
WHAM: A High-throughput Sequence Alignment Method

Yinan Li Allison Terrell Jignesh M. Patel

University of Wisconsin–Madison
{yinan, aterrell, jignesh}@cs.wisc.edu

ABSTRACT
Over the last decade the cost of producing genomic sequenceshas
dropped dramatically due to the current so called “next-gen” se-
quencing methods. However, these next-gen sequencing methods
are critically dependent on fast and sophisticated data processing
methods for aligning a set of query sequences to a reference genome
using rich string matching models. The focus of this work is on the
design, development and evaluation of a data processing system
for this crucial “short read alignment” problem. Our system, called
WHAM, employs novel hash-based indexing methods and bitwise
operations for sequence alignments. It allows richer matchmodels
than existing methods and it is significantly faster than theexisting
state-of-the-art method. In addition, its relative speedup over the
existing method is poised to increase in the future in which read
sequence lengths will increase.

The WHAM code is available at http://www.cs.wisc.edu/wham/.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information search
and retrieval—search process; H.2.4 [Database Management]: Sys-
tems—textual databases

General Terms
Algorithms, performance

Keywords
Sequence alignment, approximate string matching, bit-parallelism

1. INTRODUCTION
Last summer marked the 10th anniversary of the sequencing of

the first human genome [1, 21]. This key scientific discovery has
been a turning point for modern life sciences and has dramatically
changed the way in which researchers approach nearly every as-
pect of biomedical sciences, ranging from deciphering basic cel-
lular mechanisms to drug discovery and drug design for personal-
ized medicine. A crucial part of this first human genome assembly
was using advanced data processing methods to assemble the en-
tire genome from vast sets of data items, each of which described

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11,June12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

only a small portion (called a “read") of the genome. The human
genome project delivered its first draft ahead of schedule, primarily
because of the use of advanced data processing methods.

Existing sequencing technology has come a long way from the
technology of 10 years ago, both in terms of speed (with which
they can read parts of the genome) and the cost of reading eachof
the 3 billion “bases” that make up the whole human genome. As a
consequence, while the first human genome took a few billion dol-
lars to assemble, today with the help of next-generation sequencing
machines an entire genome can be read for a few thousand dollars.

Interestingly, data processing techniques are an even morecru-
cial aspect of assembling genomes today. The pressing problem
now with the next-generation of sequencing is the so called “next-
generation gap” – namely, the data processing cost associated with
genomic analysis is now the dominating cost of producing a genome
sequence [15]. A key component of this data processing task is the
alignment of short sequence reads [15]. The focus of this paper
is on the design and evaluation of a novel data processing system
for speeding up this alignment task by an order of magnitude and
more, while accommodating flexible match models. Our system
is called WHAM – an acronym forWisconsin’sHigh-throughput
AlignmentMethod. WHAM employs novel database-style index-
ing, optimization and query processing techniques.

At its heart, the short sequence read alignment problem is similar
to the common substring matching problem in data processingsys-
tems. At a high-level, the next-gen sequencing works as follows:
First the (DNA) sample to be sequenced is broken (by treatingwith
restriction enzymes or using mechanical force) into a number of
short pieces. These pieces are then cut into equal-length fragments
called “reads”. The bases/characters in each fragment are read by
the sequencing machine. From the computational perspective the
set of reads/fragments can be modeled as a set of strings/sequences.
The subsequent data processing task involves aligning eachread se-
quence against some scaffolding/reference genome sequence.

For example, when assembling the genome for a specific indi-
vidual to look for variations that cause specific diseases, the refer-
ence genome is often the publicly available human genome. Thus,
from the string matching perspective, one can view the computation
task as matching a set of equal-length short strings (reads)against a
large reference string (the entire genome), using some string match-
ing model, as described below.

When a read is compared to the reference genome, it is either
deemed as a valid or an invalid alignment. The validity of an align-
ment is measured in terms of mismatches and gaps. A mismatch
occurs when a base on the reference genome and a base on the read
are aligned, but aren’t the same base. A gap occurs when a base
is aligned with an empty space. Either or both of these alignments
may be the “right answer” when aligning a read if it is advanta-

geous to do so, such as when it allows many other base pairs in
the set of reads to be aligned with the reference genome sequence.
Often, aligners use two mismatches and no gaps as the definition of
a valid alignment, but these models are likely to get more sophisti-
cated in the future [15].

Previous methods for sequencing reads include Maq [12], SOAP
[13], and Bowtie [6]. These techniques employ a compact in-
dex that works well for aligning so called “short reads”, namely
reads that are typically around 30-50 characters long. In particu-
lar, Bowtie – the leading state-of-the-art method – has focused on
utilizing the properties of Burrows-Wheeler Transforms (BWT) [7]
to index the reference sequence. A BWT-based index has a small
memory footprint, making Bowtie feasible on computers withonly
2GB of memory. However, memory is quickly becoming cheaper
(while the genome size is constant), making it unnecessary to place
such tight memory restrictions on the alignment software. In ad-
dition, BWT-based methods use a prefix matching technique that
requires only a few iterations to produce a valid alignment.While
this technique works well with short reads, its performancede-
grades rapidly as the read length increases. Unfortunately, im-
pending technological advances with the next-generation sequenc-
ing machines are expected to push up the read lengths to produce
what are called “long reads”, and loosely refer to read strings that
are many factors longer than the “short reads”. This trend implies
that the existing BWT-based aligners will likely become computa-
tionally infeasible in the near future. In addition, sequence aligners
of the future will also need to accomodate more errors in the match
models (for long reads) [9, 15], and the performance of existing
methods rapidly deteoriates when using these richer match models.

Our WHAM method addresses the short-comings of the existing
methods. It uses a novel hash-based index built on the reference
genome that accommodates complex string matching models that
are natural for read alignments. This hash index is optimized for
space and speed, and to work efficiently with long reads. The hash
index quickly finds potential hits for each read. This list ofpoten-
tial hits may contain some false positives that have to be checked
using a precise test. This test for an actual hit is essentially a com-
plex string matching function, which is computationally expensive.
Another novel aspect of WHAM is the use of bitwise operations
to perform this string matching test efficiently. Finally, WHAM
uses a novel architecture that incorporates an optimizer (to opti-
mize the indices that are built) and a compressor to reduce the size
of the input data, providing a complete data processing and man-
agement module that fits into existing computational pipelines for
high-throughput genomic sequencing.

We have compared WHAM using a number of real datasets against
the leading and commonly used read alignment method – Bowtie.
Our results show that WHAM is often orders of magnitude faster
than Bowtie, and allows for richer match models. The relative
speedup of WHAM over Bowtie increases as the read length as
well as the number of errors increases, which bodes well for the fu-
ture in which we expect to see longer reads that need to be matched
with more relaxed/richer match models.

The remainder of this paper is organized as follows: The WHAM
method is described in Section 2. Results from an extensive em-
pirical evaluation are presented in Section 3. Section 4 discusses
related work, and Section 5 contains our concluding remarks.

2. METHOD

2.1 Problem Statement
A sequence is a series of characters. For genomes, each character

is either a nucleic acid represented by the symbolsA, G, C, orT, or

Index Index

Compressor

Pairwise Aligner

Evaluator &
Index Optimizer

Indexer

Prober

WHAM

Reference
Sequence

Output

Reads

Figure 1: Architecture of WHAM

an unknown character, namedN. The unknown character symbol,
N, indicates that there is either uncertainty about which nucleotide
belongs there, or that there is a repetitive region in the genome
and all nucleotides in that region are turned intoNs (since for the
genome sequencing task, it does not make biological sense tomatch
reads to these known repetitive “junk” regions).

WHAM takes as input a set of query sequences of equal length,
a database of reference sequence(s), and an error model. Theerror
model specifiesalignment constraintson three types of errors that
are commonly used for read alignment. These three types of errors
are: substitutions, which change characters in a sequence,inser-
tions anddeletions, which add or remove characters respectively.
WHAM finds all (it is not a heuristic) valid alignments that satisfy
the constraint on the number of errors in the set of query sequences.
A valid alignment is formally defined as follows:

DEFINITION 1. Given an error model specifyings substitutions,
i insertions, andd deletions, avalid alignmentfor a given query se-
quenceQ is all the subsequences in the reference sequenceR that
can be aligned by applying up tos substitutions,i insertions, and
d deletions betweenQ and each matched subsequence inR.

The following example demonstrates alignments between two
query sequences and a reference sequence. Suppose we allow 1
substitution, 1 insertion, and 1 deletion. The first query sequence
can be aligned with 1 substitution (shown as the underlined charac-
ter) and 1 insertion (shown as a dash in the query sequence), while
the second query sequence can be aligned with 1 substitutionand 1
deletion (shown as a dash in the reference sequence). Both align-
ments satisfy the alignment constraint.

