records have uniform distribution on their range, amdrtash 5 200 - 1
function is a perfect hash function. If a record is hashed at 2 100} .
particular hash bucket with a probability ©fb, and alln records = o .ﬁ]
are hashed, then the number of records in each hash buckiécan 36bps 60bps
modeled as a binomial distribution with parameterand % ie. Workloads
1 il ; ia
X ~ B(n,). The probability mass function of is: Figure 6: WHAM throughput varying the number of insertions
. N 1 s (the number of errors is fixed at two)
P(X =) =Cl(5)' (A=)

The number of occupied buckets, depends on the length of the non-masked human genome. After filtering out junk rggion
concatenationg = (f — k) - | 4]. Since the sequence consists that appear more than 100 times in the genome, the perfosisnc

of four possible bases for each character, the maximum nuafbe ~ Similar to that on the masked genome.

occupied buckets i$?. Given the total number of buckeM,.,cxe: The WHAM index optimizer (see Section 2.7) recommended the
in the hash table, the number of occupied buckets is: number of fragments for each workload, and then computed the
number of indices based on Lemma 2 for each workload. Table 2
b =min(4?, Nyyerer), Whereq = (f — k) - LLJ summarizes the parameters used for the three workloadsiurhe
f ber of fragments plays a key role in the performance of WHAM.
Using the model presented above, we have implementeéd-an For example, if we use 3 fragments to align a 36bps workloahl wi
dex optimize(see Figure 1) that uses an analytical maslelluator 2 errors, it is one order of magnitude slower than using tlee re

to compute the impact of each possilflealue on the performance ommended value. All values that we used in the experimests ar
when matching the read set. Thptimizer(see Figure 1) enumer- recommended by thedex optimizerwhose accuracy is evaluated

ates the candidatg values, and determines a suitalflealue that in Section 3.3.

minimizes the estimated matching cost for a target reacesugd

the error model. Table 2: Number of fragments and indices for the workloads

Number of fragments || Number of indices

3. EVALUATION lerr]2err] 3err |[1err]2err| 3err
We ran our experiments on a machine with dual 2.67GHz Intel 36bps 3 4 6 2 3 10

Xeon 6-core CPUs, and 24GB of DDR3 main memory, running 60bps|| 2 3 o 1 1 4

Scientific Linux 5 (kernel 2.6.9). Each processor has 12MBf 74bps|| 2 3 4 1 1 1

cache shared by all cores on that processor. In additioh, eae
has a private 32KB L1 instruction and a 32KB L1 data cache, and Each WHAM index is about 8.9GB in size and takes about 20
256KB of L2 cache. Each processor also employs a two-levelkha minutes to build. Loading a prebuilt WHAM index from disk &k
ware TLB. All algorithms were implemented in C++, and coragil less than two minutes. The number of indices for each wockloa
using g++ 3.4.6 with optimization flags (O3 and finline-funos). is listed in Table 2. If the total size of indices exceeds ttesmry

We chose three sets @fal query sequences as workloads. These size, then WHAM loads indices and performs alignments on the
workloads have varying read lengths of 36bps, 60bps, ands/4b loaded indices one after another.
providing for a wide range of read lengths corresponding hatw In the evaluation below, we compare WHAM to Bowtie [6].
the current next-gen sequencing machines provide today38bps Bowtie also builds an index on the reference genome, anddini®
and 74bps workloads come from NCBI, and were chosen becauseindex is about 1.5GB and takes about 3 hours to build. We have

their lengths are similar to the datasets used in the Bowipep[6], also compared WHAM with RBSA [17], a string matching method
and the 60bps workload is from our collaborators. Each veardl that accommodates a broader class of error models compared t
contains about 3 million reads. WHAM. However, our experiment results show that WHAM is

Our reference genome (on which we build indices) is the tepea several orders of magnitudes faster than RBSA. In addiRBSA
masked human genome NCBI build 36. We also tested WHAM on has a much larger memory footprint than WHAM making it infea-

10000

10000 10000

Measured Cache Misses —=5—
. Estimated Cache Misses -
Measured Time —6—

1000 '3 4 1000

100 100

10 10

Number of Cache Misses, log scale
Elapsed Time (x1000 cycles), log scale
Number of Cache Misses, log scale

Measured Cache Misses —5—
. Estimated Cache Misses -l
Measured Time —&—

10000 1e+006

1e+006

Measured Cache Misses —=5—
Estimated Cache Misses -l
Measured Time —6— A4

100000 F 100000

D
10000 10000

1000 1000

100 100

Elapsed Time (x1000 cycles), log scale
Number of Cache Misses, log scale
Elapsed Time (x1000 cycles), log scale

36 60 74 3 4

Length of Query Sequence (I)

(@) f =3, k=2

Number of fragments (f)

(b) | =36, k=2

10

Number of Errors (k)

(c) 1 =36, f=4

Figure 7: Analytical Model Validation

sible to use on our machines for the whole human genome. €onse tion is almost always due to the increasing number of proles o

quently, we do not consider RBSA further in this paper.