Reference Sequence ATGGCCACAGAAGTT-GCGA
Query Sequence 1 GACCACA-AAGTT
Query Sequence 2 ACAGTAGTTAGC

The error model is sometimes aggregated to a generick-error
model which implies that the total number of substitutions,inser-
tions and deletions is no more thank in the alignment.

2.2 System Architecture
Figure 1 shows the architecture of the WHAM system. WHAM

provides an interface to ingest a set of reads as they come offthe
alignment machine and manages the computation associated with
matching the reads to a specified reference genome. WHAM typ-
ically sits as a module in a larger computational pipeline. The
WHAM system builds various indices (as described below) and
also keeps track of various data management needs such as stor-
ing the indices on disk, tracking the usage, reporting to theoverall
workflow management system, etc. In this paper, we only focuson
the components related to the sequence matching parts.

The indexeris responsible for building indices on the reference
genome. At any given time, WHAM may have stored indices for
multiple genomes (e.g. human, mouse, rat, etc.). These indices
persist on disk, and are built only once when the reference genome
sequence is loaded into WHAM. When the WHAM module is in-
voked, a single reference genome is specified (e.g. human) and the
entire index for that reference genome is loaded into main memory.
Note that in current next-gen sequence assembly, when analyzing
multiple read sets, often the reference genome remains the same,
so this index can stay loaded in main memory across multiple runs.

While the indices persist on disk, the indices are optimizedfor
access in main memory. Since main memory capacities are in-
creasing quickly and since WHAM builds indices on the reference
genome (which is of a constant length), this design choice leverages
the technological trend that makes it practical and economical to fit
the entire genome index in main memory. The WHAM indexing
method is described in Section 2.3.

The indexer relies on an indexing configuration setting thatspec-
ifies the parameters that affect the index performance. Thisindex
configuration is generated by theindex optimizerby comparing var-
ious indexing schemes whose costs are computed by theevalua-
tor based on an analytical model (described in Section 2.7). The
prober takes as input a set of query sequences (reads), and uses
the same indexing configuration to break up each query sequence,
and probes the indices (on the reference genome) to find potentially
matching reference subsequences. Thepairwise aligneris then per-
formed to verify that the reference subsequence actually aligns to
the query sequence under the alignment constraint (Section2.5).

WHAM also employs acompressorto remove all unnecessary
characters in the reference sequence before building an index.

2.3 Indexing Method
The WHAM indexing method is motivated by the observation

that the inexact alignment between two sequences can be solved by
the exact alignments on the fragments of sequences [19].

2.3.1 Indexing Schemes
We first introduce a basic indexing scheme based on the follow-

ing observation: If two sequences,R andQ, match withink errors
andk + 1 non-overlapping fragments are taken fromR, then the
matching sequenceQ contains at least one fragment that will match
exactly with one fragment inR. This property is evident, sincek
errors cannot be placed into thek + 1 non-overlapping fragments.

Using this observation, given the lengthl of the query sequences,
all l-character subsequences in the reference sequenceR are split
into k + 1 uniform-sized fragments of length⌊ l

k+1
⌋. A hash in-

dex is built on all the fragments. To align a query sequence, we
break down the query sequenceQ into fragments in an analogous
way, and search against the fragments on the hash index to findthe
potential matching subsequences inR.

A problem with this indexing scheme is that the index keys (frag-
ments) may be short and may have relatively low diversity, result-
ing in long chains in the hash index, which in turn degrades per-
formance. For example, suppose a 36bps1 query sequence is to be
aligned within 2 errors. Three fragments are taken from the se-
quence, each of length 12bps. Now, for the moment assume that
each character has only four possible values –A, G, C, andT –
(so ignoreNs for this example), then the 12bps fragment has a
maximum of412 = 16, 777, 216 possible values. However, the
reference human genome sequence contains around 3 billion char-
acters. When loading these 3 billion 12bps fragments into a hash

1The term “bps” is commonly used in genomics and refers to base
pairs. The bps is essentially the sequence length.

index, each hash bucket in the index contains on average around
170 entries. When a probe is performed on the hash index, each of
these entries needs to be scanned and verified one by one, which
degrades the search performance significantly.

To address this problem, we extend the basic indexing schemeto
a more general one based on Lemma 1 by relaxing the limit on the
number of fragments.

LEMMA 1. If two sequences,R andQ, match withink errors
andf(f > k) non-overlapping fragments are taken fromR, then
the matching sequenceQ contains at leastf − k fragments which
match exactly with fragments inR.

We omit a detailed proof of Lemma 1 (in the interest of space),
but it is easy to see that if more thank fragments contain errors,
then the complete match must have more thank errors.

Based on Lemma 1, indices are built onf − k fragments of all
l-character subsequences ofR, rather than on one fragment, where
l is the length of the query sequences. In particular, each sub-
sequence in the reference genome is split intof non-overlapping
fragments of length⌊ l

f
⌋, from which we selectf − k fragments.

A selected (unselected) fragment is called anindexed (unindexed)
fragment. An unindexed segment between two indexed fragments
is called aninterval. For each selection, we concatenate thef − k
selected fragments into aconcatenation. All concatenations are of
the same length(f − k) · ⌊ l

f
⌋, and are inserted into hash indices.

To search using these indices, we break the query sequenceQ, into
fragments in an analogous way (see Section 2.3.3 below for de-
tails). Note that the extended indexing scheme is identicalto the
simple indexing scheme, whenf = k + 1.

Taking the 36bps example again, if four fragments are taken from
the sequence, the concatenations contain two fragments, and are
18bps long. There are418 = 68, 719, 476, 736 possible values for
18bps concatenations, many more than the characters in the whole
human genome sequence. Consequently, the hash collision issue is
dramatically mitigated.

2.3.2 Building Indices
The indexercomponent in WHAM is responsible for building

indices on all concatenations of fragments for all subsequences of
lengthl in the reference genomeR. The goal of the indexer is a) to
separate the concatenations into several hash indices to reduce the
collisions in the bucket for each hash index, and b) to removeall
duplicated concatenations to reduce the space cost.

We observe that the concatenations can be categorized into afew
groups based on the intervals between the indexed fragments. The
concatenations in a group are matched with others by slidingthe
concatenations. As an example, Figure 2 illustrates the categoriza-
tion on six concatenations of choosing two indexed fragments from
four fragments. The indexed fragments are represented by rect-
angles, whereas the unindexed fragments are represented bylines.
Among these concatenations, concatenation 1, 3, and 6 contain two
contiguous indexed fragments, and are categorized into group I. In
concatenation 2 and 5, there is an unindexed fragment between the
two indexed fragments. These concatenations belong to group II.
Concatenation 4 contains a two fragment gap between the two in-
dexed fragments, and is categorized into group III.

To achieve the first goal (i.e. to separate concatenations into sev-
eral hash indices), the indexer separately loads the concatenations
of all subsequences inR into various hash indices on the basis of
groups. The number of hash indices (groups) that is requiredfol-
lows from Lemma 2.

LEMMA 2. If f -fragment query sequences are aligned withink
errors, thenCf−1

k indices are required for the alignments.

Concatenations Groups
1
2
3
4
5
6

I

II

III

Figure 2: Categorization of six concatenations (f = 4, k = 2)

PROOF. The number of indices is equal to the number of groups.
One way to count the number of groups is to count the number of
ways to selectk unindexed fragments fromf fragments so that the
first fragment is an indexed fragment, because other selections in
the group can be matched to this kind of selection by sliding the se-
quence. The number of these selections corresponds to the number
of ways to selectk unindexed fragments fromf − 1 fragments (the
first fragment is fixed to be an indexed fragment). This is given by
the formulaCf−1

k .

To achieve the second goal (i.e. to reduce the indexing space),
only one representative concatenation in each group is loaded into
the hash index, for each subsequence inR. Other concatenations in
the group will be loaded (as a representative concatenation) when
sliding the subsequence, because a concatenation is identical to
other concatenations in the same group when sliding the subse-
quence by one or a few fragments.

To build the indices, we slide al-character window along the ref-
erence sequenceR (an analysis of various sliding window schemes
may be found in [8]). TheCf−1

k concatenations associated with
the Cf−1

k groups are extracted from the subsequence in the win-
dow and separately loaded intoCf−1

k hash indices. The number of
entries in each hash table roughly equals the number of characters
in the reference sequence.

EXAMPLE 2.1. Figure 3 illustrates the process of building in-
dices on a sample sequence for alignments with two errors. Sup-
pose that the query sequences contain 12 characters and are split
into 4 fragments, each of length 3 characters. Thus, the indices are
built on concatenations of length 6. For each subsequence inthe
reference sequence, we generate three concatenations thatconsist
of two indexed fragments with zero, one, and two unindexed frag-
ments in the interval, respectively. The three concatenations are
then inserted into the three indices as the index keys.

The space complexity of each hash index isO(n), wheren is the
number of characters in the reference sequenceR. The number of
hash indices that are built for a reference sequence is dictated by
Lemma 2.

2.3.3 Searching Indices
Theprober (see Figure 1) is responsible for searching the query

sequences (reads) against the indices. First, we describe the search
procedure of the prober for alignments with only substitutions, and
then (in the next paragraph) extend it to support indels (insertions or
deletions). To align a query sequenceQ, it is split and concatenated
in an analogous way as the subsequences inR. All Cf

k concatena-
tions are assembled withf − k fragments in various combinations.
Next, we search each concatenation on its associated indices. Then,
the positions of the matched concatenations inR are retrieved.
With these positions, we extractl-character subsequences fromR
as “candidate” occurrences, which are then checked using the tech-
nique described in Section 2.5.

Next, we extend our technique to support indels. First, all the
Cf

k concatenations used for alignments with only substitutions are
generated. Then, for each concatenation, we extend it to a set of

GGCCACAGAAGTTGC

GGCCAC

GGCAGA

GGCAGT

GCCACA

GCCGAA

GCCGTT

CCACAG

CCAAAG

CCATTG

CACAGA

CACAGT

CACTGC

Reference
sequence

Offset
Concatenation Offset

0

0

0

1

1

1

2

2

2

3

3

3

IndexID

I

II

III

I

II

III

I

II

III

I

II

III

0 1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4

Figure 3: Building three hash indices (f = 4, k = 2)

new concatenations that are used to align the query sequencewith
indels. The basic idea is to slide some indexed fragments by afew
characters. More specifically, if the error model specifiesi inser-
tions andd deletions, we place up toi insertions and up tod dele-
tions in all intervals in the query sequence. The concatenations are
then assembled with indexed fragments whose offsets are recalcu-
lated based on the number of indels in the intervals. The probes are
performed on all possible placements of indels in all intervals.

The numbers of probes is formally given by Lemma 3.

LEMMA 3. If f -fragment query sequences are aligned withink
errors includingi insertions andd deletions, then the number of
probes for each query sequence is given by:

Nprobe =
k

X

h=0

(Ck−1
h−1 + 2Ck−1

h + Ck−1
h+1)Cf−k−1

h Ci+h
i Cd+h

d

In particular, wheni = d = 0, the number of probes isCf

k .

PROOF. We have two main tasks to accomplish. The first task
is to count how many ways can one selectk unindexed fragments
from f fragments to composeh intervals (the unindexed segments
between indexed segments). LetF (f, k, h) be the number of se-
lections. The second task is to count the number of probes on each
selection withh intervals, denoted asG(h, i, d). Thus, we sum the
products ofF (f, k, h) andG(h, i, d) to compute the total number
of probes, obtaining

Nprobe =

k
X

h=0

F (f, k, h) ·G(h, i, d). (1)

First, we count the number of selections withh intervals. A
selection can be viewed as interleaved segments between interval
and indexed segments. Given a selection withh intervals, there are
four possible arrangements ofh intervals,h + 1 indexed segments,
and (0, 1 or 2) unindexed segments at the ends, as shown in the
following figure:

Partitions

Case 1:

Case 2:

Case 3:

Case 4:

…

…

…

…

In case 1, these kind of selections haveh intervals andh + 1
indexed segments. The number of selections is equal to the number
of ways to partitionk unindexed fragments intoh intervals, and
partitionf−k indexed fragments intoh+1 indexed segments. The
formula for the number of partitioningn elements intos non-empty
sets is given byCn−1

s−1 . Thus, there areCk−1
h−1 andCf−k−1

h ways to
partition unindexed fragments and indexed fragments, respectively.
By the multiplication principle, there areCk−1

h−1Cf−k−1
h partitions

in this case. Similarly, in case 2 and case 3, we need to partition k
unindexed fragments intoh+1 sets (h intervals and one unindexed
segment at one end), and partitionf−k indexed fragment intoh+1
indexed segments. There areCk−1

h Cf−k−1
h partitions in case 2 or

case 3. In case 4, we need to partitionk unindexed fragments into
h + 2 sets (h intervals and two unindexed segments at the both
ends). The number of partitions is given byCk−1

h+1Cf−k−1
h . By

applying the addition principle to cases 1-4, we have

F (f, k, h) = (Ck−1
h−1 + 2Ck−1

h + Ck−1
h+1)Cf−k−1

h . (2)

Next, we count the number of probes on a selection withh in-
tervals. Consider the following correspondence. We put up to i
insertions and up tod deletions intoh intervals. The number of
placements is equal to the number of probes, because we need to
perform one lookup for each placement. One way to solve the prob-
lem is to add a “virtual” interval where all the unselected indels
are placed. Thus the task is to decide how to partitioni insertions
into h + 1 intervals, and partitiond deletions intoh + 1 intervals.
Given the formulaCn+s−1

n on the number of ways to partitionn
elements intos sets, there areCi+h

i andCd+h
d ways to partitioni

insertions andd deletions, respectively. By applying the multipli-
cation principle, we haveCi+h

i Cd+h
d different kinds of partitions

on the combinations of insertions and deletions, obtaining

G(h, i, d) = Ci+h
i Cd+h

d . (3)

Finally, we complete the derivation by substituting Equation 2
and 3 into Equation 1.

EXAMPLE 2.2. We align a query sequenceGACCACAAAGTT
with one substitution and one insertion to the sample sequence
shown in Figure 3. The query sequence is split into 4 fragments
as GAC|CAC|AAA|GTT. Then, we concatenate two of the four
fragments into concatenations: (1)GAC|CAC, (2) GAC|AAA, (3)
CAC| AAA, (4) GAC|GTT, (5) CAC|GTT, (6) AAA|GTT. In addi-
tion, we generate concatenations that are used to find alignments
with one insertion. Since the concatenations 2, 4, and 5 havean
interval between the two indexed fragments, we move the window
of the second indexed fragment one character left to apply the in-
sertion, and then get three more concatenations (7)GAC|CAA, (8)
GAC|AGT, and (9)CAC|AGT. Following the relationship between
the concatenations and groups as shown in Figure 2, we probe con-
catenation 1, 3, and 6 on index I, concatenation 2, 5, 7, and 9 on
index II, 4 and 8 on index III. The concatenation (9)CAC|AGT
in index II is found and the subsequence inR with 13 characters
GGCCACAGAAGTT is returned.

2.4 Hash Index Structure
WHAM uses tailored compact hash tables to index all concate-

nations generated by theindexer(see Figure 1). Hash indices are
designed as static cache-efficient structures. The hash buckets are
32-bit integer arrays. For each slot in a bucket, the most significant
bit (MSB) is used as a collision bit. If only one concatenation is
hashed into a slot, then the collision bit of the slot is set to0. The
remaining 31 bits represent the positions of the concatenations in
the reference sequenceR2. Otherwise, if several concatenations
are hashed into the same slot, then the collision bit is set to1. The
remaining 31 bits point to an array that contains the positions of all
concatenations hashed into that slot. The MSB of the last entry in
the overflow list is set to 1 to indicate the end of the slot’s list.
2The offsets in the compressed reference sequence can be repre-
sented by 31-bit integers in most cases. See Section 2.6 for details.
We also support 32-bit offsets by storing the MSBs of bucketsand
overflow entries in separate bit vectors.

20

1

X0

00

X0

10 31

Buckets Overflow array

GGCAGT

GCCGTT

CCATTG

CACTGC

0

1

2

3

OffsetsConcatenations Hash
Values

3

1

0

1

Figure 4: Hash table of index III shown in Example 2.1

EXAMPLE 2.3. Figure 4 illustrates the hash table for Index III
shown in Example 2.1 (Figure 3). The offsets of the four concate-
nations in the reference sequence are numbered from 0 to 3. Inthe
bucket slots 0 and 3, only one concatenation is hashed into the slot.
As a result, the concatenation positions are directly stored in the
slots withcollision bit = 0. In the bucket slot 1, we main-
tain a pointer to the starting position of the slot’s overflowlist in
the overflow array, withcollision bit = 1. Slots 2 and 4
are empty.

Both space and time cost are taken into consideration in the de-
sign of the hash index. The design of the overflow array makes
effective use of CPU caching, since the overflow entries are stored
in sequential memory positions. In addition, to save space the de-
sign doesn’t use next pointers that are required by linked lists. The
collision bits save both time and space spent on the overflow list
when a bucket slot contains only one concatenation. Moreover, the
hash table only stores the positions of concatenations in the ref-
erence sequenceR, rather than the actual concatenations, to save
space, because the size of concatenations is typically a fewtimes
larger than that of the positions.

2.5 Pairwise Alignments
WHAM relies on thepairwise aligner(see Figure 1) to exam-

ine if the query sequenceQ can be aligned to a potential matched
subsequence in the reference sequenceR within s substitutions,i
insertions, andd deletions. Conventional pairwise alignment tech-
niques are based on the Needleman-Wunsch dynamic programming
method and takeO(l2) time to compute the optimal alignment [16].
This alignment step can quickly become the bottleneck. WHAM
uses an alternative technique that stores the sequences in acom-
pact binary representation and leverages the ability of modern pro-
cessors to compute bitwise operations fast. These two aspects are
described next.