Since index construction and loading is a one-time costhén t
performance comparison, we do not include these costs tieerei
Bowtie or WHAM.

3.1 Comparison between WHAM and Bowtie

We first compare the throughput of WHAM with that of Bowtie
(version 0.12.3), the leading state-of-the-art method ithevidely
deployed in production settings today. We used the 64-biior
of Bowtie running with the a flag, indicating that it should report
all valid matches. Since Bowtie does not support indels, afg o
compare the throughput with varying number of substitigion

Figure 5 shows the results on the three datasets. The speédup
WHAM over Bowtie is also marked on the top of the bars in the

graph. As can be observed from Figure 5, WHAM is uniformly

better, with speedup of 3X to 5X for the 36bps workload, and 8X

to 43X for the 60bps and 74bps workloads. The speedup diftere

between the short (36bps) and the long (60bps and 74bpsy quer

sequences is due to the hash collisions. When the queryrsesjise
short, many of the concatenations (keys) are the same, \ndgaiits
in many collisions in the hash tables. Consequently, thnpug
drops significantly as either WHAM suffers from scanning |ty

overflow array on a hash probe, or it breaks the query segaence number of cache misses, as well as the measured elapsed time,

into more fragments, and thus increases the number of probes

the hash table and the number of errors increases. As a, rémult
throughput of WHAM degrades slower than that of Bowtie as the
number of errors in the match model increases.

3.2 Effect of Indels

WHAM also supports indels as well as the combinations of sub-
stitutions and indels. In this experiment, we fix the numbermrs
at two, and vary the number of insertions (the number of swibst
tions is two minus the number of insertions). Since Bowtieslo
not support indels, we cannot make a comparison with Bowtie.

Figure 6 shows the throughput for the three combinationsiof s
stitutions and insertions. The throughput degrades as.imder of
insertions increases across the three datasets. This {e tiue ef-
fects. First, supporting more insertions introduces moobes on
the hash indices. Second, the bitwise alignments with fioser
are typically more complex than those with only substitosicand
as a result, the cost of the bitwise alignment method ineseasth
increasing indels in the model.

3.3 Model Validation

Finally, we evaluate the accuracy of our analytical model by
comparing the estimated and measured performance witbugri
parameters. Figure 7 demonstrates the measured and estimat

varying the parameters k, f. The number of cache misses is

For the short query sequence (36bps), the throughput of both obtained by enabling the hardware performance-monitacog-
WHAM and Bowtie degrades as the number of substitutions in- ters (RDPMC instruction), and only the number for the loviegt!
creases (see Figure 5 (a)). The speedup of WHAM over Bowtie data cache is reported.

is relatively steady, within a small range from 3.3X to 4.8his In each experiment, we fix two parameters and vary the third
means that the throughput of WHAM decreases as fast as that ofone. Figure 7(a) shows the measured and estimated perfoeman
Bowtie when allowing for more substitutions. This behaviodue on each of our three workloads. Figure 7(b) plots the peréoce
to the combinations of two effects. First, WHAM performs mor when f varies from 3 to 5. Figure 7(c) illustrates the performance
probes on the hash table as the number of allowed errorsaisese when varying the value df from 1 to 3.
Second, and more importantly, the concatenations becooréesh As shown in Figure 7, our estimates show a trend similar to the
and cause significant collisions in the hash tables whenvidtp measured values. The gap between the measured and estimated
for more errors. As a result, the overflow arrays become lgpnge cache misses is mainly due to the different alignment ratithée
and the hash probes become more expensive. datasets. Note that an invalid query sequence is more ltkedyg-