WHAM uses three bits to represent each base/symbol. The sym-
bolsA, C, G, T, andN are encoded as 000, 001, 010, 011, and 100
respectively. For example, the sequenceGACT is encoded as the
binary string= (010000001011)2 .

A sequence in WHAM is packed into a binary representation
that can be fit into one or a few computer words. The proposed
bitwise-based techniques (described below) manipulate a sequence
as a whole, rather than manipulating the characters one by one. As
a result, the alignment cost is not related to the length of sequences
if they can fit into a word, but scales with the number of errors.

For ease of presentation, below we first introduce the alignment
algorithms using a binary domain (each bit in a binary stringis
viewed as a base – so first consider a domain with only two sym-
bols), and then extend our technique for the general case with larger
number of symbols in the domain (approximately 5 in our case).

In Section 2.5.1, we first introduce three basic bitwise manipu-
lations, that leverage the ability of modern processors to compute
bitwise operations fast. Based on these manipulations, thebitwise-
based alignment techniques to handle substitutions, insertions, and
deletions on binary string are presented in Section 2.5.2, 2.5.3, and
2.5.4, respectively. Then, in Section 2.5.5 we describe themethod
for combining all three kinds of errors. In Section 2.5.6, the meth-

ods are extended to the general case when the domains have more
than two symbols.

2.5.1 Basic Bitwise Manipulations
Given the basic bitwise operations, e.g. AND (&), OR (|), XOR

(⊕), and SHIFT (≪,≫), some of the combinations of these basic
operations produce important bitwise manipulation techniques that
we use in this paper. In particular, we have three bitwise manipula-
tions that provide a fast way to find and manipulate the rightmost 1
bit [10]. The notationsR, S, andRS are used to denote the three
manipulations, respectively.

x&(x− 1) : remove the rightmost 1 inx. [R]

x| − x : smear the rightmost 1 to the left inx. [S]

x⊕−x : remove and smear the rightmost 1 inx. [RS]

EXAMPLE 2.4. The example demonstrates how the three bit-
wise operations apply on a binary sequencex.

x = (100011110101110010000)2

x&(x− 1) = (100011110101110000000)2 [R]

x| − x = (111111111111111110000)2 [S]

x⊕−x = (111111111111111100000)2 [RS]

2.5.2 Alignments with Substitutions
A bitwise alignment with substitutions is used to check whether

two binary sequences can be aligned with up tos substitutions. The
idea is that we first apply a bitwise XOR operation to identifythe
mismatched bits in the two given binary sequences, and then count
the number of 1s in the resulting binary sequence, using the bitwise
techniqueR (described above). After performingu = x ⊕ y, we
continue removing the rightmost 1 ofu for s iterations. If the re-
sulting binary sequence only contains 0-bits, the originalu contains
up tos ones. This implementation executess bitwise AND opera-
tions ands subtraction instructions. The complexity of this step is
O(s), becauses steps are taken to removes possible substitutions
before checking equality of the two strings.

EXAMPLE 2.5. An example of an alignment with at most 2 sub-
stitutions betweenx andy is shown below.

x = (100011110101110010110)2

y = (101011110100110010110)2

u = x⊕ y = (001000000001000000000)2

u = u&(u− 1) = (001000000000000000000)2 [R]

u = u&(u− 1) = (000000000000000000000)2 [R]

(u = 0) = true

2.5.3 Alignments with Insertions
A bitwise alignment withi insertions is used to determine whether

a binary sequencey can be matched tox by adding at mosti gaps.
This algorithm is based on the following greedy algorithm: we treat
the rightmosti mismatches as insertions, and then examine whether
the remaining prefix ofx is the same as that ofy.

Table 1 demonstrates the first steps of the bitwise alignmental-
gorithm with up toi insertions. First, a bitwise XOR operation is
applied between right-alignedx andy, e.g.u0 = x ⊕ y. Suppose
that the rightmost 1 inu0 is at positiona0, then the binary sequence
u0 can be represented by(∗n−a0−110a0)2

3, where∗ is an arbitrary

3We use exponentiation to denote bit repetition, e.g.(1402)2 =
(111100)2 .

Table 1: Identifying the first two insertion positions (∗ is an
arbitrary binary value)

(2nd insert) (1st insert)
Index . . . a1 . . . a0 . . . 0

+1 −1 +1 −1
u0 = x⊕ y . . . ∗ ∗ ∗ . . . ∗ 1 0 . . . 0

u1 = (x≪ 1) ⊕ y . . . ∗ 1 0 . . . 0 ∗ ∗ . . . ∗
m0 = u0 ⊕−u0 . . . 1 1 1 . . . 1 0 0 . . . 0

u1 = u1&m0 . . . ∗ 1 0 . . . 0 0 0 . . . 0

value in{0, 1}. Since thea0-th bits inx andy are mismatched,a0

can be treated as an insertion position, ifx andy can be aligned
with only insertions.

In the next step, we need to find the second insertion position.
Since the subsequence ofx on the left of the first insertion position
must be shifted one character left to be aligned withy, we compute
u1 = (x ≪ 1) ⊕ y. In u1, all bits between the first and second
insertion position are 0s, whereas the bits at other positions are ar-
bitrary binary values. If the second insertion is at position a1, then
u1 can be represented by(∗n−a1−110a1−a0−1∗a0+1)2. Next, we
generate a maskm0 = u0 ⊕ −u0 by removing and smearing the
rightmost 1 to the left ofu0 (applyRS), which is of the form of
(1n−a0−10a0+1)2. The maskm0 is applied onu1 to clear all bits
to the right of the first insertion position. Then,u1 can be repre-
sented by(∗n−a1−110a1)2. Thus, the position of the rightmost 1 in
u1 is the second insertion position. Continuing this fori iterations,
we will find all thei insertion positions.

Finally, we get a bit-difference sequenceui between the two se-
quences for all bits on the left of alli insertion positions. If and only
if all bits in ui are 0s, thenx can be aligned toy with i insertions.

The algorithm can also examine alignments with less thani in-
sertions. To verify this claim, suppose thatx can be aligned toy
with i′(i′ < i) insertions. After executing the firsti′ iterations, we
getui′ = (...000)2 . In the next iteration, we have

mi′ = ui′ ⊕−ui′ = (. . . 000)2

ui′+1 = (x≪ k)⊕ y = (. . . ∗ ∗∗)2

ui′+1 = ui′+1&mi′ = (. . . 000)2

Continuing this computation, byi−i′ iterations, we haveui′+1 =
ui′+2 = · · · = ui = (. . . 000)2. According toui = (. . . 000)2,
the algorithm identifies an alignment with at mosti insertions.

The pseudocode for this technique is shown in Algorithm 1. The
complexity of this algorithm isO(i), because we takei steps to re-
move the effects of all possible insertions before checkingequality
of the two strings.

EXAMPLE 2.6. This example demonstrates how we can use 12
bitwise operations to align two binary stringsx andy with at most
two insertions.

x = (100011110101110010110)2

y = (10001111011011100010110)2

u0 = x⊕ y = (10101100101110010000000)2

u1 = (x≪ 1)⊕ y = (11001000110000000111010)2

m0 = u0 ⊕−u0 = (11111111111111100000000)2 [RS]

u1 = u1&m0 = (11001000110000000000000)2

u2 = (x≪ 2)⊕ y = (00000000001100101001110)2

m1 = u1 ⊕−u1 = (11111111100000000000000)2 [RS]

u2 = u2&m1 = (00000000000000000000000)2

(u2 = 0) = true

Algorithm 1 Sequence alignment withini insertions
1: u0 ← x⊕ y;
2: for k ← 1...i do
3: mk−1 ← uk−1 ⊕−uk−1; // remove and smear the rightmost 1
4: uk ← (x≪ k)⊕ y;
5: uk ← uk&mk−1;
6: return ui = 0;

2.5.4 Alignments with Deletions
The algorithm for a bitwise alignment withd deletions is similar

to that of alignments withd insertions, except for two differences.
First, we replace all left shifts by right shifts. Given the property
x ≪ (−k) = x ≫ k, we usex ≪ −k to represent shiftingx
right byk bits. Second, the maskmk−1 is generated by the bitwise
techniqueS instead of the bitwise techniqueRS. We smear the
rightmost 1 to the left, but do not remove the rightmost 1 because
this position is not skipped by an insertion.

2.5.5 Alignments with all the Three Types of Errors
The final algorithm to align withins substitutions,i insertions

andd deletions simply enumerates all possible orders of these three
types of errors, and then verifies each permutation. Algorithm 2
shows the pseudocode. In the outer loop, all permutations with s
substitutions,i insertions andd deletions are enumerated. We use -
1, 0, +1 to denote a deletion, a substitution, and an insertion, respec-
tively. A permutation represents the order of the error types that
occurred in an alignment. For example,o3o2o1o0 = −1, 0, +1, 0
implies an alignment with four errors, which are a substitution, an
insertion, another substitution, and a deletion, in right-to-left order.

For each permutationos+i+d−1os+i+d−2 . . . o1o0, we examine
whether the two given sequences can be aligned with the constraints
on the number and the order of error types. In the beginning,
the current binary sequenceu is initialized as the bit-difference
sequence between the right-alignedx andy (Line 4). In the in-
ner loop, we clear all the errors in the permutation from right to
left. In iterationk, we manipulate the sequenceu according to
the error type indicated byok. If the error is supposed to be a
substitution, then we remove the rightmost 1 inu (Line 6). Thus,
the substitution is cleared so that we can continue identifying the
next error by finding the next rightmost 1. Otherwise, we first
generate a maskm by removing and smearing the rightmost 1 in
u if the error is an insertion (Line 9), or by smearing the right-
most 1 inu if the error is a deletion (Line 11). Next, we update
u ← (x ≪ (o0 + o1 + ... + ok)) ⊕ y, and use the maskm on
u to clear the rightmost bits that have arbitrary values (Line13).
As a result, the rightmost 1 in the updatedu implies the next error
position. Continuing this fors + i + d iterations, if the resulting
sequenceu contains only 0s, we produce a successful alignment.

The algorithm also examines alignments with fewer than the con-
strained number of errors. Suppose thatx can be aligned toy
with s′(s′ ≤ s) substitutions,i′(i′ ≤ i) insertions, andd′(d′ ≤
d) deletions. Then, there exists a permutationR such thatP =
os+i+dos+i+d−1...os′+i′+d′+2os′+i′+d′+1P

′, whereP ′ is a per-
mutation ofs′ substitutions,i′ insertions, andd′ deletions that can
produce an alignment betweenx andy. After (s′+i′+d′) iterations
of permutationP ′, we getu = (. . . 000)2. Regardless of whether
the next error is a substitution (u = u&(u − 1) = (. . . 000)2),
an insertion (u = (. . . ∗ ∗∗)2&(u& − u) = (. . . 000)2), or a
deletion (u = (. . . ∗ ∗∗)2&(u ⊕ −u) = (. . . 000)2), we get
u = (. . . 000)2 in the end of the next iteration. Continuing this
step fors+ i+d− s′− i′−d′ iterations, we haveu = (. . . 000)2,
and return true for this alignment.

Algorithm 2 Sequence alignment withins substitutions,i inser-
tions, andd deletions
1: for each permutationos+i+d−1, os+i+d−2, . . . , o1, o0 with s substi-

tutions (0),i insertions (+1) andd deletions (-1)do
2: m = (111111...)2 ;
3: u = x⊕ y;
4: for k ← 0 . . . s + i + d− 1 do
5: if ok = 0 then
6: u← u&(u− 1); // remove the rightmost 1
7: else
8: if ok = +1 then
9: m← u⊕−u; // remove and smear the rightmost 1

10: else
11: m← u| − u; // smear the rightmost 1 to the left
12: u← (x≪ (o0 + o1 + ... + ok)) ⊕ y;
13: u← u&m
14: if u = 0 then
15: return true ;
16: return false;

The time complexity of this algorithm isO((s+i+d)!
s!i!d!

(s+i+d)),

where (s+i+d)!
s!i!d!

is the number of permutations, ands + i + d is the
number of steps for processing each permutation. Recall that the
complexity of the Needleman-Wunsch algorithm isO(l2), where
l is the length of sequences. Given the fact that sequence aligner
typically chooses 2 or 3 errors (k = s + i + d) for a sequence with
50∼100 characters (l = 50 ∼ 100), our method is much faster
than the Needleman-Wunsch algorithm.

EXAMPLE 2.7. This example shows the steps for an alignment
with at most one substitution and one deletion between sequences
x andy. This alignment requires a total of 16 bitwise instructions.

x = (100011110101010010110)2

y = (10101111010110010110)2

u0 = x⊕ y = (110110001111100000000)2

u1 = (x≪ −1)⊕ y = (00100000000011011101)2

Case−1, 0:

v1 = u0&(u0 − 1) = (110110001111000000000)2 [R]

m1 = v1| − v1 = (111111111111000000000)2 [S]

w0 = u1&m1 = (001000000000000000000)2

Case0,−1:

m1 = u0| − u0 = (111111111111100000000)2 [S]

v1 = u1&m1 = (001000000000000000000)2

w1 = v1&(v1 − 1) = (000000000000000000000)2 [R]

(w0 = 0)|(w1 = 0) = true

2.5.6 Alignments on the Genome Domain
We extend our bitwise techniques presented above to support

alignments on sequences with more than two base types in the do-
main. Suppose that each character in the domain can be represented
by D bits (in our case,D = 3 to to encode the symbolsA, C, G,
T, andN). As we mentioned before, the techniques described in
previous sections cannot be directly applied on the encodedbinary
strings of genome sequences. For example, given two sequences
GACT= (010000001011)2 andGAGT= (010000010011)2 , there
are two different bits between the two sequences, because:
(010000001011)2⊕(010000010011)2 = (000000011000)2 . With
this test, it seems that the sequences match with two errors.How-
ever, the sequences can actually be aligned with one character error
(C→G).

All our bitwise alignment algorithms discussed in the previous
sections (see Sections 2.5.2-2.5.5) begin with one or a few bitwise
XOR operations (in the form ofv = (x ≫ i) ⊕ y) to identity the
different bits between the two sequences. To support alignments on
the domain, we add one additional step

v = (v ≫ D − 1|...|v ≫ 1|v)&µ, whereµ = (...0D−110D−11)2,

immediately after each of these operations to compute a character-
difference sequence based on the bit-difference sequence.An OR
operation is performed on theD bits representing the same charac-
ter, to reflect that if any pair of bits is different, then the characters
are different. We then mask it byµ to generate a binary sequence
in the form: (...0D−1v20

D−1v10
D−1v0)2, wherevi indicates the

inequality between thei-th characters in the two sequences. For
example, if we apply this formula on the bit-difference sequence
(000000011000)2 in the example shown above (D = 3), the re-
sulting sequence is(000000001000)2 .

EXAMPLE 2.8. This example demonstrates an alignment with
at most one substitution and one deletion betweenx and y. The
procedure is similar to that of example 2.7, except for the two added
lines (shown as underlined).

x = GCTCGAC

y = GATCAC

x = (010001011001010000001)2

y = (010000011001000001)2

u0 = x⊕ y = (010011011010011000000)2

u0 = (u0 ≫ 2|u0 ≫ 1|u0)&µ = (001001001001001000000)2

u1 = (x≪ −3)⊕ y = (000001000000010001)2

u1 = (u1 ≫ 2|u1 ≫ 1|u1)&µ = (000001000000001001)2

Case−1, 0:

v1 = u0&(u0 − 1) = (001001001001000000000)2

m1 = v1| − v1 = (111111111111000000000)2

w0 = u1&m1 = (000000001000000000000)2

Case0,−1:

m1 = u0| − u0 = (111111111111111000000)2

v1 = u1&m1 = (000000001000000000000)2

w1 = v1&(v1 − 1) = (000000000000000000000)2

(w0 = 0)|(w1 = 0) = true

2.6 Compressing Genome Sequences
Some areas of any typical genome are filled withNs (recall from

Section 2.1, the symbolN represent unknown or a repetitive re-
gion). For example, within the repeat-masked human genome,about
50.5% of the 3 billion nucleotides areNs, because entire repetitive
regions are masked out asNs. These Ns can represent any of the
nucleotides –A, C, G or T, and are always treated as an error in
alignments. This property provides an opportunity to compress the
genome sequence by removing unnecessaryNs, and is exploited by
the compressor component shown in Figure 1.

A naive way of compression is to directly remove allNs in the
reference sequence. However, this method introduces errors when
a query sequence can be aligned to the portions to the immediate
left and right of a series ofNs in the reference sequence. The fol-
lowing example shows a wrong alignment on the naive compressed
sequence. Query sequence 1 cannot be aligned to the reference
sequence, but it can be aligned to the naive compressed sequence.

Reference Seq. GGCCACAGAANNNNNNTACTACG
Naive Compressed Seq. GGCCACAGAATACTACG

Query Seq. 1 CCACAGAATACT

To guarantee the correctness of alignments, WHAM uses an ac-
curate compression method to remove unnecessary characters. The
length of the compressed sequence is comparable to the naivecom-
pressed sequence, but the aligner generates the exact same align-
ments on the compressed sequence as on the original sequence.

Suppose the alignment constraint isk errors. Then, the portion
in the original sequence that consists of at leastk + 1 consecutive
Ns is calledN-series. WHAM cuts all N-series intok + 1 Ns.