For longer query sequences, the speedup of WHAM over Bowtie cess the bucket that has a short overflow list or an empty bhucke

increases as the number of substitutions increases. F@Othes
workload (Figure 5 (b)), WHAM is 7.6X, 41.2X, and 43.2X faste
with 1, 2, and 3 substitutions respectively. For the 74bpskwo
load (Figure 5 (c)), the speedup is 8.4X, 30.1X, and 41.4X wit
1, 2, and 3 substitutions respectively. (Since the 60bpsthad
74bps datasets are different workloads, the reader shatlccad
too much into variations in performance for the specific neamb
of substitutions across these two datasets.) For the lomgeny

whereas a valid query sequence is more likely to access e “h
bucket. Thus, more cache misses occur in the dataset witlha hi
alignment ratio. For example, the 60bps dataset has a Igm-ali
ment ratio, whereas the 74bps dataset has a high alignntent ra
As shown in Figure 7(a), our analytical model overestimatethe
60bps dataset, and underestimates on the 74bps dataset.
Furthermore, the estimated beftvalues match the measured
best values. As shown in Figure 7(b), the analytical modeliac

sequences, the indexed fragments in WHAM are long enough to rately estimates that the best performance is achieved when

mitigate the hash collision issue. WHAM's throughput delgra

titioning the query sequence into 4 fragments. We used oar an

L3 Cache Stall ==—3
L2 Cache Stall m—
TLB Stall ===
Others EXxXx=

Partitioning =——=3
Hashing
Alignment zEzEz
Output XXX

100 100

80 b 80

60 60

40 | 40 |

% of total time
% of total time

20 b 20

(2,00 (1.1 (0.2)
(#substitutions, #gaps)

(2.0) (1.1) (0.2)
(#substitutions, #gaps)
@ (b)
Figure 8: Time breakdown varying the number of substitutions
for the 60bps workload

lytical model in our index optimizer to recommend tlfievalue in
all our experiments, and the resulting recommended indgxge
are shown in Table 2. By comparing WHAM's histogram in Fig-
ure 5 and the best throughput among all partitioning schethes
results are omitted here in the interest of space), we obdbat
the analytical model used in the index optimizer captureshist
parameters for all settings in our experiments.

3.4 Time breakdown

To better understand the performance characteristics cAMWH
next we examine the detailed time breakdown for 1) the differ
phases in WHAM, and 2) the different processor stall timesmwh
running WHAM.

The time breakdown for the different phases of WHAM is shown

in Figure 8 (a). This time breakdown is for the 60bps worklaad
for three error models: 2 substitutions, 1 substitution andser-
tion, and 2 insertions. The time breakdown for the other Voarits
and error models are similar to the one shown in Figure 8 (&), a
we omit these other results in the interest of space.

In Figure 8 (a), the four main phases include: (a) the partitig
phase to partition the short reads into fragments and to @b
these fragments into concatenations if necessary, (b)dbhkimg

phase to perform lookups on the hash table, and to scan the cor

sponding overflow array, (c) the alignment phase to perfatwie
alignment between a pair of sequences, and (d) the outpeepba
write the results to a file. The partition phase is the fagibaise,

and only accounts for about 4% of total time. The hashing time

is significant (about 30%) across all three settings, dueathe
misses (stalls) when accessing hash entries. Alignmeheimbst
expensive phase. It varies from 45% to 60% of the total tintee T
alignments with more deletions execute more instructiosare

more expensive. The output phase accounts for 8%—18% of the

total time, depending on the number of successful alignsent
Figure 8 (b) illustrates the time breakdown for differenbqes-
sor stall times. We used the processor hardware perforntmoe

ters to measure the number of L3 cache misses, L2 cache misse

and TLB misses. Since these resource stalls can overlapgeéfil
computation in modern processors, there is no real way tcunea
the overlap between a stall and an instruction executingen-
struction stream, as the overlapped time depends on thealegr
instruction-level parallelism. We crudely (over) estiméhe stall

time as the number of measured misses multiplied by the gycle

for each stall. The “other” time in this figure is computed ljps
tracting the L2, the L3, and the TLB stall times from the tatiade.
All results are with a single threaded execution of WHAM. Kitul
threaded results are presented below in Section 3.5.

S

18

12

;
)

(2]
T
#cores
#contexts

Speedup over singel thread

Speedup —H—
0 12 24 36 48
Number of threads

Figure 9: WHAM throughput varying number of threads

As shown in Figure 8 (b), the L3 and the L2 cache stall times ac-
count for about 50-60%, and 25-30% of the total time respelgti
and are the dominating stall costs in WHAM. This empiricaky-
ifies the assumption in Section 2.7 that cache stall timedgptr-
formance bottleneck. When we allow more gaps, the “otheneti
increases, mainly due to more instructions involved in cotimg
pairwise alignments.

3.5 Performance on Multi-Core CPUs

All the previous results are with WHAM running in a single
thread. We have also implemented a multi-threaded version o
WHAM, and examined its performance on a multi-core processo
In this setting, the batched short reads are evenly disatbacross
all running threads. Each thread independently lookupsltaged
hash indices and performs the pairwise alignment in paratig-
ure 9 illustrates the throughput speedup of the multi-ttheeleexe-
cution over the single threaded execution with varying nemndf
threads.