Taking the above example again, if we allow 2 errors, then the
N-series that consists of 6Ns is cut to a shorter series with 3Ns.
As shown below, query sequence 1, which cannot be aligned to
the original sequence within 2 errors, also cannot be aligned to the
compressed sequence within 2 errors (the best alignment is with 3
substitutes, shown by the underlined characters).

Reference Seq. GGCCACAGAANNNNNNTACTACG
WHAM Compressed Seq. GGCCACAGAANNNTACTACG

Query Seq. 1 CCACAGAATACT

The position of a matched portion in the compressed sequence
needs to be mapped to the position in the original sequence when
WHAM outputs results. This can be done by building an index
on all position pairs of N-series in the original and the compressed
sequences. To obtain the original position of a matched portion,
we search against the index using its position in the compressed
sequence as a search key to find the rightmost N-series that isto the
left of the matched portion. The original position is then calculated
based on the distance to the N-series and the original position of
the N-series. In our implementation, we employ a cache-efficient
B-tree [18] to index the position mapping.

2.7 Analytical Model and Index Optimizer
In this section, we present an analytical model of WHAM’s align-

ment performance. This model is used by the index optimizer
shown in Figure 1 to pick an ideal number of fragments (such that
performance when probing is maximized).

WHAM’s indexing technique is based on a hashing method that
is known to have low memory reference locality, which implies
that the total execution time is likely to be dominated by theCPU
cache stall time. Therefore, we use the number of cache misses as
the metric in our model. The model relies on the input parameters
including the length of query sequencel, the number of fragments
f , the number of errorsk, and outputs the estimated number of
cache misses for each alignment.

Total alignment cost,Malign is simplyNprobe ·Mprobe, where
Nprobe is the number of probes, and has been derived in Lemma 3.

Next, we analyze the cost of a probe on a hash index,Mprobe.
The random variableX is used to represent the number of records
that are hashed into a particular bucket slot. When searching records
in a hash table, cache misses can be incurred as it accesses the
bucket table, the overflow list, as well as the reference sequences in
the database. IfX = 0, the bucket slot is empty, and we only need
to access one slot in the bucket table (1 cache miss). WhenX = 1,
an extra cache miss is incurred when reading the sequence from the
reference sequence following the pointer stored in the bucket slot.
WhenX = i(i > 1), we first access the bucket (1 cache miss),
and then scan the overflow list (⌈ i

B
⌉ cache misses, whereB is the

block size of the CPU cache, also known as the cache line size).
For each entry in the overflow list, we go to the reference sequence
(R) to verify the alignment (i cache misses). By taking the three
cases into consideration, the number of cache misses for a probe is

 1

 10

 100

 1000

1 2 3T
hr

ou
gh

pu
t (

x1
00

0/
se

c)
, l

og
 s

ca
le

Number of substitutions

3.3X
3.5X

4.8X

WHAM
Bowtie

(a) 36bps

 1

 10

 100

 1000

1 2 3T
hr

ou
gh

pu
t (

x1
00

0/
se

c)
, l

og
 s

ca
le

Number of substitutions

7.6X
41.2X

43.2X

WHAM
Bowtie

(b) 60bps

 1

 10

 100

 1000

1 2 3T
hr

ou
gh

pu
t (

x1
00

0/
se

c)
, l

og
 s

ca
le

Number of substitutions

8.4X 30.1X
41.4X

WHAM
Bowtie

(c) 74bps
Figure 5: Throughput comparison between WHAM and Bowtie varying the number of substitutions

given as follows:

Mprobe = P (X = 0)+2·P (X = 1)+

n
X

i=2

(1+⌈
i

B
⌉+i)·P (X = i)

In a hash table,n records occupyb buckets. We assume that
the records have uniform distribution on their range, and the hash
function is a perfect hash function. If a record is hashed into a
particular hash bucket with a probability of1/b, and alln records
are hashed, then the number of records in each hash bucket canbe
modeled as a binomial distribution with parametersn and 1

b
, i.e.

X ∼ B(n, 1
b
). The probability mass function ofX is:

P (X = i) = Cn
i (

1

b
)i(1−

1

b
)n−i

The number of occupied buckets,b, depends on the length of
concatenationsq = (f − k) · ⌊ l

f
⌋. Since the sequence consists

of four possible bases for each character, the maximum number of
occupied buckets is4q . Given the total number of bucketsNbucket

in the hash table, the number of occupied buckets is:

b = min(4q , Nbucket) , whereq = (f − k) · ⌊
l

f
⌋

Using the model presented above, we have implemented anin-
dex optimizer(see Figure 1) that uses an analytical modelevaluator
to compute the impact of each possiblef value on the performance
when matching the read set. Theoptimizer(see Figure 1) enumer-
ates the candidatef values, and determines a suitablef value that
minimizes the estimated matching cost for a target read length and
the error model.

3. EVALUATION
We ran our experiments on a machine with dual 2.67GHz Intel

Xeon 6-core CPUs, and 24GB of DDR3 main memory, running
Scientific Linux 5 (kernel 2.6.9). Each processor has 12MB ofL3
cache shared by all cores on that processor. In addition, each core
has a private 32KB L1 instruction and a 32KB L1 data cache, and
256KB of L2 cache. Each processor also employs a two-level hard-
ware TLB. All algorithms were implemented in C++, and compiled
using g++ 3.4.6 with optimization flags (O3 and finline-functions).

We chose three sets ofreal query sequences as workloads. These
workloads have varying read lengths of 36bps, 60bps, and 74bps,
providing for a wide range of read lengths corresponding to what
the current next-gen sequencing machines provide today. The 36bps
and 74bps workloads come from NCBI, and were chosen because
their lengths are similar to the datasets used in the Bowtie paper [6],
and the 60bps workload is from our collaborators. Each workload
contains about 3 million reads.

Our reference genome (on which we build indices) is the repeat-
masked human genome NCBI build 36. We also tested WHAM on

 0

 100

 200

 300

 400

 500

36bps 60bps 74bps

T
hr

ou
gh

pu
t (

x1
00

0/
se

c)

Workloads

2 substitutions
1 substitution + 1 insertion

2 insertions

Figure 6: WHAM throughput varying the number of insertions
(the number of errors is fixed at two)

the non-masked human genome. After filtering out junk regions
that appear more than 100 times in the genome, the performance is
similar to that on the masked genome.

The WHAM index optimizer (see Section 2.7) recommended the
number of fragments for each workload, and then computed the
number of indices based on Lemma 2 for each workload. Table 2
summarizes the parameters used for the three workloads. Thenum-
ber of fragments plays a key role in the performance of WHAM.
For example, if we use 3 fragments to align a 36bps workload with
2 errors, it is one order of magnitude slower than using the rec-
ommended value. All values that we used in the experiments are
recommended by theindex optimizer, whose accuracy is evaluated
in Section 3.3.

Table 2: Number of fragments and indices for the workloads
Number of fragments Number of indices
1 err 2 err 3 err 1 err 2 err 3 err

36bps 3 4 6 2 3 10
60bps 2 3 5 1 1 4
74bps 2 3 4 1 1 1

Each WHAM index is about 8.9GB in size and takes about 20
minutes to build. Loading a prebuilt WHAM index from disk takes
less than two minutes. The number of indices for each workload
is listed in Table 2. If the total size of indices exceeds the memory
size, then WHAM loads indices and performs alignments on the
loaded indices one after another.

In the evaluation below, we compare WHAM to Bowtie [6].
Bowtie also builds an index on the reference genome, and the Bowtie
index is about 1.5GB and takes about 3 hours to build. We have
also compared WHAM with RBSA [17], a string matching method
that accommodates a broader class of error models compared to
WHAM. However, our experiment results show that WHAM is
several orders of magnitudes faster than RBSA. In addition,RBSA
has a much larger memory footprint than WHAM making it infea-

 1

 10

 100

 1000

 10000

36 60 74
 1

 10

 100

 1000

 10000

N
um

be
r

of
 C

ac
he

 M
is

se
s,

 lo
g

sc
al

e

E
la

ps
ed

 T
im

e
(x

10
00

 c
yc

le
s)

, l
og

 s
ca

le

Length of Query Sequence (l)

Measured Cache Misses
Estimated Cache Misses

Measured Time

(a) f =3, k=2

 1

 10

 100

 1000

 10000

3 4 5
 1

 10

 100

 1000

 10000

N
um

be
r

of
 C

ac
he

 M
is

se
s,

 lo
g

sc
al

e

E
la

ps
ed

 T
im

e
(x

10
00

 c
yc

le
s)

, l
og

 s
ca

le

Number of fragments (f)

Measured Cache Misses
Estimated Cache Misses

Measured Time

(b) l =36,k=2

 10

 100

 1000

 10000

 100000

 1e+006

1 2 3
 10

 100

 1000

 10000

 100000

 1e+006

N
um

be
r

of
 C

ac
he

 M
is

se
s,

 lo
g

sc
al

e

E
la

ps
ed

 T
im

e
(x

10
00

 c
yc

le
s)

, l
og

 s
ca

le

Number of Errors (k)

Measured Cache Misses
Estimated Cache Misses

Measured Time

(c) l =36,f=4

Figure 7: Analytical Model Validation

sible to use on our machines for the whole human genome. Conse-
quently, we do not consider RBSA further in this paper.