As shown in the figure, the throughput has a linear speedup as
long as the number of threads does not exceed twelve, which is
the total number of physical cores in our test machine. Time li
ear speedup indicates that, although the cache stall timénddes
the execution time of a single thread execution, it does acbine
the performance bottleneck when using multiple cores, anang
access requests from different threads can be issued acekgeal
in parallel. The architecture of the machine that we aregipio-
vides a higher bandwidth between the main memory and the CPU
caches than what WHAM demands. However, the speedup has only
a slightincrease when the number of threads exceeds tweteh
means that WHAM does not benefit from Hyper-Threading. The
throughput fluctuates when the number of threads is morethigan
number of physical cores, due to the cost of context switchinen
scheduling the threads across the processing cores.

3.6 Summary

The main conclusions from these experiments are that, éa) th
analytical model which is at the heart of the index optimizaom-
ponent of WHAM is accurate, (b) WHAM is often more than an
order of magnitude faster than Bowtie on long read worklpéd)s
WHAM performs much better on long read sequences than short
ones, which bodes extremely well for the future in which read
lengths are expected to increase, (d) WHAM supports indéls w
low overhead, and (e) WHAM exhibits a linear speedup as the-nu
ber of threads increases to match the number of processieg.co

4. RELATED WORK

A number of commonly used alignment algorithms employ the
dynamic programming technique, including the Needlemamsth
algorithm [16] (for global alignment) and the Smith-Watemral-
gorithm [20] (for local alignment).

Severalg-gram based methods have been developed for approx- method, WHAM is often faster by an order-of-magnitude (ore)o
imate string matching in large sequence databases [2, 12314 and can accommodate richer error models. In addition, WHAM
A g-gram is a substring of lengtth. Theseg-gram based meth- also leverages multi-core architectures very effectivElyr future
ods are based on counting the number@rams that are shared work, we plan to extend WHAM to work in distributed data pro-
between the query and the reference sequences. Althougé the cessing environments.

g-gram based methods and WHAM find approximately matched
sequences by performing exact searches on subsequere&syth
differences stem from the fact thatgram based methods count
the number of shared subsequences, whereas WHAM uses subs
guences as seeds to find valid matching sequences. Anoffeer di
ence is that thg-grams are overlapping subsequences, whereas in
WHAM fragments are non-overlapping subsequences.

Bit manipulation methods such as the Shift-Or algorithmg{adi
its extended variant [22] have been used to efficiently $efimca
query sequence in a reference sequence. Unlike the ShitgOr
rithm and its variants, WHAM'’s bitwise alignment algoriterare

used to globally align the two sequences along their ergimgths, 6[1']
with an arbitrary number of mismatches and gaps.

BLAST [3] is a popular heuristic tool to compute local align- [2]
ments for long query sequences. However, a major limitation
BLAST is that there is no guarantee that the optimal locarali 3]
ment will be reported (since it uses a heuristic technighteye re-
cently, a reference-based method, called RBSA [17], wasqzed [4]
for large queries and accurate results. In RBSA, query semse
are aligned to a group of references with precomputed akgmm [51
scores, instead of being aligned to the original refereecgience [6]
directly. These methods that support long query sequemzkara
bitrary error models are more general than WHAM, but are sot a
efficient for aligning short reads against genomes. 7

Previous methods for sequencing short reads include Mdq [12 (g

SOAP [13], and Bowtie [6]. In particular, Bowtie has focusad
utilizing the properties of the Burrows-Wheeler TransferBWT)
[7] to index the reference sequence. A BWT-based index can be (91
viewed as a suffix tree variant, and has a small memory fautpri
making Bowtie feasible on computers with only 2GB of memory.
Our technique differs significantly from Bowtie and otheffisu
tree based indexes, as we build hash indexes on subsequ#nces
the reference sequence. Although a hash structure doesheot i
ently allow for the same ease of discovering strings witfedént
numbers of mismatches, it does take advantage of currenbngem
sizes to produce an overall faster alignment method. [
The WHAM indexing schemes are also related to PartEnum al-
gorithm [4] proposed for set similarity joins, which usesdiy [14]
vectors to represent sets, and computes the Hamming déstenc
tween the binary vectors. WHAM and PartEnum use a simila:ide
partitioning, and enumeration on partitions of vectors.wideer,
WHAM differs from PartEnum in a few key ways. First, PartEnum
is designed for set similarity joins based on Hamming distan
whereas our method is used for biological sequence aligtemen
based on edit distance. Second, WHAM builds hash-basedédsde
on the basis of categories of concatenations for largearéer se-
quences. WHAM selects indexing schemes that trade off leatwe
the number of lookups on indexes and the performance of each
lookup, to achieve optimal overall performance.