Since index construction and loading is a one-time cost, in the
performance comparison, we do not include these costs for either
Bowtie or WHAM.

3.1 Comparison between WHAM and Bowtie
We first compare the throughput of WHAM with that of Bowtie

(version 0.12.3), the leading state-of-the-art method that is widely
deployed in production settings today. We used the 64-bit version
of Bowtie running with the-a flag, indicating that it should report
all valid matches. Since Bowtie does not support indels, we only
compare the throughput with varying number of substitutions.

Figure 5 shows the results on the three datasets. The speedupof
WHAM over Bowtie is also marked on the top of the bars in the
graph. As can be observed from Figure 5, WHAM is uniformly
better, with speedup of 3X to 5X for the 36bps workload, and 8X
to 43X for the 60bps and 74bps workloads. The speedup difference
between the short (36bps) and the long (60bps and 74bps) query
sequences is due to the hash collisions. When the query sequence is
short, many of the concatenations (keys) are the same, whichresults
in many collisions in the hash tables. Consequently, throughput
drops significantly as either WHAM suffers from scanning thelong
overflow array on a hash probe, or it breaks the query sequences
into more fragments, and thus increases the number of probes.

For the short query sequence (36bps), the throughput of both
WHAM and Bowtie degrades as the number of substitutions in-
creases (see Figure 5 (a)). The speedup of WHAM over Bowtie
is relatively steady, within a small range from 3.3X to 4.8X.This
means that the throughput of WHAM decreases as fast as that of
Bowtie when allowing for more substitutions. This behavioris due
to the combinations of two effects. First, WHAM performs more
probes on the hash table as the number of allowed errors increases.
Second, and more importantly, the concatenations become shorter
and cause significant collisions in the hash tables when allowing
for more errors. As a result, the overflow arrays become longer,
and the hash probes become more expensive.

For longer query sequences, the speedup of WHAM over Bowtie
increases as the number of substitutions increases. For the60bps
workload (Figure 5 (b)), WHAM is 7.6X, 41.2X, and 43.2X faster
with 1, 2, and 3 substitutions respectively. For the 74bps work-
load (Figure 5 (c)), the speedup is 8.4X, 30.1X, and 41.4X with
1, 2, and 3 substitutions respectively. (Since the 60bps andthe
74bps datasets are different workloads, the reader should not read
too much into variations in performance for the specific number
of substitutions across these two datasets.) For the longerquery
sequences, the indexed fragments in WHAM are long enough to
mitigate the hash collision issue. WHAM’s throughput degrada-

tion is almost always due to the increasing number of probes on
the hash table and the number of errors increases. As a result, the
throughput of WHAM degrades slower than that of Bowtie as the
number of errors in the match model increases.

3.2 Effect of Indels
WHAM also supports indels as well as the combinations of sub-

stitutions and indels. In this experiment, we fix the number of errors
at two, and vary the number of insertions (the number of substitu-
tions is two minus the number of insertions). Since Bowtie does
not support indels, we cannot make a comparison with Bowtie.

Figure 6 shows the throughput for the three combinations of sub-
stitutions and insertions. The throughput degrades as the number of
insertions increases across the three datasets. This is dueto two ef-
fects. First, supporting more insertions introduces more probes on
the hash indices. Second, the bitwise alignments with insertions
are typically more complex than those with only substitutions, and
as a result, the cost of the bitwise alignment method increases with
increasing indels in the model.

3.3 Model Validation
Finally, we evaluate the accuracy of our analytical model by

comparing the estimated and measured performance with various
parameters. Figure 7 demonstrates the measured and estimated
number of cache misses, as well as the measured elapsed time,
varying the parametersl, k, f . The number of cache misses is
obtained by enabling the hardware performance-monitoringcoun-
ters (RDPMC instruction), and only the number for the lowestlevel
data cache is reported.

In each experiment, we fix two parameters and vary the third
one. Figure 7(a) shows the measured and estimated performance
on each of our three workloads. Figure 7(b) plots the performance
whenf varies from 3 to 5. Figure 7(c) illustrates the performance
when varying the value ofk from 1 to 3.

As shown in Figure 7, our estimates show a trend similar to the
measured values. The gap between the measured and estimated
cache misses is mainly due to the different alignment ratio in the
datasets. Note that an invalid query sequence is more likelyto ac-
cess the bucket that has a short overflow list or an empty bucket,
whereas a valid query sequence is more likely to access the “hot”
bucket. Thus, more cache misses occur in the dataset with a high
alignment ratio. For example, the 60bps dataset has a low align-
ment ratio, whereas the 74bps dataset has a high alignment ratio.
As shown in Figure 7(a), our analytical model overestimateson the
60bps dataset, and underestimates on the 74bps dataset.

Furthermore, the estimated bestf values match the measured
best values. As shown in Figure 7(b), the analytical model accu-
rately estimates that the best performance is achieved whenpar-
titioning the query sequence into 4 fragments. We used our ana-

 0

 20

 40

 60

 80

 100

(2,0) (1,1) (0,2)

%
 o

f t
ot

al
 ti

m
e

(#substitutions, #gaps)

(a)

Output
Alignment

Hashing
Partitioning

 0

 20

 40

 60

 80

 100

(2,0) (1,1) (0,2)

%
 o

f t
ot

al
 ti

m
e

(#substitutions, #gaps)

(b)

Others
TLB Stall

L2 Cache Stall
L3 Cache Stall

Figure 8: Time breakdown varying the number of substitutions
for the 60bps workload

lytical model in our index optimizer to recommend thef value in
all our experiments, and the resulting recommended index settings
are shown in Table 2. By comparing WHAM’s histogram in Fig-
ure 5 and the best throughput among all partitioning schemes(the
results are omitted here in the interest of space), we observe that
the analytical model used in the index optimizer captures the best
parameters for all settings in our experiments.

3.4 Time breakdown
To better understand the performance characteristics of WHAM,

next we examine the detailed time breakdown for 1) the different
phases in WHAM, and 2) the different processor stall times when
running WHAM.

The time breakdown for the different phases of WHAM is shown
in Figure 8 (a). This time breakdown is for the 60bps workloadand
for three error models: 2 substitutions, 1 substitution and1 inser-
tion, and 2 insertions. The time breakdown for the other workloads
and error models are similar to the one shown in Figure 8 (a), and
we omit these other results in the interest of space.

In Figure 8 (a), the four main phases include: (a) the partitioning
phase to partition the short reads into fragments and to combine
these fragments into concatenations if necessary, (b) the hashing
phase to perform lookups on the hash table, and to scan the corre-
sponding overflow array, (c) the alignment phase to perform bitwise
alignment between a pair of sequences, and (d) the output phase to
write the results to a file. The partition phase is the fastestphase,
and only accounts for about 4% of total time. The hashing time
is significant (about 30%) across all three settings, due to cache
misses (stalls) when accessing hash entries. Alignment is the most
expensive phase. It varies from 45% to 60% of the total time. The
alignments with more deletions execute more instructions and are
more expensive. The output phase accounts for 8%–18% of the
total time, depending on the number of successful alignments.

Figure 8 (b) illustrates the time breakdown for different proces-
sor stall times. We used the processor hardware performancecoun-
ters to measure the number of L3 cache misses, L2 cache misses,
and TLB misses. Since these resource stalls can overlap withuseful
computation in modern processors, there is no real way to measure
the overlap between a stall and an instruction executing in the in-
struction stream, as the overlapped time depends on the degree of
instruction-level parallelism. We crudely (over) estimate the stall
time as the number of measured misses multiplied by the cycles
for each stall. The “other” time in this figure is computed by sub-
tracting the L2, the L3, and the TLB stall times from the totaltime.
All results are with a single threaded execution of WHAM. Multi-
threaded results are presented below in Section 3.5.

 0

 6

 12

 18

 0 12 24 36 48

S
pe

ed
up

 o
ve

r
si

ng
el

 th
re

ad

Number of threads

#c
or

es

#c
on

te
xt

s

Speedup

Figure 9: WHAM throughput varying number of threads

As shown in Figure 8 (b), the L3 and the L2 cache stall times ac-
count for about 50-60%, and 25-30% of the total time respectively,
and are the dominating stall costs in WHAM. This empiricallyver-
ifies the assumption in Section 2.7 that cache stall time is the per-
formance bottleneck. When we allow more gaps, the “other” time
increases, mainly due to more instructions involved in computing
pairwise alignments.