[12]

13]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

5. CONCLUSION AND FUTURE WORK

With the advances in sequencing technology, there is amtrge
need for a fast read alignment method that can deal with tonge
reads and accommodate rich error models. This paper prepose
a method called WHAM that addresses this need. WHAM em-
ploys novel hash-based indexing and bitwise operationpdar
wise alignments. Our extensive experimental studies usiag
datasets show that, compared to the existing leading regrahadnt

[22]

Acknowledgments

We would like to thank Ron Steward and Victor Ruotti for vaiso
discussion on the topic of next-gen sequence alignment. Yvidwv
also like to thank Spyros Blanas and the reviewers of thiepay
valuable feedback on an earlier draft of this paper. Thiskweas
supported in part by a grant from the National Science Fatioda
under grant DBI-0926269.

REFERENCES
White House Press Release. Retrieved 2006-07-22.
http://www.ornl.gov/sci/techresources/Human-Gengrggéct/clinton1.shtml.
M.-S. K. 0002, K.-Y. Whang, J.-G. Lee, and M.-J. Lee. rugv'2l: A space and
time efficient two-level n-gram inverted index structureMLDB, pages
325-336, 2005.
S. Altschul, W. Gish, W. Miller, E. Myers, and D. LipmanaBic local
alignment search toollournal of Molecular Biology215:403-410, 1990.
A. Arasu, V. Ganti, and R. Kaushik. Efficient exact sen#arity joins. In
VLDB, pages 918-929, 2006.
R. A. Baeza-Yates and G. H. Gonnet. A new approach to &atching.
Commun. ACM35(10):74-82, 1992.
L. Ben, T. Cole, P. Mihai, and S. Steven. Ultrafast and rogrrefficient
alignment of short dna sequences to the human genGerome Biology
10(3):R25, 2009.
M. Burrows and D. Wheeler. A block-sorting lossless datanpression
algorithm.Digital SRC Research Repoft994.
T. Han, S. Ko, and J. Kang. Efficient Subsequence Matchisigg the Longest
Common Subsequence with a Dual Match Inddachine Learning and Data
Mining in Pattern Recognitigrpages 585-600, 2007.
E. Karakoc, Z. Ozsoyoglu, S. Sahinalp, M. Tasan, and Xarith Novel
approaches to biomolecular sequence indexiraja Engineering1001:40,
2004.
D. E. Knuth.The Art of Computer Programming, Volume 4A: Combinatorial
Algorithms, Part 1 Addison-Wesley Professional, Jan. 2011.
C. Li, B. Wang, and X. Yang. Vgram: Improving performanaf approximate
queries on string collections using variable-length gram¥LDB, pages
303-314, 2007.
H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequegaieads and
calling variants using mapping quality scor€enome researcti8(11):1851,
2008.
R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: shortginucleotide
alignment programBioinformatics 24(5):713, 2008.
W. Litwin, R. Mokadem, P. Rigaux, and T. J. E. Schwarzstfagram-based
string search over data encoded using algebraic signatorésDB, pages
207-218, 2007.
J. D. McPherson. Next-generation g&{ature Methods6(11s):S2-S5, October
2009.
S. B. Needleman and C. D. Wunsch. A general method agdglicto the search
for similarities in the amino acid sequence of two protelwirnal of
Molecular Biology 48:443-453, 1970.
P. Papapetrou, V. Athitsos, G. Kollios, and D. GunopuReference-based
alignment in large sequence databa8d4.DB, 2(1):205-216, 2009.
J. Rao and K. A. Ross. Cache conscious indexing for deeisupport in main
memory. INVLDB, pages 78-89, 1999.
R. L. Rivest. Partial-match retrieval algorithn®AM J. Comput.5(1):19-50,
1976.
T. F. Smith and M. S. Waterman. Identification of commoolecular
subsequencedournal of Molecular Biology147:195-197, 1981.
Venter, et al. The Sequence of the Human Gen@ee&nce
291(5507):1304-1351, 2001.
S. Wu and U. Manber. Fast text searching allowing errémsmmun. ACM
35(10):83-91, 1992.

] X.Yang, B. Wang, and C. Li. Cost-based variable-lengsthm selection for

string collections to support approximate queries effityein SIGMOD
Conferencepages 353-364, 2008.