3.5 Performance on Multi-Core CPUs
All the previous results are with WHAM running in a single

thread. We have also implemented a multi-threaded version of
WHAM, and examined its performance on a multi-core processor.
In this setting, the batched short reads are evenly distributed across
all running threads. Each thread independently lookups theshared
hash indices and performs the pairwise alignment in parallel. Fig-
ure 9 illustrates the throughput speedup of the multi-threaded exe-
cution over the single threaded execution with varying number of
threads.

As shown in the figure, the throughput has a linear speedup as
long as the number of threads does not exceed twelve, which is
the total number of physical cores in our test machine. The lin-
ear speedup indicates that, although the cache stall time dominates
the execution time of a single thread execution, it does not become
the performance bottleneck when using multiple cores, as memory
access requests from different threads can be issued and processed
in parallel. The architecture of the machine that we are using pro-
vides a higher bandwidth between the main memory and the CPU
caches than what WHAM demands. However, the speedup has only
a slight increase when the number of threads exceeds twelve,which
means that WHAM does not benefit from Hyper-Threading. The
throughput fluctuates when the number of threads is more thanthe
number of physical cores, due to the cost of context switching when
scheduling the threads across the processing cores.

3.6 Summary
The main conclusions from these experiments are that, (a) the

analytical model which is at the heart of the index optimizing com-
ponent of WHAM is accurate, (b) WHAM is often more than an
order of magnitude faster than Bowtie on long read workloads, (c)
WHAM performs much better on long read sequences than short
ones, which bodes extremely well for the future in which read
lengths are expected to increase, (d) WHAM supports indels with
low overhead, and (e) WHAM exhibits a linear speedup as the num-
ber of threads increases to match the number of processing cores.

4. RELATED WORK
A number of commonly used alignment algorithms employ the

dynamic programming technique, including the Needleman-Wunsch
algorithm [16] (for global alignment) and the Smith-Waterman al-
gorithm [20] (for local alignment).

Severalq-gram based methods have been developed for approx-
imate string matching in large sequence databases [2, 11, 14, 23].
A q-gram is a substring of lengthq. Theseq-gram based meth-
ods are based on counting the number ofq-grams that are shared
between the query and the reference sequences. Although these
q-gram based methods and WHAM find approximately matched
sequences by performing exact searches on subsequences, the key
differences stem from the fact thatq-gram based methods count
the number of shared subsequences, whereas WHAM uses subse-
quences as seeds to find valid matching sequences. Another differ-
ence is that theq-grams are overlapping subsequences, whereas in
WHAM fragments are non-overlapping subsequences.

Bit manipulation methods such as the Shift-Or algorithm [5]and
its extended variant [22] have been used to efficiently search for a
query sequence in a reference sequence. Unlike the Shift-Oralgo-
rithm and its variants, WHAM’s bitwise alignment algorithms are
used to globally align the two sequences along their entire lengths,
with an arbitrary number of mismatches and gaps.

BLAST [3] is a popular heuristic tool to compute local align-
ments for long query sequences. However, a major limitationof
BLAST is that there is no guarantee that the optimal local align-
ment will be reported (since it uses a heuristic technique).More re-
cently, a reference-based method, called RBSA [17], was proposed
for large queries and accurate results. In RBSA, query sequences
are aligned to a group of references with precomputed alignment
scores, instead of being aligned to the original reference sequence
directly. These methods that support long query sequences and ar-
bitrary error models are more general than WHAM, but are not as
efficient for aligning short reads against genomes.

Previous methods for sequencing short reads include Maq [12],
SOAP [13], and Bowtie [6]. In particular, Bowtie has focusedon
utilizing the properties of the Burrows-Wheeler Transforms (BWT)
[7] to index the reference sequence. A BWT-based index can be
viewed as a suffix tree variant, and has a small memory footprint,
making Bowtie feasible on computers with only 2GB of memory.
Our technique differs significantly from Bowtie and other suffix-
tree based indexes, as we build hash indexes on subsequencesof
the reference sequence. Although a hash structure does not inher-
ently allow for the same ease of discovering strings with different
numbers of mismatches, it does take advantage of current memory
sizes to produce an overall faster alignment method.

The WHAM indexing schemes are also related to PartEnum al-
gorithm [4] proposed for set similarity joins, which uses binary
vectors to represent sets, and computes the Hamming distance be-
tween the binary vectors. WHAM and PartEnum use a similar idea:
partitioning, and enumeration on partitions of vectors. However,
WHAM differs from PartEnum in a few key ways. First, PartEnum
is designed for set similarity joins based on Hamming distance,
whereas our method is used for biological sequence alignments
based on edit distance. Second, WHAM builds hash-based indexes
on the basis of categories of concatenations for large reference se-
quences. WHAM selects indexing schemes that trade off between
the number of lookups on indexes and the performance of each
lookup, to achieve optimal overall performance.

5. CONCLUSION AND FUTURE WORK
With the advances in sequencing technology, there is an urgent

need for a fast read alignment method that can deal with longer
reads and accommodate rich error models. This paper proposes
a method called WHAM that addresses this need. WHAM em-
ploys novel hash-based indexing and bitwise operations forpair-
wise alignments. Our extensive experimental studies usingreal
datasets show that, compared to the existing leading read alignment

method, WHAM is often faster by an order-of-magnitude (or more)
and can accommodate richer error models. In addition, WHAM
also leverages multi-core architectures very effectively. For future
work, we plan to extend WHAM to work in distributed data pro-
cessing environments.

Acknowledgments
We would like to thank Ron Steward and Victor Ruotti for various
discussion on the topic of next-gen sequence alignment. We would
also like to thank Spyros Blanas and the reviewers of this paper for
valuable feedback on an earlier draft of this paper. This work was
supported in part by a grant from the National Science Foundation
under grant DBI-0926269.

6. REFERENCES
[1] White House Press Release. Retrieved 2006-07-22.

http://www.ornl.gov/sci/techresources/Human-Genome/project/clinton1.shtml.
[2] M.-S. K. 0002, K.-Y. Whang, J.-G. Lee, and M.-J. Lee. n-gram/2l: A space and

time efficient two-level n-gram inverted index structure. In VLDB, pages
325–336, 2005.

[3] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local
alignment search tool.Journal of Molecular Biology, 215:403–410, 1990.

[4] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In
VLDB, pages 918–929, 2006.

[5] R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
Commun. ACM, 35(10):74–82, 1992.

[6] L. Ben, T. Cole, P. Mihai, and S. Steven. Ultrafast and memory-efficient
alignment of short dna sequences to the human genome.Genome Biology,
10(3):R25, 2009.

[7] M. Burrows and D. Wheeler. A block-sorting lossless datacompression
algorithm.Digital SRC Research Report, 1994.

[8] T. Han, S. Ko, and J. Kang. Efficient Subsequence MatchingUsing the Longest
Common Subsequence with a Dual Match Index.Machine Learning and Data
Mining in Pattern Recognition, pages 585–600, 2007.

[9] E. Karakoc, Z. Ozsoyoglu, S. Sahinalp, M. Tasan, and X. Zhang. Novel
approaches to biomolecular sequence indexing.Data Engineering, 1001:40,
2004.

[10] D. E. Knuth.The Art of Computer Programming, Volume 4A: Combinatorial
Algorithms, Part 1. Addison-Wesley Professional, Jan. 2011.

[11] C. Li, B. Wang, and X. Yang. Vgram: Improving performance of approximate
queries on string collections using variable-length grams. In VLDB, pages
303–314, 2007.

[12] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and
calling variants using mapping quality scores.Genome research, 18(11):1851,
2008.

[13] R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: short oligonucleotide
alignment program.Bioinformatics, 24(5):713, 2008.

[14] W. Litwin, R. Mokadem, P. Rigaux, and T. J. E. Schwarz. Fast ngram-based
string search over data encoded using algebraic signatures. In VLDB, pages
207–218, 2007.

[15] J. D. McPherson. Next-generation gap.Nature Methods, 6(11s):S2–S5, October
2009.

[16] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins.Journal of
Molecular Biology, 48:443–453, 1970.

[17] P. Papapetrou, V. Athitsos, G. Kollios, and D. Gunopulos. Reference-based
alignment in large sequence databases.PVLDB, 2(1):205–216, 2009.

[18] J. Rao and K. A. Ross. Cache conscious indexing for decision-support in main
memory. InVLDB, pages 78–89, 1999.

[19] R. L. Rivest. Partial-match retrieval algorithms.SIAM J. Comput., 5(1):19–50,
1976.

[20] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences.Journal of Molecular Biology, 147:195–197, 1981.

[21] Venter, et al. The Sequence of the Human Genome.Science,
291(5507):1304–1351, 2001.

[22] S. Wu and U. Manber. Fast text searching allowing errors. Commun. ACM,
35(10):83–91, 1992.

[23] X. Yang, B. Wang, and C. Li. Cost-based variable-length-gram selection for
string collections to support approximate queries efficiently. In SIGMOD
Conference, pages 353–364, 2008.

